/** @file
* @brief Circle shape
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
*
* Copyright 2008-2014 Authors
*
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
namespace Geom {
{
return bbox;
}
{
if (A == 0) {
THROW_RANGEERROR("square term coefficient == 0");
}
//std::cerr << "B = " << B << " C = " << C << " D = " << D << std::endl;
Coord b = B / A;
Coord c = C / A;
Coord d = D / A;
_center[X] = -b/2;
_center[Y] = -c/2;
if (r2 < 0) {
THROW_RANGEERROR("ray^2 < 0");
}
}
{
A = 1;
B = -2 * _center[X];
C = -2 * _center[Y];
}
{
return c;
}
{
return ret;
}
{
if (_radius == 0) {
THROW_RANGEERROR("degenerate circle does not have an inverse unit circle transform");
}
return ret;
}
{
p[X] += _radius;
return p;
}
}
}
if (_center == p) return 0;
}
return timeAt(p);
}
{
for (unsigned i = 0; i < 4; ++i) {
}
return true;
}
{
}
{
if (delta >= 0) return true;
return false;
}
{
}
{
if (delta == 0) {
return result;
}
return result;
}
{
return result;
}
{
if (*this == other) {
}
// Basically, we figure out where is the third point of a triangle
// with two points in the centers and with edge lengths equal to radii
if (d == R + r) {
return result;
}
// q is the distance along the line between centers to the perpendicular line
// that goes through both intersections.
Coord q = (d*d - r*r + R*R) / (2*d);
// The triangle given by the points:
// _center, qp, intersection
// is a right triangle. Determine the distance between qp and intersection
// using the Pythagorean theorem.
// now compute the intersection points
return result;
}
/**
@param inner a point whose angle with the circle center is inside the angle that the arc spans
*/
{
// TODO native implementation!
}
{
return true;
}
{
return B;
}
{
if (sz < 2) {
THROW_RANGEERROR("fitting error: too few points passed");
}
if (sz == 2) {
return;
}
}
}
{
// to check whether no point on a is further than eps from b,
// we check two things:
// 1. if radii differ by more than eps, there is definitely a point that fails
// 2. if they differ by less, we check the centers. They have to be closer
// together if the radius differs, since the maximum distance will be
// equal to sum of radius difference and distance between centers.
}
{
return out;
}
} // end namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :