/** @file
* @brief Nearest time routines for D2<SBasis> and Piecewise<D2<SBasis>>
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2007-2008 authors
*
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <algorithm>
namespace Geom
{
{
bool partial = false;
THROW_RANGEERROR("[from,to] interval out of bounds");
}
partial = true;
} else {
}
// find extrema of the function x(t)^2 + y(t)^2
// use the fact that (f^2)' = 2 f f'
// this reduces the order of the distance function by 1
t = ts[i];
}
}
// also check endpoints
t = 0;
}
//mind = dfinal;
t = 1;
}
if (partial) {
}
return t;
}
////////////////////////////////////////////////////////////////////////////////
// D2<SBasis> versions
/*
* Return the parameter t of the nearest time value on the portion of the curve "c",
* related to the interval [from, to], to the point "p".
* The needed curve derivative "dc" is passed as parameter.
* The function return the first nearest time value to "p" that is found.
*/
{
{
THROW_RANGEERROR("[from,to] interval out of bounds");
}
if (c.isConstant()) return from;
//std::cout << dd << std::endl;
{
{
}
}
return closest;
}
/*
* Return the parameters t of all the nearest points on the portion of
* the curve "c", related to the interval [from, to], to the point "p".
* The needed curve derivative "dc" is passed as parameter.
*/
{
}
THROW_RANGEERROR("[from,to] interval out of bounds");
}
if (c.isConstant()) {
return result;
}
for (unsigned i = 0; i < candidates.size(); ++i) {
}
unsigned closest = 0;
closest = i;
}
}
for (unsigned i = 0; i < candidates.size(); ++i) {
}
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
// Piecewise< D2<SBasis> > versions
{
THROW_RANGEERROR("[from,to] interval out of bounds");
}
double nearest =
}
double t;
double dsq;
bb = *bounds_fast(c[i]);
t = nearest_time(p, c[i]);
dsq = distanceSq(p, c[i](t));
nearest = t;
ni = i;
}
}
nearest = t;
}
}
}
{
}
THROW_RANGEERROR("[from,to] interval out of bounds");
}
{
for ( unsigned int i = 0; i < all_nearest.size(); ++i )
{
}
return all_nearest;
}
double dsq;
bb = *bounds_fast(c[i]);
all_t = all_nearest_times(p, c[i]);
{
}
{
}
}
}
return all_t;
}
}
}
}
all_nearest.end());
return all_nearest;
}
} // end namespace Geom