/** @file
* @brief Circle shape
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiƄski <tweenk.pl@gmail.com>
*
* Copyright 2008-2014 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/circle.h>
#include <2geom/ellipse.h>
#include <2geom/elliptical-arc.h>
#include <2geom/numeric/fitting-tool.h>
#include <2geom/numeric/fitting-model.h>
namespace Geom {
Rect Circle::boundsFast() const
{
Point rr(_radius, _radius);
Rect bbox(_center - rr, _center + rr);
return bbox;
}
void Circle::setCoefficients(Coord A, Coord B, Coord C, Coord D)
{
if (A == 0) {
THROW_RANGEERROR("square term coefficient == 0");
}
//std::cerr << "B = " << B << " C = " << C << " D = " << D << std::endl;
Coord b = B / A;
Coord c = C / A;
Coord d = D / A;
_center[X] = -b/2;
_center[Y] = -c/2;
Coord r2 = _center[X] * _center[X] + _center[Y] * _center[Y] - d;
if (r2 < 0) {
THROW_RANGEERROR("ray^2 < 0");
}
_radius = std::sqrt(r2);
}
void Circle::coefficients(Coord &A, Coord &B, Coord &C, Coord &D) const
{
A = 1;
B = -2 * _center[X];
C = -2 * _center[Y];
D = _center[X] * _center[X] + _center[Y] * _center[Y] - _radius * _radius;
}
std::vector<Coord> Circle::coefficients() const
{
std::vector<Coord> c(4);
coefficients(c[0], c[1], c[2], c[3]);
return c;
}
Zoom Circle::unitCircleTransform() const
{
Zoom ret(_radius, _center / _radius);
return ret;
}
Zoom Circle::inverseUnitCircleTransform() const
{
if (_radius == 0) {
THROW_RANGEERROR("degenerate circle does not have an inverse unit circle transform");
}
Zoom ret(1/_radius, Translate(-_center));
return ret;
}
Point Circle::initialPoint() const
{
Point p(_center);
p[X] += _radius;
return p;
}
Point Circle::pointAt(Coord t) const {
return _center + Point::polar(t) * _radius;
}
Coord Circle::valueAt(Coord t, Dim2 d) const {
Coord delta = (d == X ? std::cos(t) : std::sin(t));
return _center[d] + delta * _radius;
}
Coord Circle::timeAt(Point const &p) const {
if (_center == p) return 0;
return atan2(p - _center);
}
Coord Circle::nearestTime(Point const &p) const {
return timeAt(p);
}
bool Circle::contains(Rect const &r) const
{
for (unsigned i = 0; i < 4; ++i) {
if (!contains(r.corner(i))) return false;
}
return true;
}
bool Circle::contains(Circle const &other) const
{
Coord cdist = distance(_center, other._center);
Coord rdist = fabs(_radius - other._radius);
return cdist <= rdist;
}
bool Circle::intersects(Line const &l) const
{
// http://mathworld.wolfram.com/Circle-LineIntersection.html
Coord dr = l.vector().length();
Coord r = _radius;
Coord D = cross(l.initialPoint(), l.finalPoint());
Coord delta = r*r * dr*dr - D*D;
if (delta >= 0) return true;
return false;
}
bool Circle::intersects(Circle const &other) const
{
Coord cdist = distance(_center, other._center);
Coord rsum = _radius + other._radius;
return cdist <= rsum;
}
std::vector<ShapeIntersection> Circle::intersect(Line const &l) const
{
// http://mathworld.wolfram.com/Circle-LineIntersection.html
Coord dr = l.vector().length();
Coord dx = l.vector().x();
Coord dy = l.vector().y();
Coord D = cross(l.initialPoint() - _center, l.finalPoint() - _center);
Coord delta = _radius*_radius * dr*dr - D*D;
std::vector<ShapeIntersection> result;
if (delta < 0) return result;
if (delta == 0) {
Coord ix = (D*dy) / (dr*dr);
Coord iy = (-D*dx) / (dr*dr);
Point ip(ix, iy); ip += _center;
result.push_back(ShapeIntersection(timeAt(ip), l.timeAt(ip), ip));
return result;
}
Coord sqrt_delta = std::sqrt(delta);
Coord signmod = dy < 0 ? -1 : 1;
Coord i1x = (D*dy + signmod * dx * sqrt_delta) / (dr*dr);
Coord i1y = (-D*dx + fabs(dy) * sqrt_delta) / (dr*dr);
Point i1p(i1x, i1y); i1p += _center;
Coord i2x = (D*dy - signmod * dx * sqrt_delta) / (dr*dr);
Coord i2y = (-D*dx - fabs(dy) * sqrt_delta) / (dr*dr);
Point i2p(i2x, i2y); i2p += _center;
