Searched refs:Bezier (Results 1 - 22 of 22) sorted by relevance

/inkscape/src/2geom/
H A Dbezier.cpp3 * @brief Bernstein-Bezier polynomial
44 std::vector<Coord> Bezier::valueAndDerivatives(Coord t, unsigned n_derivs) const {
72 void Bezier::subdivide(Coord t, Bezier *left, Bezier *right) const
91 std::pair<Bezier, Bezier> Bezier::subdivide(Coord t) const
93 std::pair<Bezier, Bezier> re
[all...]
H A Dbezier.h3 * @brief Bernstein-Bezier polynomial
51 /** @brief Compute the value of a Bernstein-Bezier polynomial.
70 /** @brief Perform Casteljau subdivision of a Bezier polynomial.
71 * Given an array of coefficients and a time value, computes two new Bernstein-Bezier basis
82 // the result of subdivision to match exactly with Bezier's valueAt function.
121 * @brief Polynomial in Bernstein-Bezier basis
124 class Bezier class in namespace:Geom
125 : boost::arithmetic< Bezier, double
126 , boost::additive< Bezier
132 friend Bezier portio
142 Bezier(Coord const c[], unsigned ord) function in class:Geom::Bezier
151 Bezier() {} function in class:Geom::Bezier
152 Bezier(const Bezier& b) :c_(b.c_) {} function in class:Geom::Bezier
169 Bezier(Order ord) : c_(0., ord.order+1) { function in class:Geom::Bezier
175 explicit Bezier(Coord c0) : c_(0., 1) { function in class:Geom::Bezier
178 Bezier(Coord c0, Coord c1) : c_(0., 2) { function in class:Geom::Bezier
181 Bezier(Coord c0, Coord c1, Coord c2) : c_(0., 3) { function in class:Geom::Bezier
184 Bezier(Coord c0, Coord c1, Coord c2, Coord c3) : c_(0., 4) { function in class:Geom::Bezier
187 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4) : c_(0., 5) { function in class:Geom::Bezier
190 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, function in class:Geom::Bezier
195 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, function in class:Geom::Bezier
200 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, function in class:Geom::Bezier
205 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, function in class:Geom::Bezier
210 Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, function in class:Geom::Bezier
217 Bezier(Iter first, Iter last) { function in class:Geom::Bezier
223 Bezier(std::vector<Coord> const &vec) function in class:Geom::Bezier
[all...]
H A Dsbasis-to-bezier.h3 * \brief Conversion between SBasis and Bezier basis polynomials
47 void sbasis_to_bezier (Bezier &bz, SBasis const &sb, size_t sz = 0);
48 void sbasis_to_bezier (D2<Bezier> &bz, D2<SBasis> const &sb, size_t sz = 0);
51 void bezier_to_sbasis (SBasis & sb, Bezier const& bz);
57 Bezier
61 SBasis bezier_to_sbasis(Bezier const &B);
H A Dsolver.h3 * \brief Finding roots of Bernstein-Bezier polynomials
45 class Bezier;
48 crossing_count(Geom::Point const *V, /* Control pts of Bezier curve */
49 unsigned degree); /* Degree of Bezier curve */
58 crossing_count(double const *V, /* Control pts of Bezier curve */
59 unsigned degree, /* Degree of Bezier curve */
75 Geom::Bezier const& bz,
H A Dbasic-intersection.h53 D2<Bezier> const &A,
54 D2<Bezier> const &B,
72 D2<Bezier> const &A,
78 * input: A, B - set of control points of two Bezier curve
83 * This routine is based on the Bezier Clipping Algorithm,
84 * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping
92 void subdivide(D2<Bezier> const &a,
93 D2<Bezier> const &b,
95 std::vector< D2<Bezier> > &av,
96 std::vector< D2<Bezier> >
[all...]
H A Dbezier-curve.h3 * \brief Bezier curve
49 D2<Bezier> inner;
51 BezierCurve(Bezier const &x, Bezier const &y) : inner(x, y) {}
55 explicit BezierCurve(D2<Bezier> const &b) : inner(b) {}
59 /** @brief Get the order of the Bezier curve.
60 * A Bezier curve has order() + 1 control points. */
72 D2<Bezier> const &fragment() const { return inner; }
95 /// @name Construct a Bezier curve with runtime-determined order.
99 * QuadraticBezier or Cubic Bezier) i
[all...]
H A Dsolve-bezier.cpp10 /*** Find the zeros of a Bezier. The code subdivides until it is happy with the linearity of the
40 double secant(Bezier const &bz);
43 void find_bernstein_roots(Bezier const &bz, unsigned depth,
56 void convex_hull_marching(Bezier const &src_bz, Bezier bz,
92 Bezier bzr = portion(src_bz, new_left_t, 1);
116 Bezier::find_bezier_roots(std::vector<double> &solutions,
118 Bezier bz = *this;
152 void Bernsteins::find_bernstein_roots(Bezier const &bz,
203 Bezier
[all...]
H A Dsolve-bezier-one-d.cpp66 Geom::Bezier const &bz, /* The control points */
70 Geom::Bezier& bzl = const_cast<Geom::Bezier&>(bz);
H A Dbasic-intersection.cpp76 D2<Bezier> const & A,
77 D2<Bezier> const & B,
110 // TODO replace with Bezier method
140 D2<Bezier> const &A,
155 std::vector< D2<Bezier> > pieces;
196 D2<Bezier> in;
202 void subdivide(D2<Bezier> const &a,
203 D2<Bezier> const &b,
205 std::vector< D2<Bezier> > &av,
206 std::vector< D2<Bezier> >
[all...]
H A Dforward.h62 class Bezier;
H A Dnearest-time.h60 Coord nearest_time(Point const &p, D2<Bezier> const &bez, Coord from = 0, Coord to = 1);
H A Dnearest-time.cpp40 Coord nearest_time(Point const &p, D2<Bezier> const &input, Coord from, Coord to)
51 D2<Bezier> bez;
62 D2<Bezier> deriv = derivative(bez);
H A Dsbasis-to-bezier.cpp98 n is always the polynomial degree, i. e. the Bezier order
101 void sbasis_to_bezier (Bezier & bz, SBasis const& sb, size_t sz)
154 void sbasis_to_bezier(D2<Bezier> &bz, D2<SBasis> const &sb, size_t sz)
167 sz is always the polynomial degree, i. e. the Bezier order
171 D2<Bezier> bez;
180 Bezier is always cubic.
238 // calculate Bezier control arms
318 n is always the polynomial degree, i. e. the Bezier order
320 void bezier_to_sbasis (SBasis & sb, Bezier const& bz)
364 n is always the polynomial degree, i. e. the Bezier orde
[all...]
H A Dellipse.h206 /// Compute intersections with a 2D Bezier polynomial.
207 std::vector<ShapeIntersection> intersect(D2<Bezier> const &other) const;
H A Dconicsec.cpp167 Bezier xt(P[0][0], P[1][0]*w, P[2][0]);
168 Bezier yt(P[0][1], P[1][1]*w, P[2][1]);
169 double wt = Bezier(1, w, 1).valueAt(t);
198 Bezier xt(P[0][0], P[1][0]*w, P[2][0]);
200 Bezier yt(P[0][1], P[1][1]*w, P[2][1]);
202 Bezier wt(1, w, 1);
H A Dellipse.cpp580 std::vector<ShapeIntersection> Ellipse::intersect(D2<Bezier> const &b) const
585 Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F;
H A Dsbasis-roots.cpp610 \see Bezier::roots
623 Bezier bz;
638 Bezier bz;
/inkscape/src/2geom/numeric/
H A Dfitting-model.h420 // this model generates Bezier objects
422 : public LinearFittingModel<double, double, Bezier>
455 void instance(Bezier & b, ConstVectorView const& raw_data) const
471 // this model generates Bezier curves
494 Bezier bx(degree);
495 Bezier by(degree);
/inkscape/src/libuemf/
H A Dupmf_print.c394 case U_PPT_Bezier: printf("Bezier"); break;
1437 int Bezier, Elements, Type; local
1438 int status = U_PMF_PATHPOINTTYPERLE_get(contents, &Bezier, &Elements, &Type, blimit);
1441 printf(" PathPointTypeRLE: Bezier:%c Elements:%u, Type: ",(Bezier ? 'Y' : 'N'), Elements);
H A Dupmf.c861 \param Points Bezier points. Optional starting point, then N sets of 3, example: [P1] (Q12A Q12B P2) (Q23A Q23B P3).
945 /* Parameterized Bezier point Q1 or Q2 derivative */
962 \brief Append an "arcto" set of points to a path (Bezier points are calculated, and these are appended
2907 \param Bz Array of unsigned bytes, if not zero, element has Bezier bit set
6350 \param Bezier Set: Bezier curve, Clear: straight line
6357 int U_PMF_PATHPOINTTYPERLE_get(const char *contents, int *Bezier, int *RL, int *Ppt, const char *blimit){ argument
6358 if(!contents || !Bezier || !RL || !Ppt || !blimit){ return(0); }
6362 *Bezier = tmp & U_PPF_BZ;
H A Dupmf.h854 #define U_PPT_Bezier 0x03 //!< Bezier path
1230 #define U_PPF_BZ 0x8000 //!< 15 Set: Points are on a Bezier curve; Clear: Points are on a line
1900 bit 15 Set: Bezier curve; Clear: straight line
3079 int U_PMF_PATHPOINTTYPERLE_get(const char *contents, int *Bezier, int *RL, int *Ppt, const char *blimit);
/inkscape/src/ui/tool/
H A Dpath-manipulator.cpp337 Geom::Bezier temp1d(first->position()[dim], first->front()->position()[dim],
340 Geom::Bezier deriv1d = derivative(temp1d);
1358 // If the last segment is Bezier, we add it.

Completed in 400 milliseconds