/inkscape/src/helper/ |
H A D | mathfns.h | 33 * \return x rounded to the nearest multiple of c1 plus c0. 36 * If c1==0 (and c0 is finite), then returns +/-inf. This makes grid spacing of zero 39 inline double round_to_nearest_multiple_plus(double x, double const c1, double const c0) argument 41 return floor((x - c0) / c1 + .5) * c1 + c0; 45 * \return x rounded to the lower multiple of c1 plus c0. 48 * If c1==0 (and c0 is finite), then returns +/-inf. This makes grid spacing of zero 51 inline double round_to_lower_multiple_plus(double x, double const c1, double const c0 = 0) argument 53 return floor((x - c0) / c1) * c1 63 round_to_upper_multiple_plus(double x, double const c1, double const c0 = 0) argument [all...] |
/inkscape/src/libdepixelize/priv/ |
H A D | curvature.h | 41 Curvature(Point<T> p0, Point<T> c1, Point<T> p2) : argument 42 p0(p0), c1(c1), p2(p2) 67 Point<T> p0, c1, p2; member in struct:Tracer::Curvature 81 return (1-t)*2*(c1.x-p0.x) + t*2*(p2.x-c1.x); 87 return (1-t)*2*(c1.y-p0.y) + t*2*(p2.y-c1.y); 93 return 2 * (p2.x - 2*c1.x + p0.x); 99 return 2 * (p2.y - 2*c1 [all...] |
H A D | optimization-kopf2011.h | 148 T smoothness_energy(Point<T> c0, Point<T> c1, Point<T> c2) argument 150 Point<T> p0 = midpoint(c0, c1); 151 Point<T> p2 = midpoint(c1, c2); 152 Curvature<T> cur(p0, c1, p2);
|
/inkscape/src/ |
H A D | color-rgba.h | 27 * @param c1 Green 31 ColorRGBA(float c0, float c1, float c2, float c3) argument 33 _c[0] = c0; _c[1] = c1;
|
H A D | pure-transform.cpp | 204 bool const c1 = fabs(b[Geom::X]) < 1e-6; local 206 if ((c1 || c2) && !(c1 && c2)) { 207 Geom::Point cvec; cvec[c1] = 1.;
|
H A D | snapped-curve.cpp | 199 bool const c1 = !success; local 206 if (c1 || c2 || c3) { 232 bool const c1 = !success; 239 if (c1 || c2 || c3) {
|
H A D | snapped-line.cpp | 71 bool const c1 = this->getAlwaysSnap() && !line.getAlwaysSnap(); //do not use _tolerance directly! local 78 bool const use_this_as_primary = c1 || c2; 153 bool const c1 = this->getAlwaysSnap() && !line.getAlwaysSnap(); local 159 bool const use_this_as_primary = c1 || c2; 201 bool const c1 = !success; local 208 if (c1 || c2 || c3) { 246 bool const c1 = !success; 253 if (c1 || c2 || c3) { 274 bool const c1 = !success; 281 if (c1 || c [all...] |
H A D | unclump.cpp | 79 Geom::Point c1 = unclump_center (item1); local 86 double a1 = atan2 ((c2 - c1)[Geom::Y], (c2 - c1)[Geom::X] * wh1[Geom::Y]/wh1[Geom::X]); 90 double a2 = atan2 ((c1 - c2)[Geom::Y], (c1 - c2)[Geom::X] * wh2[Geom::Y]/wh2[Geom::X]); 99 double dist_r = (Geom::L2 (c2 - c1) - r1 - r2); 113 if (c2[Geom::Y] > c1[Geom::Y] + wh1[Geom::Y]/2) { 114 y_closest = c1[Geom::Y] + wh1[Geom::Y]/2; 115 } else if (c2[Geom::Y] < c1[Geom::Y] - wh1[Geom::Y]/2) { 116 y_closest = c1[Geo [all...] |
/inkscape/src/2geom/ |
H A D | affine.h | 87 Affine(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5) { argument 88 _c[0] = c0; _c[1] = c1;
|
H A D | path-sink.h | 64 virtual void curveTo(Point const &c0, Point const &c1, Point const &p) = 0; 145 void curveTo(Point const &c0, Point const &c1, Point const &p) { argument 150 _path.template appendNew<CubicBezier>(c0, c1, p);
|
H A D | bezier-curve.cpp | 463 c1 = 0.5*(a1 + a2), local 464 b2 = 0.5*(b1 + c1); // == c2 466 bezier_length_internal(b2, c1, a2, 0.5 * tolerance, level + 1); 490 c1 = 0.5*(a2 + a3), local 492 c2 = 0.5*(t0 + c1), 495 bezier_length_internal(b3, c2, c1, a3, 0.5 * tolerance, level + 1);
|
H A D | geom.cpp | 273 * \a c0, \a c1 are diagonal corners of the rectangle and 278 * of \a c0, \a c1 (i.e., the vectors \a r1 - \a r0 and \a p1 - \a p0 point into the same 282 rect_line_intersect(Geom::Point const &c0, Geom::Point const &c1, argument 290 Point C(c1); 326 * \a c0, \a c1 are diagonal corners of the rectangle and 331 * of \a c0, \a c1 (i.e., the vectors \a r1 - \a r0 and \a p1 - \a p0 point into the same
|
H A D | piecewise.cpp | 91 Piecewise<SBasis> c0,c1; local 93 c1 = divide(compose(a,Linear(.5,1.)),compose(b,Linear(.5,1.)),tol,k); 95 c1.setDomain(Interval(.5,1.)); 96 c0.concat(c1);
|
H A D | sbasis-math.cpp | 262 Piecewise<SBasis> c0,c1; local 264 c1 = cos(compose(f,Linear(.5,1.)),tol,order); 266 c1.setDomain(Interval(.5,1.)); 267 c0.concat(c1);
|
H A D | bezier-curve.h | 211 BezierCurveN(Point c0, Point c1) { argument 214 inner[d] = Bezier(c0[d], c1[d]); 218 BezierCurveN(Point c0, Point c1, Point c2) { argument 221 inner[d] = Bezier(c0[d], c1[d], c2[d]); 225 BezierCurveN(Point c0, Point c1, Point c2, Point c3) { argument 228 inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]);
|
H A D | bezier.h | 178 Bezier(Coord c0, Coord c1) : c_(0., 2) { argument 179 c_[0] = c0; c_[1] = c1; 181 Bezier(Coord c0, Coord c1, Coord c2) : c_(0., 3) { argument 182 c_[0] = c0; c_[1] = c1; c_[2] = c2; 184 Bezier(Coord c0, Coord c1, Coord c2, Coord c3) : c_(0., 4) { argument 185 c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; 187 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4) : c_(0., 5) { argument 188 c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4; 190 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, argument 192 c_[0] = c0; c_[1] = c1; c 195 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5, Coord c6) argument 200 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5, Coord c6, Coord c7) argument 205 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5, Coord c6, Coord c7, Coord c8) argument 210 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5, Coord c6, Coord c7, Coord c8, Coord c9) argument [all...] |
H A D | conicsec.h | 128 xAx (double c0, double c1, double c2, double c3, double c4, double c5) argument 130 set (c0, c1, c2, c3, c4, c5); 212 void set (double c0, double c1, double c2, double c3, double c4, double c5) argument 214 c[0] = c0; c[1] = c1; c[2] = c2; // xx, xy, yy 320 * c0*x^2 + c1*xy + c2*y^2 + c3*x + c4*y +c5 == 0
|
H A D | svg-path-parser.cpp | 1191 void SVGPathParser::_curveTo(Point const &c0, Point const &c1, Point const &p) argument 1193 _pushCurve(new CubicBezier(_current, c0, c1, p)); 1195 _cubic_tangent = p + ( p - c1 ); 1393 Point c1 = _pop_point(); local 1395 _curveTo(c0, c1, p); 1402 Point c1 = _pop_point(); local 1403 _curveTo(_cubic_tangent, c1, p); 1499 Point c1 = _pop_point(); local 1501 _curveTo(c0, c1, p); 1508 Point c1 local [all...] |
H A D | sbasis-geometric.cpp | 564 double a0=aa0,a1=aa1,c0=cc0,c1=cc1; local 567 if (a1<0){a1=-a1; c1=-c1;} 570 double c = (c0<c1 ? c0 : c1); 590 solve_lambda0(double a0,double a1,double c0,double c1, 594 p[0] = Linear( a1*c0*c0+c1, a1*a0*(a0+ 2*c0) +a1*c0*c0 +c1 -1 ); 598 OptInterval domain = find_bounds_for_lambda0(a0,a1,c0,c1,insist_on_speeds_signs); 655 // lambda0 = a1 lambda1^2 + c1 [all...] |
/inkscape/src/ui/tools/ |
H A D | pen-tool.h | 62 SPCanvasItem *c1; member in class:Inkscape::UI::Tools::PenTool
|
H A D | connector-tool.h | 108 SPCanvasItem *c0, *c1, *cl0, *cl1; member in class:Inkscape::UI::Tools::ConnectorTool
|
/inkscape/src/live_effects/ |
H A D | lpe-ellipse_5pts.cpp | 149 double c1 = _det5(mat_c); local 157 {b1/2, c1, e1/2}, 161 if (_det3(mat_check) == 0 || a1*c1 - b1*b1/4 <= 0) { 166 Geom::Ellipse el(a1, b1, c1, d1, e1, f1);
|
/inkscape/src/display/ |
H A D | curve.cpp | 510 * Append \a c1 to \a this with possible fusing of close endpoints. If the end of this curve and the start of c1 are within tolerance distance, 511 * then the startpoint of c1 is moved to the end of this curve and the first subpath of c1 is appended to the last subpath of this curve. 516 SPCurve::append_continuous(SPCurve const *c1, double tolerance) argument 521 g_return_val_if_fail(c1 != NULL, NULL); 522 if ( this->is_closed() || c1->is_closed() ) { 526 if (c1->is_empty()) { 531 _pathv = c1->_pathv; 535 if ( (fabs((*this->last_point())[X] - (*c1 [all...] |
/inkscape/src/svg/ |
H A D | path-string.h | 118 PathString &curveTo(Geom::Point c0, Geom::Point c1, Geom::Point p) { argument 121 _appendPoint(c1, false);
|
/inkscape/src/libavoid/ |
H A D | geometry.cpp | 214 int cornerSide(const Point &c1, const Point &c2, const Point &c3, argument 217 int s123 = vecDir(c1, c2, c3); 218 int s12p = vecDir(c1, c2, p); 238 // c1-c2-c3 are collinear, so just return vecDir from c1-c2
|