result.push_back(ShapeIntersection(timeAt(i1p), l.timeAt(i1p), i1p));
result.push_back(ShapeIntersection(timeAt(i2p), l.timeAt(i2p), i2p));
return result;
}
std::vector<ShapeIntersection> Circle::intersect(LineSegment const &l) const
{
std::vector<ShapeIntersection> result = intersect(Line(l));
filter_line_segment_intersections(result);
return result;
}
std::vector<ShapeIntersection> Circle::intersect(Circle const &other) const
{
std::vector<ShapeIntersection> result;
if (*this == other) {
THROW_INFINITESOLUTIONS();
}
if (contains(other)) return result;
if (!intersects(other)) return result;
// See e.g. http://mathworld.wolfram.com/Circle-CircleIntersection.html
// Basically, we figure out where is the third point of a triangle
// with two points in the centers and with edge lengths equal to radii
Point cv = other._center - _center;
Coord d = cv.length();
Coord R = radius(), r = other.radius();
if (d == R + r) {
Point px = lerp(R / d, _center, other._center);
Coord T = timeAt(px), t = other.timeAt(px);
result.push_back(ShapeIntersection(T, t, px));
return result;
}
// q is the distance along the line between centers to the perpendicular line
// that goes through both intersections.
Coord q = (d*d - r*r + R*R) / (2*d);
Point qp = lerp(q/d, _center, other._center);
// The triangle given by the points:
// _center, qp, intersection
// is a right triangle. Determine the distance between qp and intersection
// using the Pythagorean theorem.
Coord h = std::sqrt(R*R - q*q);
Point qd = (h/d) * cv.cw();
// now compute the intersection points
Point x1 = qp + qd;
Point x2 = qp - qd;
result.push_back(ShapeIntersection(timeAt(x1), other.timeAt(x1), x1));
result.push_back(ShapeIntersection(timeAt(x2), other.timeAt(x2), x2));
return result;
}
/**
@param inner a point whose angle with the circle center is inside the angle that the arc spans
*/
EllipticalArc *
Circle::arc(Point const& initial, Point const& inner, Point const& final) const
{
// TODO native implementation!
Ellipse e(_center[X], _center[Y], _radius, _radius, 0);
return e.arc(initial, inner, final);
}
bool Circle::operator==(Circle const &other) const
{
if (_center != other._center) return false;
if (_radius != other._radius) return false;
return true;
}
D2<SBasis> Circle::toSBasis() const
{
D2<SBasis> B;
Linear bo = Linear(0, 2 * M_PI);
B[0] = cos(bo,4);
B[1] = sin(bo,4);
B = B * _radius + _center;
return B;
}
void Circle::fit(std::vector<Point> const& points)
{
size_t sz = points.size();
if (sz < 2) {
THROW_RANGEERROR("fitting error: too few points passed");
}
if (sz == 2) {
_center = points[0] * 0.5 + points[1] * 0.5;
_radius = distance(points[0], points[1]) / 2;
return;
}
NL::LFMCircle model;
NL::least_squeares_fitter<NL::LFMCircle> fitter(model, sz);
for (size_t i = 0; i < sz; ++i) {
fitter.append(points[i]);
}
fitter.update();
NL::Vector z(sz, 0.0);
model.instance(*this, fitter.result(z));
}
bool are_near(Circle const &a, Circle const &b, Coord eps)
{
// to check whether no point on a is further than eps from b,
// we check two things:
// 1. if radii differ by more than eps, there is definitely a point that fails
// 2. if they differ by less, we check the centers. They have to be closer
// together if the radius differs, since the maximum distance will be
// equal to sum of radius difference and distance between centers.
if (!are_near(a.radius(), b.radius(), eps)) return false;
Coord adjusted_eps = eps - fabs(a.radius() - b.radius());
return are_near(a.center(), b.center(), adjusted_eps);
}
std::ostream &operator<<(std::ostream &out, Circle const &c)
{
out << "Circle(" << c.center() << ", " << format_coord_nice(c.radius()) << ")";
return out;
}
} // end namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :