/** @file
* @brief Ellipse shape
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiƄski <tweenk.pl@gmail.com>
*
* Copyright 2008-2014 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/ellipse.h>
#include <2geom/elliptical-arc.h>
#include <2geom/numeric/fitting-tool.h>
#include <2geom/numeric/fitting-model.h>
namespace Geom {
Ellipse::Ellipse(Geom::Circle const &c)
: _center(c.center())
, _rays(c.radius(), c.radius())
, _angle(0)
{}
void Ellipse::setCoefficients(double A, double B, double C, double D, double E, double F)
{
double den = 4*A*C - B*B;
if (den == 0) {
THROW_RANGEERROR("den == 0, while computing ellipse centre");
}
_center[X] = (B*E - 2*C*D) / den;
_center[Y] = (B*D - 2*A*E) / den;
// evaluate the a coefficient of the ellipse equation in normal form
// E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1
// where b = a*B , c = a*C, (cx,cy) == centre
double num = A * sqr(_center[X])
+ B * _center[X] * _center[Y]
+ C * sqr(_center[Y])
- F;
//evaluate ellipse rotation angle
_angle = std::atan2( -B, -(A - C) )/2;
// evaluate the length of the ellipse rays
double sinrot, cosrot;
sincos(_angle, sinrot, cosrot);
double cos2 = cosrot * cosrot;
double sin2 = sinrot * sinrot;
double cossin = cosrot * sinrot;
den = A * cos2 + B * cossin + C * sin2;
if (den == 0) {
THROW_RANGEERROR("den == 0, while computing 'rx' coefficient");
}
double rx2 = num / den;
if (rx2 < 0) {
THROW_RANGEERROR("rx2 < 0, while computing 'rx' coefficient");
}
_rays[X] = std::sqrt(rx2);
den = C * cos2 - B * cossin + A * sin2;
if (den == 0) {
THROW_RANGEERROR("den == 0, while computing 'ry' coefficient");
}
double ry2 = num / den;
if (ry2 < 0) {
THROW_RANGEERROR("ry2 < 0, while computing 'rx' coefficient");
}
_rays[Y] = std::sqrt(ry2);
// the solution is not unique so we choose always the ellipse
// with a rotation angle between 0 and PI/2
makeCanonical();
}
Point Ellipse::initialPoint() const
{
Coord sinrot, cosrot;
sincos(_angle, sinrot, cosrot);
Point p(ray(X) * cosrot + center(X), ray(X) * sinrot + center(Y));
return p;
}
Affine Ellipse::unitCircleTransform() const
{
Affine ret = Scale(ray(X), ray(Y)) * Rotate(_angle);
ret.setTranslation(center());
return ret;
}
Affine Ellipse::inverseUnitCircleTransform() const
{
if (ray(X) == 0 || ray(Y) == 0) {
THROW_RANGEERROR("a degenerate ellipse doesn't have an inverse unit circle transform");
}
Affine ret = Translate(-center()) * Rotate(-_angle) * Scale(1/ray(X), 1/ray(Y));
return ret;
}
LineSegment Ellipse::axis(Dim2 d) const
{
Point a(0, 0), b(0, 0);
a[d] = -1;
b[d] = 1;
LineSegment ls(a, b);
ls.transform(unitCircleTransform());
return ls;
}
LineSegment Ellipse::semiaxis(Dim2 d, int sign) const
{
Point a(0, 0), b(0, 0);
b[d] = sgn(sign);
LineSegment ls(a, b);
ls.transform(unitCircleTransform());
return ls;
}
Rect Ellipse::boundsExact() const
{
Angle extremes[2][2];
double sinrot, cosrot;
sincos(_angle, sinrot, cosrot);
extremes[X][0] = std::atan2( -ray(Y) * sinrot, ray(X) * cosrot );
extremes[X][1] = extremes[X][0] + M_PI;
extremes[Y][0] = std::atan2( ray(Y) * cosrot, ray(X) * sinrot );
extremes[Y][1] = extremes[Y][0] + M_PI;
Rect result;
for (unsigned d = 0; d < 2; ++d) {
result[d] = Interval(valueAt(extremes[d][0], d ? Y : X),
valueAt(extremes[d][1], d ? Y : X));
}
return result;
}
std::vector<double> Ellipse::coefficients() const
{
std::vector<double> c(6);
coefficients(c[0], c[1], c[2], c[3], c[4], c[5]);
return c;
}
void Ellipse::coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const
{
if (ray(X) == 0 || ray(Y) == 0) {
THROW_RANGEERROR("a degenerate ellipse doesn't have an implicit form");
}
double cosrot, sinrot;
sincos(_angle, sinrot, cosrot);
double cos2 = cosrot * cosrot;
double sin2 = sinrot * sinrot;
double cossin = cosrot * sinrot;
double invrx2 = 1 / (ray(X) * ray(X));
double invry2 = 1 / (ray(Y) * ray(Y));
A = invrx2 * cos2 + invry2 * sin2;
B = 2 * (invrx2 - invry2) * cossin;
C = invrx2 * sin2 + invry2 * cos2;
D = -2 * A * center(X) - B * center(Y);
E = -2 * C * center(Y) - B * center(X);
F = A * center(X) * center(X)
+ B * center(X) * center(Y)
+ C * center(Y) * center(Y)
- 1;
}
void Ellipse::fit(std::vector<Point> const &points)
{
size_t sz = points.size();
if (sz < 5) {
THROW_RANGEERROR("fitting error: too few points passed");
}
NL::LFMEllipse model;
NL::least_squeares_fitter<NL::LFMEllipse> fitter(model, sz);
for (size_t i = 0; i < sz; ++i) {
fitter.append(points[i]);
}
fitter.update();
NL::Vector z(sz, 0.0);
model.instance(*this, fitter.result(z));
}
EllipticalArc *
Ellipse::arc(Point const &ip, Point const &inner, Point const &fp)
{
// This is resistant to degenerate ellipses:
// both flags evaluate to false in that case.
bool large_arc_flag = false;
bool sweep_flag = false;
// Determination of large arc flag:
// large_arc is false when the inner point is on the same side
// of the center---initial point line as the final point, AND
// is on the same side of the center---final point line as the
// initial point.
// Additionally, large_arc is always false when we have exactly
// 1/2 of an arc, i.e. the cross product of the center -> initial point
// and center -> final point vectors is zero.
// Negating the above leads to the condition for large_arc being true.
Point fv = fp - _center;
Point iv = ip - _center;
Point innerv = inner - _center;
double ifcp = cross(fv, iv);
if (ifcp != 0 && (sgn(cross(fv, innerv)) != sgn(ifcp) ||
sgn(cross(iv, innerv)) != sgn(-ifcp)))
{
large_arc_flag = true;
}
//cross(-iv, fv) && large_arc_flag
// Determination of sweep flag:
// For clarity, let's assume that Y grows up. Then the cross product
// is positive for points on the left side of a vector and negative
// on the right side of a vector.
//
// cross(?, v) > 0
// o------------------->
// cross(?, v) < 0
//
// If the arc is small (large_arc_flag is false) and the final point
// is on the right side of the vector initial point -> center,
// we have to go in the direction of increasing angles
// (counter-clockwise) and the sweep flag is true.
// If the arc is large, the opposite is true, since we have to reach
// the final point going the long way - in the other direction.
// We can express this observation as:
// cross(_center - ip, fp - _center) < 0 xor large_arc flag
// This is equal to:
// cross(-iv, fv) < 0 xor large_arc flag
// But cross(-iv, fv) is equal to cross(fv, iv) due to antisymmetry
// of the cross product, so we end up with the condition below.
