/inkscape/src/2geom/ |
H A D | linear.h | 3 * \brief Linear fragment function class 50 class Linear class in namespace:Geom 51 : boost::additive< Linear 52 , boost::arithmetic< Linear, Coord 53 , boost::equality_comparable< Linear 58 Linear() {a[0]=0; a[1]=0;} function in class:Geom::Linear 59 Linear(Coord aa, Coord b) {a[0] = aa; a[1] = b;} function in class:Geom::Linear 60 Linear(Coord aa) {a[0] = aa; a[1] = aa;} function in class:Geom::Linear 110 Linear &operator+=(Linear cons [all...] |
H A D | bezier-to-sbasis.h | 46 return Linear(handles[0]); 48 return Linear(handles[0], handles[1]); 50 return multiply(Linear(1, 0), bezier_to_sbasis(handles, order-1)) + 51 multiply(Linear(0, 1), bezier_to_sbasis(handles+1, order-1));
|
H A D | sbasis.cpp | 87 SBasis result(out_size, Linear()); 109 SBasis result(out_size, Linear()); 167 SBasis c(a.size(), Linear()); 196 SBasis c(n, Linear()); 200 c[i] = Linear(0,0); 212 SBasis shift(Linear const &a, int sh) { 214 SBasis c(n, Linear()); 217 c[i] = Linear(0,0); 228 SBasis c(a.size() + b.size(), Linear(0,0)); 234 c[i+1/*shift*/] += Linear( [all...] |
H A D | sbasis-poly.cpp | 12 SBasis x = Linear(0, 1); 16 r = SBasis(Linear(p[i], p[i])) + multiply(x, r);
|
H A D | sbasis.h | 70 std::vector<Linear> d; 71 void push_back(Linear const&l) { d.push_back(l); } 76 typedef std::vector<Linear>::iterator iterator; 77 typedef std::vector<Linear>::const_iterator const_iterator; 78 Linear operator[](unsigned i) const { 81 Linear& operator[](unsigned i) { return d.at(i); } 87 Linear &back() {return d.back();} 88 Linear const &back() const {return d.back();} 98 void resize(unsigned n, Linear const& l) { d.resize(std::max<unsigned>(n, 1), l);} 106 Linear [all...] |
H A D | sbasis-2d.cpp | 7 SBasis sb(a.vs, Linear()); 12 Linear bo(0,0); 24 SBasis sb(a.us, Linear()); 29 Linear bo(0,0); 54 s[dim] = p[dim]*(Linear(1) - p[dim]); 55 ss[1] = Linear(1); 117 D2<SBasis>result(SBasis(degmax, Linear()), SBasis(degmax, Linear())); 121 result[dim][0] = Linear(A[dim],B[dim]); 127 Linear rest [all...] |
H A D | sbasis-math.cpp | 132 sign.segs[i] = (sign.segs[i](.5)<0)? Linear(-1.):Linear(1.); 148 sqrtf.resize(order+1, Linear(0,0)); 149 sqrtf[0] = Linear(std::sqrt(f[0][0]), std::sqrt(f[0][1])); 152 Linear ci(r[i][0]/(2*sqrtf[0][0]), r[i][1]/(2*sqrtf[0][1])); 161 sqrtf = Linear(std::sqrt(fabs(f.at0())), std::sqrt(fabs(f.at1()))); 170 sqrtf0 = sqrt_internal(compose(f,Linear(0.,.5)),tol,order); 171 sqrtf1 = sqrt_internal(compose(f,Linear(.5,1.)),tol,order); 182 return sqrt(max(f,Linear(tol*tol)),tol,order); 190 Piecewise<SBasis> zero = Piecewise<SBasis>(Linear(to [all...] |
H A D | sbasis-geometric.cpp | 67 SBasis c = Linear(0,1); 74 SBasis c = Linear(1,0); 85 SBasis c = Linear(1,0); 92 SBasis c = Linear(0,1); 141 Linear mapToDom = Linear(M.cuts[i],M.cuts[i+1]); 232 return Piecewise<D2<SBasis> >(D2<SBasis>(Linear(1),SBasis())); 238 SBasis a = SBasis(order+1, Linear(0.)); 239 a[0] = Linear(-v0[1],-v1[1]); 240 SBasis b = SBasis(order+1, Linear( [all...] |
H A D | piecewise.cpp | 70 return Piecewise<SBasis>(Linear(sgn/zero)*a); 78 r.resize(k, Linear(0,0)); 79 c.resize(k, Linear(0,0)); 83 Linear ci = Linear(r[i][0]/b[0][0],r[i][1]/b[0][1]); 92 c0 = divide(compose(a,Linear(0.,.5)),compose(b,Linear(0.,.5)),tol,k); 93 c1 = divide(compose(a,Linear(.5,1.)),compose(b,Linear(.5,1.)),tol,k);
|
H A D | forward.h | 61 class Linear;
|
H A D | d2-sbasis.cpp | 44 D2<SBasis> multiply(Linear const & a, D2<SBasis> const & b) { 185 prev_sb = SBasis(Linear(0.0, c)); 190 cur_sb = SBasis(Linear(c, 0.0)); 237 f.concat(Piecewise<D2<SBasis> >(D2<SBasis>(SBasis(Linear(a[X])), SBasis(Linear(a[Y]))))); 246 f.concat(Piecewise<D2<SBasis> >(D2<SBasis>(SBasis(Linear(a[X])), SBasis(Linear(a[Y])))));
|
H A D | sbasis-to-bezier.cpp | 326 sb.resize(q + even, Linear(0, 0)); 373 sb[X].resize(q + even, Linear(0, 0)); 374 sb[Y].resize(q + even, Linear(0, 0)); 447 D2<SBasis> Bs = compose(B, Linear(0, a)); 459 B = compose(B, Linear(a, 1)); 488 build_from_sbasis(pb, compose(B, Linear(0, 0.5)), tol, only_cubicbeziers); 489 build_from_sbasis(pb, compose(B, Linear(0.5, 1)), tol, only_cubicbeziers);
|
H A D | sbasis-2d.h | 90 inline Linear extract_u(Linear2d const &a, double u) { 91 return Linear(a[0]*(1-u) + 96 inline Linear extract_v(Linear2d const &a, double v) { 97 return Linear(a[0]*(1-v) +
|
H A D | circle.cpp | 271 Linear bo = Linear(0, 2 * M_PI);
|
H A D | conicsec.cpp | 185 SBasis t = Linear(0, 1); 186 SBasis omt = Linear(1, 0); 369 SBasis T(Linear(-1,1)); 370 SBasis S(Linear(1,1)); 378 T = Linear(1,1); 379 S = Linear(-1,1);
|
H A D | piecewise.h | 772 return (Piecewise<T>) compose(f.segs[0],compose(Linear(-t0 / width, (1-t0) / width), g)); 780 return (Piecewise<T>) compose(f.segs[idx],compose(Linear(-t0 / width, (1-t0) / width), g)); 801 SBasis sub_g=compose(g, Linear(t0,t1)); 802 sub_g=compose(Linear(-f.cuts[idx]/(f.cuts[idx+1]-f.cuts[idx]),
|
H A D | elliptical-arc.cpp | 706 Linear param(initialAngle().radians(), et); 713 arc[0] = arc_x * cosrot - arc_y * sinrot + Linear(center(X), center(X)); 714 arc[1] = arc_x * sinrot + arc_y * cosrot + Linear(center(Y), center(Y));
|
H A D | d2.h | 496 D2<SBasis> multiply(Linear const & a, D2<SBasis> const & b); 497 inline D2<SBasis> operator*(Linear const & a, D2<SBasis> const & b) { return multiply(a, b); }
|
H A D | sbasis-roots.cpp | 580 subdiv_sbasis(compose(s, Linear(0, 0.5)), roots, left, middle); 581 subdiv_sbasis(compose(s, Linear(0.5, 1.)), roots, middle, right);
|
/inkscape/src/live_effects/ |
H A D | lpe-dynastroke.cpp | 114 right = compose(right,Linear(right.cuts.back(),right.cuts.front())); 116 line[X] = Linear(left.lastValue()[X],right.firstValue()[X]); 117 line[Y] = Linear(left.lastValue()[Y],right.firstValue()[Y]); 121 line[X] = Linear(right.lastValue()[X],left.firstValue()[X]); 122 line[Y] = Linear(right.lastValue()[Y],left.firstValue()[Y]); 210 SBasis join = SBasis(2,Linear(0,1)); 211 join[1] = Linear(1,1); 215 factor_in.concat(Piecewise<SBasis >(Linear(1))); 220 join[0] = Linear(1,0); 221 join[1] = Linear( [all...] |
H A D | lpe-powerstroke-interpolators.h | 49 class Linear : public Interpolator { class in namespace:Geom::Interpolate 51 Linear() {}; function in class:Geom::Interpolate::Linear 52 virtual ~Linear() {}; 64 Linear(const Linear&); 65 Linear& operator=(const Linear&); 294 return new Geom::Interpolate::Linear(); 306 return new Geom::Interpolate::Linear();
|
H A D | lpe-gears.cpp | 83 Linear bo = Linear(start,stop); 88 I = B - Linear(0,1) * derivative(B); 94 Linear bo = Linear(start,stop); 143 D2<SBasis> leading_I = compose(_involute(cursor, cursor + involute_swath_angle(outer_radius())), Linear(involute_t,1)); 156 D2<SBasis> trailing_I = compose(_involute(cursor, cursor - involute_swath_angle(outer_radius())), Linear(1,involute_t));
|
H A D | lpe-sketch.cpp | 140 start = Piecewise<D2<SBasis> >(D2<SBasis>(Linear (x-vx,x),Linear (y-vy,y))); 147 end = Piecewise<D2<SBasis> >(D2<SBasis>(Linear (x,x+vx),Linear (y,y+vy))); 180 D2<SBasis> perturb = D2<SBasis>(SBasis(2, Linear()), SBasis(2, Linear())); 183 perturb[dim][0] = Linear(A[dim],B[dim]); 190 perturb[dim][1] = Linear(dA[dim],dB[dim]); 313 //SBasis bump_seg = SBasis( 2, Linear(0) ); 314 //bump_seg[1] = Linear( [all...] |
H A D | lpe-rough-hatches.cpp | 308 D2<SBasis> stitch( SBasis( 1, Linear(end[X],start[X]) ), SBasis( 1, Linear(end[Y],start[Y]) ) ); 320 tilter = Piecewise<SBasis>(shift(Linear(-bend_amount),1));
|