if ((ifcp < 0) ^ large_arc_flag) {
sweep_flag = true;
}
EllipticalArc *ret_arc = new EllipticalArc(ip, ray(X), ray(Y), rotationAngle(),
large_arc_flag, sweep_flag, fp);
return ret_arc;
}
Ellipse &Ellipse::operator*=(Rotate const &r)
{
_angle += r.angle();
_center *= r;
return *this;
}
Ellipse &Ellipse::operator*=(Affine const& m)
{
Affine a = Scale(ray(X), ray(Y)) * Rotate(_angle);
Affine mwot = m.withoutTranslation();
Affine am = a * mwot;
Point new_center = _center * m;
if (are_near(am.descrim(), 0)) {
double angle;
if (am[0] != 0) {
angle = std::atan2(am[2], am[0]);
} else if (am[1] != 0) {
angle = std::atan2(am[3], am[1]);
} else {
angle = M_PI/2;
}
Point v = Point::polar(angle) * am;
_center = new_center;
_rays[X] = L2(v);
_rays[Y] = 0;
_angle = atan2(v);
return *this;
}
std::vector<double> coeff = coefficients();
Affine q( coeff[0], coeff[1]/2,
coeff[1]/2, coeff[2],
0, 0 );
Affine invm = mwot.inverse();
q = invm * q ;
std::swap(invm[1], invm[2]);
q *= invm;
setCoefficients(q[0], 2*q[1], q[3], 0, 0, -1);
_center = new_center;
return *this;
}
Ellipse Ellipse::canonicalForm() const
{
Ellipse result(*this);
result.makeCanonical();
return result;
}
void Ellipse::makeCanonical()
{
if (_rays[X] == _rays[Y]) {
_angle = 0;
return;
}
if (_angle < 0) {
_angle += M_PI;
}
if (_angle >= M_PI/2) {
std::swap(_rays[X], _rays[Y]);
_angle -= M_PI/2;
}
}
Point Ellipse::pointAt(Coord t) const
{
Point p = Point::polar(t);
p *= unitCircleTransform();
return p;
}
Coord Ellipse::valueAt(Coord t, Dim2 d) const
{
Coord sinrot, cosrot, cost, sint;
sincos(rotationAngle(), sinrot, cosrot);
sincos(t, sint, cost);
if ( d == X ) {
return ray(X) * cosrot * cost
- ray(Y) * sinrot * sint
+ center(X);
} else {
return ray(X) * sinrot * cost
+ ray(Y) * cosrot * sint
+ center(Y);
}
}
Coord Ellipse::timeAt(Point const &p) const
{
// degenerate ellipse is basically a reparametrized line segment
if (ray(X) == 0 || ray(Y) == 0) {
if (ray(X) != 0) {
return asin(Line(axis(X)).timeAt(p));
} else if (ray(Y) != 0) {
return acos(Line(axis(Y)).timeAt(p));
} else {
return 0;
}
}
Affine iuct = inverseUnitCircleTransform();
return Angle(atan2(p * iuct)).radians0(); // return a value in [0, 2pi)
}
Point Ellipse::unitTangentAt(Coord t) const
{
Point p = Point::polar(t + M_PI/2);
p *= unitCircleTransform().withoutTranslation();
p.normalize();
return p;
}
bool Ellipse::contains(Point const &p) const
{
Point tp = p * inverseUnitCircleTransform();
return tp.length() <= 1;
}
std::vector<ShapeIntersection> Ellipse::intersect(Line const &line) const
{
std::vector<ShapeIntersection> result;
if (line.isDegenerate()) return result;
if (ray(X) == 0 || ray(Y) == 0) {
// TODO intersect with line segment.
return result;
}
// Ax^2 + Bxy + Cy^2 + Dx + Ey + F
Coord A, B, C, D, E, F;
coefficients(A, B, C, D, E, F);
Affine iuct = inverseUnitCircleTransform();
// generic case
Coord a, b, c;
line.coefficients(a, b, c);
Point lv = line.vector();
if (fabs(lv[X]) > fabs(lv[Y])) {
// y = -a/b x - c/b
Coord q = -a/b;
Coord r = -c/b;
// substitute that into the ellipse equation, making it quadratic in x
Coord I = A + B*q + C*q*q; // x^2 terms
Coord J = B*r + C*2*q*r + D + E*q; // x^1 terms
Coord K = C*r*r + E*r + F; // x^0 terms
std::vector<Coord> xs = solve_quadratic(I, J, K);
for (unsigned i = 0; i < xs.size(); ++i) {
Point p(xs[i], q*xs[i] + r);
result.push_back(ShapeIntersection(atan2(p * iuct), line.timeAt(p), p));
}
} else {
Coord q = -b/a;
Coord r = -c/a;
Coord I = A*q*q + B*q + C;
Coord J = A*2*q*r + B*r + D*q + E;
Coord K = A*r*r + D*r + F;
std::vector<Coord> xs = solve_quadratic(I, J, K);
for (unsigned i = 0; i < xs.size(); ++i) {
Point p(q*xs[i] + r, xs[i]);
result.push_back(ShapeIntersection(atan2(p * iuct), line.timeAt(p), p));
}
}
return result;
}
std::vector<ShapeIntersection> Ellipse::intersect(LineSegment const &seg) const
{
// we simply re-use the procedure for lines and filter out
// results where the line time value is outside of the unit interval.
std::vector<ShapeIntersection> result = intersect(Line(seg));
filter_line_segment_intersections(result);
return result;
}
std::vector<ShapeIntersection> Ellipse::intersect(Ellipse const &other) const
{
// handle degenerate cases first
if (ray(X) == 0 || ray(Y) == 0) {
}
// intersection of two ellipses can be solved analytically.
// http://maptools.home.comcast.net/~maptools/BivariateQuadratics.pdf
Coord A, B, C, D, E, F;
Coord a, b, c, d, e, f;
// NOTE: the order of coefficients is different to match the convention in the PDF above
// Ax^2 + Bx^2 + Cx + Dy + Exy + F
this->coefficients(A, E, B, C, D, F);
other.coefficients(a, e, b, c, d, f);
// Assume that Q is the ellipse equation given by uppercase letters
// and R is the equation given by lowercase ones. An intersection exists when
// there is a coefficient mu such that
// mu Q + R = 0
//
// This can be written in the following way:
//
// | ff cc/2 dd/2 | |1|
// mu Q + R = [1 x y] | cc/2 aa ee/2 | |x| = 0
// | dd/2 ee/2 bb | |y|
//
// where aa = mu A + a and so on. The determinant can be explicitly written out,
// giving an equation which is cubic in mu and can be solved analytically.
Coord I, J, K, L;
I = (-E*E*F + 4*A*B*F + C*D*E - A*D*D - B*C*C) / 4;
J = -((E*E - 4*A*B) * f + (2*E*F - C*D) * e + (2*A*D - C*E) * d +
(2*B*C - D*E) * c + (C*C - 4*A*F) * b + (D*D - 4*B*F) * a) / 4;
K = -((e*e - 4*a*b) * F + (2*e*f - c*d) * E + (2*a*d - c*e) * D +
(2*b*c - d*e) * C + (c*c - 4*a*f) * B + (d*d - 4*b*f) * A) / 4;
L = (-e*e*f + 4*a*b*f + c*d*e - a*d*d - b*c*c) / 4;
std::vector<Coord> mus = solve_cubic(I, J, K, L);
Coord mu = infinity();
std::vector<ShapeIntersection> result;
// Now that we have solved for mu, we need to check whether the conic
// determined by mu Q + R is reducible to a product of two lines. If it's not,
// it means that there are no intersections. If it is, the intersections of these
// lines with the original ellipses (if there are any) give the coordinates
// of intersections.
// Prefer middle root if there are three.
// Out of three possible pairs of lines that go through four points of intersection
// of two ellipses, this corresponds to cross-lines. These intersect the ellipses
// at less shallow angles than the other two options.
if (mus.size() == 3) {
std::swap(mus[1], mus[0]);
}
for (unsigned i = 0; i < mus.size(); ++i) {
Coord aa = mus[i] * A + a;
Coord bb = mus[i] * B + b;
Coord ee = mus[i] * E + e;
Coord delta = ee*ee - 4*aa*bb;
if (delta < 0) continue;
mu = mus[i];
break;
}
// if no suitable mu was found, there are no intersections
if (mu == infinity()) return result;
Coord aa = mu * A + a;
Coord bb = mu * B + b;
Coord cc = mu * C + c;
Coord dd = mu * D + d;
Coord ee = mu * E + e;
Coord ff = mu * F + f;
Line lines[2];
if (aa != 0) {
bb /= aa; cc /= aa; dd /= aa; ee /= aa; /*ff /= aa;*/
Coord s = (ee + std::sqrt(ee*ee - 4*bb)) / 2;
Coord q = ee - s;
Coord alpha = (dd - cc*q) / (s - q);
Coord beta = cc - alpha;
lines[0] = Line(1, q, alpha);
lines[1] = Line(1, s, beta);
} else if (bb != 0) {
cc /= bb; /*dd /= bb;*/ ee /= bb; ff /= bb;
Coord s = ee;
Coord q = 0;
Coord alpha = cc / ee;
Coord beta = ff * ee / cc;
lines[0] = Line(q, 1, alpha);
lines[1] = Line(s, 1, beta);
} else {
lines[0] = Line(ee, 0, dd);
lines[1] = Line(0, 1, cc/ee);
}
// intersect with the obtained lines and report intersections
for (unsigned li = 0; li < 2; ++li) {
std::vector<ShapeIntersection> as = intersect(lines[li]);
std::vector<ShapeIntersection> bs = other.intersect(lines[li]);
if (!as.empty() && as.size() == bs.size()) {
for (unsigned i = 0; i < as.size(); ++i) {
ShapeIntersection ix(as[i].first, bs[i].first,
middle_point(as[i].point(), bs[i].point()));
result.push_back(ix);
}
}
}
return result;
}
std::vector<ShapeIntersection> Ellipse::intersect(D2<Bezier> const &b) const
{
Coord A, B, C, D, E, F;
coefficients(A, B, C, D, E, F);
Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F;
std::vector<Coord> r = x.roots();
std::vector<ShapeIntersection> result;
for (unsigned i = 0; i < r.size(); ++i) {
Point p = b.valueAt(r[i]);
result.push_back(ShapeIntersection(timeAt(p), r[i], p));
}
return result;
}
bool Ellipse::operator==(Ellipse const &other) const
{
if (_center != other._center) return false;
Ellipse a = this->canonicalForm();
Ellipse b = other.canonicalForm();
if (a._rays != b._rays) return false;
if (a._angle != b._angle) return false;
return true;
}
bool are_near(Ellipse const &a, Ellipse const &b, Coord precision)
{
// We want to know whether no point on ellipse a is further than precision
// from the corresponding point on ellipse b. To check this, we compute
// the four extreme points at the end of each ray for each ellipse
// and check whether they are sufficiently close.
// First, we need to correct the angles on the ellipses, so that they are
// no further than M_PI/4 apart. This can always be done by rotating
// and exchanging axes.
Ellipse ac = a, bc = b;
if (distance(ac.rotationAngle(), bc.rotationAngle()).radians0() >= M_PI/2) {
ac.setRotationAngle(ac.rotationAngle() + M_PI);
}
if (distance(ac.rotationAngle(), bc.rotationAngle()) >= M_PI/4) {
Angle d1 = distance(ac.rotationAngle() + M_PI/2, bc.rotationAngle());
Angle d2 = distance(ac.rotationAngle() - M_PI/2, bc.rotationAngle());
Coord adj = d1.radians0() < d2.radians0() ? M_PI/2 : -M_PI/2;
ac.setRotationAngle(ac.rotationAngle() + adj);
ac.setRays(ac.ray(Y), ac.ray(X));
}
// Do the actual comparison by computing four points on each ellipse.
Point tps[] = {Point(1,0), Point(0,1), Point(-1,0), Point(0,-1)};
for (unsigned i = 0; i < 4; ++i) {
if (!are_near(tps[i] * ac.unitCircleTransform(),
tps[i] * bc.unitCircleTransform(),
precision))
return false;
}
return true;
}
std::ostream &operator<<(std::ostream &out, Ellipse const &e)
{
out << "Ellipse(" << e.center() << ", " << e.rays()
<< ", " << format_coord_nice(e.rotationAngle()) << ")";
return out;
}
} // end namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :