/* $Id$ */
/** @file
* TestExecServ - Basic Remote Execution Service.
*/
/*
* Copyright (C) 2010-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP RTLOGGROUP_DEFAULT
#include <iprt/alloca.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/cdrom.h>
#include <iprt/critsect.h>
#include <iprt/crc.h>
#include <iprt/ctype.h>
#include <iprt/dir.h>
#include <iprt/env.h>
#include <iprt/err.h>
#include <iprt/file.h>
#include <iprt/getopt.h>
#include <iprt/handle.h>
#include <iprt/initterm.h>
#include <iprt/log.h>
#include <iprt/mem.h>
#include <iprt/message.h>
#include <iprt/param.h>
#include <iprt/path.h>
#include <iprt/pipe.h>
#include <iprt/poll.h>
#include <iprt/process.h>
#include <iprt/stream.h>
#include <iprt/string.h>
#include <iprt/system.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include <iprt/uuid.h>
#ifndef RT_OS_WINDOWS
# include <iprt/zip.h>
#endif
#include "TestExecServiceInternal.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Handle IDs used by txsDoExec for the poll set.
*/
typedef enum TXSEXECHNDID
{
TXSEXECHNDID_STDIN = 0,
TXSEXECHNDID_STDOUT,
TXSEXECHNDID_STDERR,
TXSEXECHNDID_TESTPIPE,
TXSEXECHNDID_STDIN_WRITABLE,
TXSEXECHNDID_TRANSPORT,
TXSEXECHNDID_THREAD
} TXSEXECHNDID;
/**
* For buffering process input supplied by the client.
*/
typedef struct TXSEXECSTDINBUF
{
/** The mount of buffered data. */
size_t cb;
/** The current data offset. */
size_t off;
/** The data buffer. */
char *pch;
/** The amount of allocated buffer space. */
size_t cbAllocated;
/** Send further input into the bit bucket (stdin is dead). */
bool fBitBucket;
/** The CRC-32 for standard input (received part). */
uint32_t uCrc32;
} TXSEXECSTDINBUF;
/** Pointer to a standard input buffer. */
typedef TXSEXECSTDINBUF *PTXSEXECSTDINBUF;
/**
* TXS child process info.
*/
typedef struct TXSEXEC
{
PCTXSPKTHDR pPktHdr;
RTMSINTERVAL cMsTimeout;
int rcReplySend;
RTPOLLSET hPollSet;
RTPIPE hStdInW;
RTPIPE hStdOutR;
RTPIPE hStdErrR;
RTPIPE hTestPipeR;
RTPIPE hWakeUpPipeR;
RTTHREAD hThreadWaiter;
/** @name For the setup phase
* @{ */
struct StdPipe
{
RTHANDLE hChild;
PRTHANDLE phChild;
} StdIn,
StdOut,
StdErr;
RTPIPE hTestPipeW;
RTENV hEnv;
/** @} */
/** For serializating some access. */
RTCRITSECT CritSect;
/** @name Members protected by the critical section.
* @{ */
RTPROCESS hProcess;
/** The process status. Only valid when fProcessAlive is cleared. */
RTPROCSTATUS ProcessStatus;
/** Set when the process is alive, clear when dead. */
bool volatile fProcessAlive;
/** The end of the pipe that hThreadWaiter writes to. */
RTPIPE hWakeUpPipeW;
/** @} */
} TXSEXEC;
/** Pointer to a the TXS child process info. */
typedef TXSEXEC *PTXSEXEC;
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/**
* Transport layers.
*/
static const PCTXSTRANSPORT g_apTransports[] =
{
&g_TcpTransport,
//&g_SerialTransport,
//&g_FileSysTransport,
//&g_GuestPropTransport,
//&g_TestDevTransport,
};
/** The select transport layer. */
static PCTXSTRANSPORT g_pTransport;
/** The scratch path. */
static char g_szScratchPath[RTPATH_MAX];
/** The default scratch path. */
static char g_szDefScratchPath[RTPATH_MAX];
/** The CD/DVD-ROM path. */
static char g_szCdRomPath[RTPATH_MAX];
/** The default CD/DVD-ROM path. */
static char g_szDefCdRomPath[RTPATH_MAX];
/** The operating system short name. */
static char g_szOsShortName[16];
/** The CPU architecture short name. */
static char g_szArchShortName[16];
/** The combined "OS.arch" name. */
static char g_szOsDotArchShortName[32];
/** The combined "OS/arch" name. */
static char g_szOsSlashArchShortName[32];
/** The executable suffix. */
static char g_szExeSuff[8];
/** The shell script suffix. */
static char g_szScriptSuff[8];
/** UUID identifying this TXS instance. This can be used to see if TXS
* has been restarted or not. */
static RTUUID g_InstanceUuid;
/** Whether to display the output of the child process or not. */
static bool g_fDisplayOutput = true;
/** Whether to terminate or not.
* @todo implement signals and stuff. */
static bool volatile g_fTerminate = false;
/**
* Calculates the checksum value, zero any padding space and send the packet.
*
* @returns IPRT status code.
* @param pPkt The packet to send. Must point to a correctly
* aligned buffer.
*/
static int txsSendPkt(PTXSPKTHDR pPkt)
{
Assert(pPkt->cb >= sizeof(*pPkt));
pPkt->uCrc32 = RTCrc32(pPkt->achOpcode, pPkt->cb - RT_OFFSETOF(TXSPKTHDR, achOpcode));
if (pPkt->cb != RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT))
memset((uint8_t *)pPkt + pPkt->cb, '\0', RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT) - pPkt->cb);
Log(("txsSendPkt: cb=%#x opcode=%.8s\n", pPkt->cb, pPkt->achOpcode));
Log2(("%.*Rhxd\n", RT_MIN(pPkt->cb, 256), pPkt));
int rc = g_pTransport->pfnSendPkt(pPkt);
while (RT_UNLIKELY(rc == VERR_INTERRUPTED) && !g_fTerminate)
rc = g_pTransport->pfnSendPkt(pPkt);
if (RT_FAILURE(rc))
Log(("txsSendPkt: rc=%Rrc\n", rc));
return rc;
}
/**
* Sends a babble reply and disconnects the client (if applicable).
*
* @param pszOpcode The BABBLE opcode.
*/
static void txsReplyBabble(const char *pszOpcode)
{
TXSPKTHDR Reply;
Reply.cb = sizeof(Reply);
Reply.uCrc32 = 0;
memcpy(Reply.achOpcode, pszOpcode, sizeof(Reply.achOpcode));
g_pTransport->pfnBabble(&Reply, 20*1000);
}
/**
* Receive and validate a packet.
*
* Will send bable responses to malformed packets that results in a error status
* code.
*
* @returns IPRT status code.
* @param ppPktHdr Where to return the packet on success. Free
* with RTMemFree.
* @param fAutoRetryOnFailure Whether to retry on error.
*/
static int txsRecvPkt(PPTXSPKTHDR ppPktHdr, bool fAutoRetryOnFailure)
{
for (;;)
{
PTXSPKTHDR pPktHdr;
int rc = g_pTransport->pfnRecvPkt(&pPktHdr);
if (RT_SUCCESS(rc))
{
/* validate the packet. */
if ( pPktHdr->cb >= sizeof(TXSPKTHDR)
&& pPktHdr->cb < TXSPKT_MAX_SIZE)
{
Log2(("txsRecvPkt: pPktHdr=%p cb=%#x crc32=%#x opcode=%.8s\n"
"%.*Rhxd\n",
pPktHdr, pPktHdr->cb, pPktHdr->uCrc32, pPktHdr->achOpcode, RT_MIN(pPktHdr->cb, 256), pPktHdr));
uint32_t uCrc32Calc = pPktHdr->uCrc32 != 0
? RTCrc32(&pPktHdr->achOpcode[0], pPktHdr->cb - RT_OFFSETOF(TXSPKTHDR, achOpcode))
: 0;
if (pPktHdr->uCrc32 == uCrc32Calc)
{
AssertCompileMemberSize(TXSPKTHDR, achOpcode, 8);
if ( RT_C_IS_UPPER(pPktHdr->achOpcode[0])
&& RT_C_IS_UPPER(pPktHdr->achOpcode[1])
&& (RT_C_IS_UPPER(pPktHdr->achOpcode[2]) || pPktHdr->achOpcode[2] == ' ')
&& (RT_C_IS_PRINT(pPktHdr->achOpcode[3]) || pPktHdr->achOpcode[3] == ' ')
&& (RT_C_IS_PRINT(pPktHdr->achOpcode[4]) || pPktHdr->achOpcode[4] == ' ')
&& (RT_C_IS_PRINT(pPktHdr->achOpcode[5]) || pPktHdr->achOpcode[5] == ' ')
&& (RT_C_IS_PRINT(pPktHdr->achOpcode[6]) || pPktHdr->achOpcode[6] == ' ')
&& (RT_C_IS_PRINT(pPktHdr->achOpcode[7]) || pPktHdr->achOpcode[7] == ' ')
)
{
Log(("txsRecvPkt: cb=%#x opcode=%.8s\n", pPktHdr->cb, pPktHdr->achOpcode));
*ppPktHdr = pPktHdr;
return rc;
}
rc = VERR_IO_BAD_COMMAND;
}
else
{
Log(("txsRecvPkt: cb=%#x opcode=%.8s crc32=%#x actual=%#x\n",
pPktHdr->cb, pPktHdr->achOpcode, pPktHdr->uCrc32, uCrc32Calc));
rc = VERR_IO_CRC;
}
}
else
rc = VERR_IO_BAD_LENGTH;
/* Send babble reply and disconnect the client if the transport is
connection oriented. */
if (rc == VERR_IO_BAD_LENGTH)
txsReplyBabble("BABBLE L");
else if (rc == VERR_IO_CRC)
txsReplyBabble("BABBLE C");
else if (rc == VERR_IO_BAD_COMMAND)
txsReplyBabble("BABBLE O");
else
txsReplyBabble("BABBLE ");
RTMemFree(pPktHdr);
}
/* Try again or return failure? */
if ( g_fTerminate
|| rc != VERR_INTERRUPTED
|| !fAutoRetryOnFailure
)
{
Log(("txsRecvPkt: rc=%Rrc\n", rc));
return rc;
}
}
}
/**
* Make a simple reply, only status opcode.
*
* @returns IPRT status code of the send.
* @param pReply The reply packet.
* @param pszOpcode The status opcode. Exactly 8 chars long, padd
* with space.
* @param cbExtra Bytes in addition to the header.
*/
static int txsReplyInternal(PTXSPKTHDR pReply, const char *pszOpcode, size_t cbExtra)
{
/* copy the opcode, don't be too strict in case of a padding screw up. */
size_t cchOpcode = strlen(pszOpcode);
if (RT_LIKELY(cchOpcode == sizeof(pReply->achOpcode)))
memcpy(pReply->achOpcode, pszOpcode, sizeof(pReply->achOpcode));
else
{
Assert(cchOpcode == sizeof(pReply->achOpcode));
while (cchOpcode > 0 && pszOpcode[cchOpcode - 1] == ' ')
cchOpcode--;
AssertMsgReturn(cchOpcode < sizeof(pReply->achOpcode), ("%d/'%.8s'\n", cchOpcode, pszOpcode), VERR_INTERNAL_ERROR_4);
memcpy(pReply->achOpcode, pszOpcode, cchOpcode);
memset(&pReply->achOpcode[cchOpcode], ' ', sizeof(pReply->achOpcode) - cchOpcode);
}
pReply->cb = (uint32_t)sizeof(TXSPKTHDR) + (uint32_t)cbExtra;
pReply->uCrc32 = 0;
return txsSendPkt(pReply);
}
/**
* Make a simple reply, only status opcode.
*
* @returns IPRT status code of the send.
* @param pPktHdr The original packet (for future use).
* @param pszOpcode The status opcode. Exactly 8 chars long, padd
* with space.
*/
static int txsReplySimple(PCTXSPKTHDR pPktHdr, const char *pszOpcode)
{
TXSPKTHDR Pkt;
NOREF(pPktHdr);
return txsReplyInternal(&Pkt, pszOpcode, 0);
}
/**
* Acknowledges a packet with success.
*
* @returns IPRT status code of the send.
* @param pPktHdr The original packet (for future use).
*/
static int txsReplyAck(PCTXSPKTHDR pPktHdr)
{
return txsReplySimple(pPktHdr, "ACK ");
}
/**
* Replies with a failure.
*
* @returns IPRT status code of the send.
* @param pPktHdr The original packet (for future use).
* @param pszOpcode The status opcode. Exactly 8 chars long, padd
* with space.
* @param pszDetailsFmt Longer description of the problem (format
* string).
* @param va Format arguments.
*/
static int txsReplyFailureV(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, va_list va)
{
NOREF(pPktHdr);
union
{
TXSPKTHDR Hdr;
char ach[256];
} uPkt;
size_t cchDetail = RTStrPrintfV(&uPkt.ach[sizeof(TXSPKTHDR)],
sizeof(uPkt) - sizeof(TXSPKTHDR),
pszDetailFmt, va);
return txsReplyInternal(&uPkt.Hdr, pszOpcode, cchDetail + 1);
}
/**
* Replies with a failure.
*
* @returns IPRT status code of the send.
* @param pPktHdr The original packet (for future use).
* @param pszOpcode The status opcode. Exactly 8 chars long, padd
* with space.
* @param pszDetails Longer description of the problem (format
* string).
* @param ... Format arguments.
*/
static int txsReplyFailure(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, ...)
{
va_list va;
va_start(va, pszDetailFmt);
int rc = txsReplyFailureV(pPktHdr, pszOpcode, pszDetailFmt, va);
va_end(va);
return rc;
}
/**
* Replies according to the return code.
*
* @returns IPRT status code of the send.
* @param pPktHdr The packet to reply to.
* @param rcOperation The status code to report.
* @param pszOperationFmt The operation that failed. Typically giving the
* function call with important arguments.
* @param ... Arguments to the format string.
*/
static int txsReplyRC(PCTXSPKTHDR pPktHdr, int rcOperation, const char *pszOperationFmt, ...)
{
if (RT_SUCCESS(rcOperation))
return txsReplyAck(pPktHdr);
char szOperation[128];
va_list va;
va_start(va, pszOperationFmt);
RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va);
va_end(va);
return txsReplyFailure(pPktHdr, "FAILED ", "%s failed with rc=%Rrc (opcode '%.8s')",
szOperation, rcOperation, pPktHdr->achOpcode);
}
/**
* Signal a bad packet minum size.
*
* @returns IPRT status code of the send.
* @param pPktHdr The packet to reply to.
* @param cbMin The minimum size.
*/
static int txsReplyBadMinSize(PCTXSPKTHDR pPktHdr, size_t cbMin)
{
return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at least %zu bytes, got %u (opcode '%.8s')",
cbMin, pPktHdr->cb, pPktHdr->achOpcode);
}
/**
* Signal a bad packet exact size.
*
* @returns IPRT status code of the send.
* @param pPktHdr The packet to reply to.
* @param cb The wanted size.
*/
static int txsReplyBadSize(PCTXSPKTHDR pPktHdr, size_t cb)
{
return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at %zu bytes, got %u (opcode '%.8s')",
cb, pPktHdr->cb, pPktHdr->achOpcode);
}
/**
* Deals with a command that isn't implemented yet.
* @returns IPRT status code of the send.
* @param pPktHdr The packet which opcode isn't implemented.
*/
static int txsReplyNotImplemented(PCTXSPKTHDR pPktHdr)
{
return txsReplyFailure(pPktHdr, "NOT IMPL", "Opcode '%.8s' is not implemented", pPktHdr->achOpcode);
}
/**
* Deals with a unknown command.
* @returns IPRT status code of the send.
* @param pPktHdr The packet to reply to.
*/
static int txsReplyUnknown(PCTXSPKTHDR pPktHdr)
{
return txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known", pPktHdr->achOpcode);
}
/**
* Replaces a variable with its value.
*
* @returns VINF_SUCCESS or VERR_NO_STR_MEMORY.
* @param ppszNew In/Out.
* @param pcchNew In/Out. (Messed up on failure.)
* @param offVar Variable offset.
* @param cchVar Variable length.
* @param pszValue The value.
* @param cchValue Value length.
*/
static int txsReplaceStringVariable(char **ppszNew, size_t *pcchNew, size_t offVar, size_t cchVar,
const char *pszValue, size_t cchValue)
{
size_t const cchAfter = *pcchNew - offVar - cchVar;
if (cchVar < cchValue)
{
*pcchNew += cchValue - cchVar;
int rc = RTStrRealloc(ppszNew, *pcchNew + 1);
if (RT_FAILURE(rc))
return rc;
}
char *pszNew = *ppszNew;
memmove(&pszNew[offVar + cchValue], &pszNew[offVar + cchVar], cchAfter + 1);
memcpy(&pszNew[offVar], pszValue, cchValue);
return VINF_SUCCESS;
}
/**
* Replace the variables found in the source string, returning a new string that
* lives on the string heap.
*
* @returns Boolean success indicator. Will reply to the client with all the
* gory detail on failure.
* @param pPktHdr The packet the string relates to. For replying
* on error.
* @param pszSrc The source string.
* @param ppszNew Where to return the new string.
* @param prcSend Where to return the status code of the send on
* failure.
*/
static int txsReplaceStringVariables(PCTXSPKTHDR pPktHdr, const char *pszSrc, char **ppszNew, int *prcSend)
{
/* Lazy approach that employs memmove. */
size_t cchNew = strlen(pszSrc);
char *pszNew = RTStrDup(pszSrc);
char *pszDollar = pszNew;
while ((pszDollar = strchr(pszDollar, '$')) != NULL)
{
if (pszDollar[1] == '{')
{
const char *pszEnd = strchr(&pszDollar[2], '}');
if (pszEnd)
{
#define IF_VARIABLE_DO(pszDollar, szVarExpr, pszValue) \
if ( cchVar == sizeof(szVarExpr) - 1 \
&& !memcmp(pszDollar, szVarExpr, sizeof(szVarExpr) - 1) ) \
{ \
size_t const cchValue = strlen(pszValue); \
rc = txsReplaceStringVariable(&pszNew, &cchNew, offDollar, \
sizeof(szVarExpr) - 1, pszValue, cchValue); \
offDollar += cchValue; \
}
int rc;
size_t const cchVar = pszEnd - pszDollar + 1; /* includes "${}" */
size_t offDollar = pszDollar - pszNew;
IF_VARIABLE_DO(pszDollar, "${CDROM}", g_szCdRomPath)
else IF_VARIABLE_DO(pszDollar, "${SCRATCH}", g_szScratchPath)
else IF_VARIABLE_DO(pszDollar, "${ARCH}", g_szArchShortName)
else IF_VARIABLE_DO(pszDollar, "${OS}", g_szOsShortName)
else IF_VARIABLE_DO(pszDollar, "${OS.ARCH}", g_szOsDotArchShortName)
else IF_VARIABLE_DO(pszDollar, "${OS/ARCH}", g_szOsSlashArchShortName)
else IF_VARIABLE_DO(pszDollar, "${EXESUFF}", g_szExeSuff)
else IF_VARIABLE_DO(pszDollar, "${SCRIPTSUFF}", g_szScriptSuff)
else
{
RTStrFree(pszNew);
*prcSend = txsReplyFailure(pPktHdr, "UNKN VAR", "Unknown variable '%.*s' encountered in '%s'",
cchVar, pszDollar, pszSrc);
*ppszNew = NULL;
return false;
}
pszDollar = &pszNew[offDollar];
if (RT_FAILURE(rc))
{
RTStrFree(pszNew);
*prcSend = txsReplyRC(pPktHdr, rc, "RTStrRealloc");
*ppszNew = NULL;
return false;
}
#undef IF_VARIABLE_DO
}
}
}
*ppszNew = pszNew;
*prcSend = VINF_SUCCESS;
return true;
}
/**
* Checks if the string is valid and returns the expanded version.
*
* @returns true if valid, false if invalid.
* @param pPktHdr The packet being unpacked.
* @param pszArgName The argument name.
* @param psz Pointer to the string within pPktHdr.
* @param ppszExp Where to return the expanded string. Must be
* freed by calling RTStrFree().
* @param ppszNext Where to return the pointer to the next field.
* If NULL, then we assume this string is at the
* end of the packet and will make sure it has the
* advertised length.
* @param prcSend Where to return the status code of the send on
* failure.
*/
static bool txsIsStringValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, const char *psz,
char **ppszExp, const char **ppszNext, int *prcSend)
{
*ppszExp = NULL;
if (ppszNext)
*ppszNext = NULL;
size_t const off = psz - (const char *)pPktHdr;
if (pPktHdr->cb <= off)
{
*prcSend = txsReplyFailure(pPktHdr, "STR MISS", "Missing string argument '%s' in '%.8s'",
pszArgName, pPktHdr->achOpcode);
return false;
}
size_t const cchMax = pPktHdr->cb - off;
const char *pszEnd = RTStrEnd(psz, cchMax);
if (!pszEnd)
{
*prcSend = txsReplyFailure(pPktHdr, "STR TERM", "The string argument '%s' in '%.8s' is unterminated",
pszArgName, pPktHdr->achOpcode);
return false;
}
if (!ppszNext && (size_t)(pszEnd - psz) != cchMax - 1)
{
*prcSend = txsReplyFailure(pPktHdr, "STR SHRT", "The string argument '%s' in '%.8s' is shorter than advertised",
pszArgName, pPktHdr->achOpcode);
return false;
}
if (!txsReplaceStringVariables(pPktHdr, psz, ppszExp, prcSend))
return false;
if (ppszNext)
*ppszNext = pszEnd + 1;
return true;
}
/**
* Validates a packet with a single string after the header.
*
* @returns true if valid, false if invalid.
* @param pPktHdr The packet.
* @param pszArgName The argument name.
* @param ppszExp Where to return the string pointer. Variables
* will be replaced and it must therefore be freed
* by calling RTStrFree().
* @param prcSend Where to return the status code of the send on
* failure.
*/
static bool txsIsStringPktValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, char **ppszExp, int *prcSend)
{
if (pPktHdr->cb < sizeof(TXSPKTHDR) + 2)
{
*ppszExp = NULL;
*prcSend = txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + 2);
return false;
}
return txsIsStringValid(pPktHdr, pszArgName, (const char *)(pPktHdr + 1), ppszExp, NULL, prcSend);
}
/**
* Checks if the two opcodes match.
*
* @returns true on match, false on mismatch.
* @param pPktHdr The packet header.
* @param pszOpcode2 The opcode we're comparing with. Does not have
* to be the whole 8 chars long.
*/
DECLINLINE(bool) txsIsSameOpcode(PCTXSPKTHDR pPktHdr, const char *pszOpcode2)
{
if (pPktHdr->achOpcode[0] != pszOpcode2[0])
return false;
if (pPktHdr->achOpcode[1] != pszOpcode2[1])
return false;
unsigned i = 2;
while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
&& pszOpcode2[i] != '\0')
{
if (pPktHdr->achOpcode[i] != pszOpcode2[i])
break;
i++;
}
if ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
&& pszOpcode2[i] == '\0')
{
while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
&& pPktHdr->achOpcode[i] == ' ')
i++;
}
return i == RT_SIZEOFMEMB(TXSPKTHDR, achOpcode);
}
/**
* Used by txsDoGetFile to wait for a reply ACK from the client.
*
* @returns VINF_SUCCESS on ACK, VERR_GENERAL_FAILURE on NACK,
* VERR_NET_NOT_CONNECTED on unknown response (sending a bable reply),
* or whatever txsRecvPkt returns.
* @param pPktHdr The original packet (for future use).
*/
static int txsWaitForAck(PCTXSPKTHDR pPktHdr)
{
NOREF(pPktHdr);
/** @todo timeout? */
PTXSPKTHDR pReply;
int rc = txsRecvPkt(&pReply, false /*fAutoRetryOnFailure*/);
if (RT_SUCCESS(rc))
{
if (txsIsSameOpcode(pReply, "ACK"))
rc = VINF_SUCCESS;
else if (txsIsSameOpcode(pReply, "NACK"))
rc = VERR_GENERAL_FAILURE;
else
{
txsReplyBabble("BABBLE ");
rc = VERR_NET_NOT_CONNECTED;
}
RTMemFree(pReply);
}
return rc;
}
#ifndef RT_OS_WINDOWS
/**
* Unpacks a tar file.
*
* @returns IPRT status code from send.
* @param pPktHdr The unpack file packet.
*/
static int txsDoUnpackFile(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszFile = NULL;
char *pszDirectory = NULL;
/* Packet cursor. */
const char *pchEnd = (const char *)pPktHdr + pPktHdr->cb;
const char *pch = (const char *)(pPktHdr + 1);
if (txsIsStringValid(pPktHdr, "file", pch, &pszFile, &pch, &rc))
{
if (txsIsStringValid(pPktHdr, "directory", pch, &pszDirectory, &pch, &rc))
{
char *pszSuff = RTPathSuffix(pszFile);
const char *apszArgs[7];
unsigned cArgs = 0;
apszArgs[cArgs++] = "RTTar";
apszArgs[cArgs++] = "--extract";
apszArgs[cArgs++] = "--file";
apszArgs[cArgs++] = pszFile;
apszArgs[cArgs++] = "--directory";
apszArgs[cArgs++] = pszDirectory;
if ( pszSuff
&& ( !RTStrICmp(pszSuff, ".gz")
|| !RTStrICmp(pszSuff, ".tgz")))
apszArgs[cArgs++] = "--gunzip";
RTEXITCODE rcExit = RTZipTarCmd(cArgs, (char **)apszArgs);
if (rcExit != RTEXITCODE_SUCCESS)
rc = VERR_GENERAL_FAILURE; /** @todo proper return code. */
else
rc = VINF_SUCCESS;
rc = txsReplyRC(pPktHdr, rc, "RTZipTarCmd(\"%s\",\"%s\")",
pszFile, pszDirectory);
RTStrFree(pszDirectory);
}
RTStrFree(pszFile);
}
return rc;
}
#endif
/**
* Downloads a file to the client.
*
* The transfer sends a stream of DATA packets (0 or more) and ends it all with
* a ACK packet. If an error occurs, a FAILURE packet is sent and the transfer
* aborted.
*
* @returns IPRT status code from send.
* @param pPktHdr The get file packet.
*/
static int txsDoGetFile(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
return rc;
RTFILE hFile;
rc = RTFileOpen(&hFile, pszPath, RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN);
if (RT_SUCCESS(rc))
{
uint32_t uMyCrc32 = RTCrc32Start();
for (;;)
{
struct
{
TXSPKTHDR Hdr;
uint32_t uCrc32;
char ab[_64K];
char abPadding[TXSPKT_ALIGNMENT];
} Pkt;
size_t cbRead;
rc = RTFileRead(hFile, &Pkt.ab[0], _64K, &cbRead);
if (RT_FAILURE(rc) || cbRead == 0)
{
if (rc == VERR_EOF || (RT_SUCCESS(rc) && cbRead == 0))
{
Pkt.uCrc32 = RTCrc32Finish(uMyCrc32);
rc = txsReplyInternal(&Pkt.Hdr, "DATA EOF", sizeof(uint32_t));
if (RT_SUCCESS(rc))
rc = txsWaitForAck(&Pkt.Hdr);
}
else
rc = txsReplyRC(pPktHdr, rc, "RTFileRead");
break;
}
uMyCrc32 = RTCrc32Process(uMyCrc32, &Pkt.ab[0], cbRead);
Pkt.uCrc32 = RTCrc32Finish(uMyCrc32);
rc = txsReplyInternal(&Pkt.Hdr, "DATA ", cbRead + sizeof(uint32_t));
if (RT_FAILURE(rc))
break;
rc = txsWaitForAck(&Pkt.Hdr);
if (RT_FAILURE(rc))
break;
}
RTFileClose(hFile);
}
else
rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Uploads a file from the client.
*
* The transfer sends a stream of DATA packets (0 or more) and ends it all with
* a DATA EOF packet. We ACK each of these, so that if a write error occurs we
* can abort the transfer straight away.
*
* @returns IPRT status code from send.
* @param pPktHdr The put file packet.
*/
static int txsDoPutFile(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
return rc;
RTFILE hFile;
rc = RTFileOpen(&hFile, pszPath, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE);
if (RT_SUCCESS(rc))
{
bool fSuccess = false;
rc = txsReplyAck(pPktHdr);
if (RT_SUCCESS(rc))
{
/*
* Read client command packets and process them.
*/
uint32_t uMyCrc32 = RTCrc32Start();
for (;;)
{
PTXSPKTHDR pDataPktHdr;
rc = txsRecvPkt(&pDataPktHdr, false /*fAutoRetryOnFailure*/);
if (RT_FAILURE(rc))
break;
if (txsIsSameOpcode(pDataPktHdr, "DATA"))
{
size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(uint32_t);
if (pDataPktHdr->cb >= cbMin)
{
size_t cbData = pDataPktHdr->cb - cbMin;
const void *pvData = (const char *)pDataPktHdr + cbMin;
uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1);
uMyCrc32 = RTCrc32Process(uMyCrc32, pvData, cbData);
if (RTCrc32Finish(uMyCrc32) == uCrc32)
{
rc = RTFileWrite(hFile, pvData, cbData, NULL);
if (RT_SUCCESS(rc))
{
rc = txsReplyAck(pDataPktHdr);
RTMemFree(pDataPktHdr);
continue;
}
rc = txsReplyRC(pDataPktHdr, rc, "RTFileWrite");
}
else
rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32);
}
else
rc = txsReplyBadMinSize(pPktHdr, cbMin);
}
else if (txsIsSameOpcode(pDataPktHdr, "DATA EOF"))
{
if (pDataPktHdr->cb == sizeof(TXSPKTHDR) + sizeof(uint32_t))
{
uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1);
if (RTCrc32Finish(uMyCrc32) == uCrc32)
{
rc = txsReplyAck(pDataPktHdr);
fSuccess = RT_SUCCESS(rc);
}
else
rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32);
}
else
rc = txsReplyAck(pDataPktHdr);
}
else if (txsIsSameOpcode(pDataPktHdr, "ABORT"))
rc = txsReplyAck(pDataPktHdr);
else
rc = txsReplyFailure(pDataPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during PUT FILE", pDataPktHdr->achOpcode);
RTMemFree(pDataPktHdr);
break;
}
}
RTFileClose(hFile);
/*
* Delete the file on failure.
*/
if (!fSuccess)
RTFileDelete(pszPath);
}
else
rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* List the entries in the specified directory.
*
* @returns IPRT status code from send.
* @param pPktHdr The list packet.
*/
static int txsDoList(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
return rc;
rc = txsReplyNotImplemented(pPktHdr);
RTStrFree(pszPath);
return rc;
}
/**
* Get info about a file system object, following all but the symbolic links
* except in the final path component.
*
* @returns IPRT status code from send.
* @param pPktHdr The lstat packet.
*/
static int txsDoLStat(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc))
return rc;
RTFSOBJINFO Info;
rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_ON_LINK);
if (RT_SUCCESS(rc))
/** @todo figure out how to format the return buffer here. */
rc = txsReplyNotImplemented(pPktHdr);
else
rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,ON_LINK)", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Get info about a file system object, following all symbolic links.
*
* @returns IPRT status code from send.
* @param pPktHdr The stat packet.
*/
static int txsDoStat(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc))
return rc;
RTFSOBJINFO Info;
rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_FOLLOW_LINK);
if (RT_SUCCESS(rc))
/** @todo figure out how to format the return buffer here. */
rc = txsReplyNotImplemented(pPktHdr);
else
rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,FOLLOW_LINK)", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Checks if the specified path is a symbolic link.
*
* @returns IPRT status code from send.
* @param pPktHdr The issymlnk packet.
*/
static int txsDoIsSymlnk(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc))
return rc;
RTFSOBJINFO Info;
rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
if (RT_SUCCESS(rc) && RTFS_IS_SYMLINK(Info.Attr.fMode))
rc = txsReplySimple(pPktHdr, "TRUE ");
else
rc = txsReplySimple(pPktHdr, "FALSE ");
RTStrFree(pszPath);
return rc;
}
/**
* Checks if the specified path is a file or not.
*
* If the final path element is a symbolic link to a file, we'll return
* FALSE.
*
* @returns IPRT status code from send.
* @param pPktHdr The isfile packet.
*/
static int txsDoIsFile(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
return rc;
RTFSOBJINFO Info;
rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
if (RT_SUCCESS(rc) && RTFS_IS_FILE(Info.Attr.fMode))
rc = txsReplySimple(pPktHdr, "TRUE ");
else
rc = txsReplySimple(pPktHdr, "FALSE ");
RTStrFree(pszPath);
return rc;
}
/**
* Checks if the specified path is a directory or not.
*
* If the final path element is a symbolic link to a directory, we'll return
* FALSE.
*
* @returns IPRT status code from send.
* @param pPktHdr The isdir packet.
*/
static int txsDoIsDir(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
return rc;
RTFSOBJINFO Info;
rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
if (RT_SUCCESS(rc) && RTFS_IS_DIRECTORY(Info.Attr.fMode))
rc = txsReplySimple(pPktHdr, "TRUE ");
else
rc = txsReplySimple(pPktHdr, "FALSE ");
RTStrFree(pszPath);
return rc;
}
/**
* Changes the group of a file, directory of symbolic link.
*
* @returns IPRT status code from send.
* @param pPktHdr The chmod packet.
*/
static int txsDoChGrp(PCTXSPKTHDR pPktHdr)
{
return txsReplyNotImplemented(pPktHdr);
}
/**
* Changes the owner of a file, directory of symbolic link.
*
* @returns IPRT status code from send.
* @param pPktHdr The chmod packet.
*/
static int txsDoChOwn(PCTXSPKTHDR pPktHdr)
{
return txsReplyNotImplemented(pPktHdr);
}
/**
* Changes the mode of a file or directory.
*
* @returns IPRT status code from send.
* @param pPktHdr The chmod packet.
*/
static int txsDoChMod(PCTXSPKTHDR pPktHdr)
{
return txsReplyNotImplemented(pPktHdr);
}
/**
* Removes a directory tree.
*
* @returns IPRT status code from send.
* @param pPktHdr The rmtree packet.
*/
static int txsDoRmTree(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
return rc;
rc = RTDirRemoveRecursive(pszPath, 0 /*fFlags*/);
rc = txsReplyRC(pPktHdr, rc, "RTDirRemoveRecusive(\"%s\",0)", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Removes a symbolic link.
*
* @returns IPRT status code from send.
* @param pPktHdr The rmsymlink packet.
*/
static int txsDoRmSymlnk(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc))
return rc;
rc = VERR_NOT_IMPLEMENTED; /// @todo RTSymlinkDelete(pszPath);
rc = txsReplyRC(pPktHdr, rc, "RTSymlinkDelete(\"%s\")", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Removes a file.
*
* @returns IPRT status code from send.
* @param pPktHdr The rmfile packet.
*/
static int txsDoRmFile(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
return rc;
rc = RTFileDelete(pszPath);
rc = txsReplyRC(pPktHdr, rc, "RTFileDelete(\"%s\")", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Removes a directory.
*
* @returns IPRT status code from send.
* @param pPktHdr The rmdir packet.
*/
static int txsDoRmDir(PCTXSPKTHDR pPktHdr)
{
int rc;
char *pszPath;
if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
return rc;
rc = RTDirRemove(pszPath);
rc = txsReplyRC(pPktHdr, rc, "RTDirRemove(\"%s\")", pszPath);
RTStrFree(pszPath);
return rc;
}
/**
* Creates a symbolic link.
*
* @returns IPRT status code from send.
* @param pPktHdr The mksymlnk packet.
*/
static int txsDoMkSymlnk(PCTXSPKTHDR pPktHdr)
{
return txsReplyNotImplemented(pPktHdr);
}
/**
* Creates a directory and all its parents.
*
* @returns IPRT status code from send.
* @param pPktHdr The mkdir -p packet.
*/
static int txsDoMkDrPath(PCTXSPKTHDR pPktHdr)
{
/* The same format as the MKDIR command. */
if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2)
return txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2);
int rc;
char *pszPath;
if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
return rc;
RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
rc = RTDirCreateFullPath(pszPath, fMode);
rc = txsReplyRC(pPktHdr, rc, "RTDirCreateFullPath(\"%s\", %#x)", pszPath, fMode);
RTStrFree(pszPath);
return rc;
}
/**
* Creates a directory.
*
* @returns IPRT status code from send.
* @param pPktHdr The mkdir packet.
*/
static int txsDoMkDir(PCTXSPKTHDR pPktHdr)
{
/* After the packet header follows a mode mask and the remainder of
the packet is the zero terminated directory name. */
size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2;
if (pPktHdr->cb < cbMin)
return txsReplyBadMinSize(pPktHdr, cbMin);
int rc;
char *pszPath;
if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
return rc;
RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
rc = RTDirCreate(pszPath, fMode, 0);
rc = txsReplyRC(pPktHdr, rc, "RTDirCreate(\"%s\", %#x)", pszPath, fMode);
RTStrFree(pszPath);
return rc;
}
/**
* Cleans up the scratch area.
*
* @returns IPRT status code from send.
* @param pPktHdr The shutdown packet.
*/
static int txsDoCleanup(PCTXSPKTHDR pPktHdr)
{
int rc = RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY);
return txsReplyRC(pPktHdr, rc, "RTDirRemoveRecursive(\"%s\", CONTENT_ONLY)", g_szScratchPath);
}
/**
* Ejects the specified DVD/CD drive.
*
* @returns IPRT status code from send.
* @param pPktHdr The eject packet.
*/
static int txsDoCdEject(PCTXSPKTHDR pPktHdr)
{
/* After the packet header follows a uint32_t ordinal. */
size_t const cbExpected = sizeof(TXSPKTHDR) + sizeof(uint32_t);
if (pPktHdr->cb != cbExpected)
return txsReplyBadSize(pPktHdr, cbExpected);
uint32_t iOrdinal = *(uint32_t const *)(pPktHdr + 1);
RTCDROM hCdrom;
int rc = RTCdromOpenByOrdinal(iOrdinal, RTCDROM_O_CONTROL, &hCdrom);
if (RT_FAILURE(rc))
return txsReplyRC(pPktHdr, rc, "RTCdromOpenByOrdinal(%u, RTCDROM_O_CONTROL, )", iOrdinal);
rc = RTCdromEject(hCdrom, true /*fForce*/);
RTCdromRelease(hCdrom);
return txsReplyRC(pPktHdr, rc, "RTCdromEject(ord=%u, fForce=true)", iOrdinal);
}
/**
* Common worker for txsDoShutdown and txsDoReboot.
*
* @returns IPRT status code from send.
* @param pPktHdr The reboot packet.
* @param fAction Which action to take.
*/
static int txsCommonShutdownReboot(PCTXSPKTHDR pPktHdr, uint32_t fAction)
{
/*
* We ACK the reboot & shutdown before actually performing them, then we
* terminate the transport layer.
*
* This is to make sure the client isn't stuck with a dead connection. The
* transport layer termination also make sure we won't accept new
* connections in case the client is too eager to reconnect to a rebooted
* test victim. On the down side, we cannot easily report RTSystemShutdown
* failures failures this way. But the client can kind of figure it out by
* reconnecting and seeing that our UUID was unchanged.
*/
int rc;
if (pPktHdr->cb != sizeof(TXSPKTHDR))
return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
g_pTransport->pfnNotifyReboot();
rc = txsReplyAck(pPktHdr);
RTThreadSleep(2560); /* fudge factor */
g_pTransport->pfnTerm();
/*
* Do the job, if it fails we'll restart the transport layer.
*/
#if 0
rc = VINF_SUCCESS;
#else
rc = RTSystemShutdown(0 /*cMsDelay*/,
fAction | RTSYSTEM_SHUTDOWN_PLANNED | RTSYSTEM_SHUTDOWN_FORCE,
"Test Execution Service");
#endif
if (RT_SUCCESS(rc))
{
RTMsgInfo(fAction == RTSYSTEM_SHUTDOWN_REBOOT ? "Rebooting...\n" : "Shutting down...\n");
g_fTerminate = true;
}
else
{
RTMsgError("RTSystemShutdown w/ fAction=%#x failed: %Rrc", fAction, rc);
int rc2 = g_pTransport->pfnInit();
if (RT_FAILURE(rc2))
{
g_fTerminate = true;
rc = rc2;
}
}
return rc;
}
/**
* Shuts down the machine, powering it off if possible.
*
* @returns IPRT status code from send.
* @param pPktHdr The shutdown packet.
*/
static int txsDoShutdown(PCTXSPKTHDR pPktHdr)
{
return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_POWER_OFF_HALT);
}
/**
* Reboots the machine.
*
* @returns IPRT status code from send.
* @param pPktHdr The reboot packet.
*/
static int txsDoReboot(PCTXSPKTHDR pPktHdr)
{
return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_REBOOT);
}
/**
* Verifies and acknowledges a "UUID" request.
*
* @returns IPRT status code.
* @param pPktHdr The howdy packet.
*/
static int txsDoUuid(PCTXSPKTHDR pPktHdr)
{
if (pPktHdr->cb != sizeof(TXSPKTHDR))
return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
struct
{
TXSPKTHDR Hdr;
char szUuid[RTUUID_STR_LENGTH];
char abPadding[TXSPKT_ALIGNMENT];
} Pkt;
int rc = RTUuidToStr(&g_InstanceUuid, Pkt.szUuid, sizeof(Pkt.szUuid));
if (RT_FAILURE(rc))
return txsReplyRC(pPktHdr, rc, "RTUuidToStr");
return txsReplyInternal(&Pkt.Hdr, "ACK UUID", strlen(Pkt.szUuid) + 1);
}
/**
* Verifies and acknowledges a "BYE" request.
*
* @returns IPRT status code.
* @param pPktHdr The howdy packet.
*/
static int txsDoBye(PCTXSPKTHDR pPktHdr)
{
int rc;
if (pPktHdr->cb == sizeof(TXSPKTHDR))
rc = txsReplyAck(pPktHdr);
else
rc = txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
g_pTransport->pfnNotifyBye();
return rc;
}
/**
* Verifies and acknowledges a "HOWDY" request.
*
* @returns IPRT status code.
* @param pPktHdr The howdy packet.
*/
static int txsDoHowdy(PCTXSPKTHDR pPktHdr)
{
if (pPktHdr->cb != sizeof(TXSPKTHDR))
return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
int rc = txsReplyAck(pPktHdr);
if (RT_SUCCESS(rc))
{
g_pTransport->pfnNotifyHowdy();
RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY);
}
return rc;
}
/**
* Replies according to the return code.
*
* @returns rcOperation and pTxsExec->rcReplySend.
* @param pTxsExec The TXSEXEC instance.
* @param rcOperation The status code to report.
* @param pszOperationFmt The operation that failed. Typically giving the
* function call with important arguments.
* @param ... Arguments to the format string.
*/
static int txsExecReplyRC(PTXSEXEC pTxsExec, int rcOperation, const char *pszOperationFmt, ...)
{
AssertStmt(RT_FAILURE_NP(rcOperation), rcOperation = VERR_IPE_UNEXPECTED_INFO_STATUS);
char szOperation[128];
va_list va;
va_start(va, pszOperationFmt);
RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va);
va_end(va);
pTxsExec->rcReplySend = txsReplyFailure(pTxsExec->pPktHdr, "FAILED ",
"%s failed with rc=%Rrc (opcode '%.8s')",
szOperation, rcOperation, pTxsExec->pPktHdr->achOpcode);
return rcOperation;
}
/**
* Sends the process exit status reply to the TXS client.
*
* @returns IPRT status code of the send.
* @param pTxsExec The TXSEXEC instance.
* @param fProcessAlive Whether the process is still alive (against our
* will).
* @param fProcessTimedOut Whether the process timed out.
* @param MsProcessKilled When the process was killed, UINT64_MAX if not.
*/
static int txsExecSendExitStatus(PTXSEXEC pTxsExec, bool fProcessAlive, bool fProcessTimedOut, uint64_t MsProcessKilled)
{
int rc;
if ( fProcessTimedOut && !fProcessAlive && MsProcessKilled != UINT64_MAX)
{
rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOK");
if (g_fDisplayOutput)
RTPrintf("txs: Process timed out and was killed\n");
}
else if (fProcessTimedOut && fProcessAlive && MsProcessKilled != UINT64_MAX)
{
rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOA");
if (g_fDisplayOutput)
RTPrintf("txs: Process timed out and was not killed successfully\n");
}
else if (g_fTerminate && (fProcessAlive || MsProcessKilled != UINT64_MAX))
rc = txsReplySimple(pTxsExec->pPktHdr, "PROC DWN");
else if (fProcessAlive)
{
rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process is alive when it should not");
AssertFailed();
}
else if (MsProcessKilled != UINT64_MAX)
{
rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process has been killed when it should not");
AssertFailed();
}
else if ( pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL
&& pTxsExec->ProcessStatus.iStatus == 0)
{
rc = txsReplySimple(pTxsExec->pPktHdr, "PROC OK ");
if (g_fDisplayOutput)
RTPrintf("txs: Process exited with status: 0\n");
}
else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL)
{
rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC NOK", "%d", pTxsExec->ProcessStatus.iStatus);
if (g_fDisplayOutput)
RTPrintf("txs: Process exited with status: %d\n", pTxsExec->ProcessStatus.iStatus);
}
else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_SIGNAL)
{
rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC SIG", "%d", pTxsExec->ProcessStatus.iStatus);
if (g_fDisplayOutput)
RTPrintf("txs: Process exited with status: signal %d\n", pTxsExec->ProcessStatus.iStatus);
}
else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_ABEND)
{
rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC ABD", "");
if (g_fDisplayOutput)
RTPrintf("txs: Process exited with status: abend\n");
}
else
{
rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "enmReason=%d iStatus=%d",
pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus);
AssertMsgFailed(("enmReason=%d iStatus=%d", pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus));
}
return rc;
}
/**
* Handle pending output data or error on standard out, standard error or the
* test pipe.
*
* @returns IPRT status code from client send.
* @param hPollSet The polling set.
* @param fPollEvt The event mask returned by RTPollNoResume.
* @param phPipeR The pipe handle.
* @param pu32Crc The current CRC-32 of the stream. (In/Out)
* @param enmHndId The handle ID.
* @param pszOpcode The opcode for the data upload.
*
* @todo Put the last 4 parameters into a struct!
*/
static int txsDoExecHlpHandleOutputEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phPipeR,
uint32_t *puCrc32, TXSEXECHNDID enmHndId, const char *pszOpcode)
{
Log(("txsDoExecHlpHandleOutputEvent: %s fPollEvt=%#x\n", pszOpcode, fPollEvt));
/*
* Try drain the pipe before acting on any errors.
*/
int rc = VINF_SUCCESS;
struct
{
TXSPKTHDR Hdr;
uint32_t uCrc32;
char abBuf[_64K];
char abPadding[TXSPKT_ALIGNMENT];
} Pkt;
size_t cbRead;
int rc2 = RTPipeRead(*phPipeR, Pkt.abBuf, sizeof(Pkt.abBuf), &cbRead);
if (RT_SUCCESS(rc2) && cbRead)
{
Log(("Crc32=%#x ", *puCrc32));
*puCrc32 = RTCrc32Process(*puCrc32, Pkt.abBuf, cbRead);
Log(("cbRead=%#x Crc32=%#x \n", cbRead, *puCrc32));
Pkt.uCrc32 = RTCrc32Finish(*puCrc32);
if (g_fDisplayOutput)
{
if (enmHndId == TXSEXECHNDID_STDOUT)
RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf);
else if (enmHndId == TXSEXECHNDID_STDERR)
RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf);
}
rc = txsReplyInternal(&Pkt.Hdr, pszOpcode, cbRead + sizeof(uint32_t));
/* Make sure we go another poll round in case there was too much data
for the buffer to hold. */
fPollEvt &= RTPOLL_EVT_ERROR;
}
else if (RT_FAILURE(rc2))
{
fPollEvt |= RTPOLL_EVT_ERROR;
AssertMsg(rc2 == VERR_BROKEN_PIPE, ("%Rrc\n", rc));
}
/*
* If an error was raised signalled,
*/
if (fPollEvt & RTPOLL_EVT_ERROR)
{
rc2 = RTPollSetRemove(hPollSet, enmHndId);
AssertRC(rc2);
rc2 = RTPipeClose(*phPipeR);
AssertRC(rc2);
*phPipeR = NIL_RTPIPE;
}
return rc;
}
/**
* Try write some more data to the standard input of the child.
*
* @returns IPRT status code.
* @param pStdInBuf The standard input buffer.
* @param hStdInW The standard input pipe.
*/
static int txsDoExecHlpWriteStdIn(PTXSEXECSTDINBUF pStdInBuf, RTPIPE hStdInW)
{
size_t cbToWrite = pStdInBuf->cb - pStdInBuf->off;
size_t cbWritten;
int rc = RTPipeWrite(hStdInW, &pStdInBuf->pch[pStdInBuf->off], cbToWrite, &cbWritten);
if (RT_SUCCESS(rc))
{
Assert(cbWritten == cbToWrite);
pStdInBuf->off += cbWritten;
}
return rc;
}
/**
* Handle an error event on standard input.
*
* @param hPollSet The polling set.
* @param fPollEvt The event mask returned by RTPollNoResume.
* @param phStdInW The standard input pipe handle.
* @param pStdInBuf The standard input buffer.
*/
static void txsDoExecHlpHandleStdInErrorEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW,
PTXSEXECSTDINBUF pStdInBuf)
{
NOREF(fPollEvt);
int rc2;
if (pStdInBuf->off < pStdInBuf->cb)
{
rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
AssertRC(rc2);
}
rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN);
AssertRC(rc2);
rc2 = RTPipeClose(*phStdInW);
AssertRC(rc2);
*phStdInW = NIL_RTPIPE;
RTMemFree(pStdInBuf->pch);
pStdInBuf->pch = NULL;
pStdInBuf->off = 0;
pStdInBuf->cb = 0;
pStdInBuf->cbAllocated = 0;
pStdInBuf->fBitBucket = true;
}
/**
* Handle an event indicating we can write to the standard input pipe of the
* child process.
*
* @param hPollSet The polling set.
* @param fPollEvt The event mask returned by RTPollNoResume.
* @param phStdInW The standard input pipe.
* @param pStdInBuf The standard input buffer.
*/
static void txsDoExecHlpHandleStdInWritableEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW,
PTXSEXECSTDINBUF pStdInBuf)
{
int rc;
if (!(fPollEvt & RTPOLL_EVT_ERROR))
{
rc = txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
if (RT_FAILURE(rc) && rc != VERR_BAD_PIPE)
{
/** @todo do we need to do something about this error condition? */
AssertRC(rc);
}
if (pStdInBuf->off < pStdInBuf->cb)
{
rc = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
AssertRC(rc);
}
}
else
txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf);
}
/**
* Handle a transport event or successful pfnPollIn() call.
*
* @returns IPRT status code from client send.
* @retval VINF_EOF indicates ABORT command.
*
* @param hPollSet The polling set.
* @param fPollEvt The event mask returned by RTPollNoResume.
* @param idPollHnd The handle ID.
* @param hStdInW The standard input pipe.
* @param pStdInBuf The standard input buffer.
*/
static int txsDoExecHlpHandleTransportEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, uint32_t idPollHnd,
PRTPIPE phStdInW, PTXSEXECSTDINBUF pStdInBuf)
{
/* ASSUMES the transport layer will detect or clear any error condition. */
NOREF(fPollEvt); NOREF(idPollHnd);
Log(("txsDoExecHlpHandleTransportEvent\n"));
/** @todo Use a callback for this case? */
/*
* Read client command packet and process it.
*/
/** @todo Sometimes this hangs on windows because there isn't any data pending.
* We probably get woken up at the wrong time or in the wrong way, i.e. RTPoll()
* is busted for sockets.
*
* Temporary workaround: Poll for input before trying to read it. */
if (!g_pTransport->pfnPollIn())
{
Log(("Bad transport event\n"));
RTThreadYield();
return VINF_SUCCESS;
}
PTXSPKTHDR pPktHdr;
int rc = txsRecvPkt(&pPktHdr, false /*fAutoRetryOnFailure*/);
if (RT_FAILURE(rc))
return rc;
Log(("Bad transport event\n"));
/*
* The most common thing here would be a STDIN request with data
* for the child process.
*/
if (txsIsSameOpcode(pPktHdr, "STDIN"))
{
if ( !pStdInBuf->fBitBucket
&& pPktHdr->cb >= sizeof(TXSPKTHDR) + sizeof(uint32_t))
{
uint32_t uCrc32 = *(uint32_t *)(pPktHdr + 1);
const char *pch = (const char *)(pPktHdr + 1) + sizeof(uint32_t);
size_t cb = pPktHdr->cb - sizeof(TXSPKTHDR) - sizeof(uint32_t);
/* Check the CRC */
pStdInBuf->uCrc32 = RTCrc32Process(pStdInBuf->uCrc32, pch, cb);
if (pStdInBuf->uCrc32 == uCrc32)
{
/* Rewind the buffer if it's empty. */
size_t cbInBuf = pStdInBuf->cb - pStdInBuf->off;
bool const fAddToSet = cbInBuf == 0;
if (fAddToSet)
pStdInBuf->cb = pStdInBuf->off = 0;
/* Try and see if we can simply append the data. */
if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated)
{
memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb);
pStdInBuf->cb += cb;
rc = txsReplyAck(pPktHdr);
}
else
{
/* Try write a bit or two before we move+realloc the buffer. */
if (cbInBuf > 0)
txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
/* Move any buffered data to the front. */
cbInBuf = pStdInBuf->cb - pStdInBuf->off;
if (cbInBuf == 0)
pStdInBuf->cb = pStdInBuf->off = 0;
else
{
memmove(pStdInBuf->pch, &pStdInBuf->pch[pStdInBuf->off], cbInBuf);
pStdInBuf->cb = cbInBuf;
pStdInBuf->off = 0;
}
/* Do we need to grow the buffer? */
if (cb + pStdInBuf->cb > pStdInBuf->cbAllocated)
{
size_t cbAlloc = pStdInBuf->cb + cb;
cbAlloc = RT_ALIGN_Z(cbAlloc, _64K);
void *pvNew = RTMemRealloc(pStdInBuf->pch, cbAlloc);
if (pvNew)
{
pStdInBuf->pch = (char *)pvNew;
pStdInBuf->cbAllocated = cbAlloc;
}
}
/* Finally, copy the data. */
if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated)
{
memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb);
pStdInBuf->cb += cb;
rc = txsReplyAck(pPktHdr);
}
else
rc = txsReplySimple(pPktHdr, "STDINMEM");
}
/*
* Flush the buffered data and add/remove the standard input
* handle from the set.
*/
txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
if (fAddToSet && pStdInBuf->off < pStdInBuf->cb)
{
int rc2 = RTPollSetAddPipe(hPollSet, *phStdInW, RTPOLL_EVT_WRITE, TXSEXECHNDID_STDIN_WRITABLE);
AssertRC(rc2);
}
else if (!fAddToSet && pStdInBuf->off >= pStdInBuf->cb)
{
int rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
AssertRC(rc2);
}
}
else
rc = txsReplySimple(pPktHdr, "STDINCRC");
}
else if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(uint32_t))
rc = txsReplySimple(pPktHdr, "STDINBAD");
else
rc = txsReplySimple(pPktHdr, "STDINIGN");
}
/*
* The only other two requests are connection oriented and we return a error
* code so that we unwind the whole EXEC shebang and start afresh.
*/
else if (txsIsSameOpcode(pPktHdr, "BYE"))
{
rc = txsDoBye(pPktHdr);
if (RT_SUCCESS(rc))
rc = VERR_NET_NOT_CONNECTED;
}
else if (txsIsSameOpcode(pPktHdr, "HOWDY"))
{
rc = txsDoHowdy(pPktHdr);
if (RT_SUCCESS(rc))
rc = VERR_NET_NOT_CONNECTED;
}
else if (txsIsSameOpcode(pPktHdr, "ABORT"))
{
rc = txsReplyAck(pPktHdr);
if (RT_SUCCESS(rc))
rc = VINF_EOF; /* this is but ugly! */
}
else
rc = txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during EXEC", pPktHdr->achOpcode);
RTMemFree(pPktHdr);
return rc;
}
/**
* Handles the output and input of the process, waits for it finish up.
*
* @returns IPRT status code from reply send.
* @param pTxsExec The TXSEXEC instance.
*/
static int txsDoExecHlp2(PTXSEXEC pTxsExec)
{
int rc; /* client send. */
int rc2;
TXSEXECSTDINBUF StdInBuf = { 0, 0, NULL, 0, pTxsExec->hStdInW == NIL_RTPIPE, RTCrc32Start() };
uint32_t uStdOutCrc32 = RTCrc32Start();
uint32_t uStdErrCrc32 = uStdOutCrc32;
uint32_t uTestPipeCrc32 = uStdOutCrc32;
uint64_t const MsStart = RTTimeMilliTS();
bool fProcessTimedOut = false;
uint64_t MsProcessKilled = UINT64_MAX;
RTMSINTERVAL const cMsPollBase = g_pTransport->pfnPollSetAdd || pTxsExec->hStdInW == NIL_RTPIPE
? 5000 : 100;
RTMSINTERVAL cMsPollCur = 0;
/*
* Before entering the loop, tell the client that we've started the guest
* and that it's now OK to send input to the process. (This is not the
* final ACK, so the packet header is NULL ... kind of bogus.)
*/
rc = txsReplyAck(NULL);
/*
* Process input, output, the test pipe and client requests.
*/
while ( RT_SUCCESS(rc)
&& RT_UNLIKELY(!g_fTerminate))
{
/*
* Wait/Process all pending events.
*/
uint32_t idPollHnd;
uint32_t fPollEvt;
Log3(("Calling RTPollNoResume(,%u,)...\n"));
rc2 = RTPollNoResume(pTxsExec->hPollSet, cMsPollCur, &fPollEvt, &idPollHnd);
Log3(("RTPollNoResume -> fPollEvt=%#x idPollHnd=%u\n", fPollEvt, idPollHnd));
if (g_fTerminate)
continue;
cMsPollCur = 0; /* no rest until we've checked everything. */
if (RT_SUCCESS(rc2))
{
switch (idPollHnd)
{
case TXSEXECHNDID_STDOUT:
rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdOutR, &uStdOutCrc32,
TXSEXECHNDID_STDOUT, "STDOUT ");
break;
case TXSEXECHNDID_STDERR:
rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdErrR, &uStdErrCrc32,
TXSEXECHNDID_STDERR, "STDERR ");
break;
case TXSEXECHNDID_TESTPIPE:
rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hTestPipeR, &uTestPipeCrc32,
TXSEXECHNDID_TESTPIPE, "TESTPIPE");
break;
case TXSEXECHNDID_STDIN:
txsDoExecHlpHandleStdInErrorEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf);
break;
case TXSEXECHNDID_STDIN_WRITABLE:
txsDoExecHlpHandleStdInWritableEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf);
break;
case TXSEXECHNDID_THREAD:
rc2 = RTPollSetRemove(pTxsExec->hPollSet, TXSEXECHNDID_THREAD); AssertRC(rc2);
break;
default:
rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, fPollEvt, idPollHnd, &pTxsExec->hStdInW,
&StdInBuf);
break;
}
if (RT_FAILURE(rc) || rc == VINF_EOF)
break; /* abort command, or client dead or something */
continue;
}
/*
* Check for incoming data.
*/
if (g_pTransport->pfnPollIn())
{
rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, 0, UINT32_MAX, &pTxsExec->hStdInW, &StdInBuf);
if (RT_FAILURE(rc) || rc == VINF_EOF)
break; /* abort command, or client dead or something */
continue;
}
/*
* If the process has terminated, we're should head out.
*/
if (!ASMAtomicReadBool(&pTxsExec->fProcessAlive))
break;
/*
* Check for timed out, killing the process.
*/
uint32_t cMilliesLeft = RT_INDEFINITE_WAIT;
if (pTxsExec->cMsTimeout != RT_INDEFINITE_WAIT)
{
uint64_t u64Now = RTTimeMilliTS();
uint64_t cMsElapsed = u64Now - MsStart;
if (cMsElapsed >= pTxsExec->cMsTimeout)
{
fProcessTimedOut = true;
if ( MsProcessKilled == UINT64_MAX
|| u64Now - MsProcessKilled > 1000)
{
if (u64Now - MsProcessKilled > 20*60*1000)
break; /* give up after 20 mins */
RTCritSectEnter(&pTxsExec->CritSect);
if (pTxsExec->fProcessAlive)
RTProcTerminate(pTxsExec->hProcess);
RTCritSectLeave(&pTxsExec->CritSect);
MsProcessKilled = u64Now;
continue;
}
cMilliesLeft = 10000;
}
else
cMilliesLeft = pTxsExec->cMsTimeout - (uint32_t)cMsElapsed;
}
/* Reset the polling interval since we've done all pending work. */
cMsPollCur = cMilliesLeft >= cMsPollBase ? cMsPollBase : cMilliesLeft;
}
/*
* At this point we should hopefully only have to wait 0 ms on the thread
* to release the handle... But if for instance the process refuses to die,
* we'll have to try kill it again. Bothersome.
*/
for (size_t i = 0; i < 22; i++)
{
rc2 = RTThreadWait(pTxsExec->hThreadWaiter, 500, NULL);
if (RT_SUCCESS(rc))
{
pTxsExec->hThreadWaiter = NIL_RTTHREAD;
Assert(!pTxsExec->fProcessAlive);
break;
}
if (i == 0 || i == 10 || i == 15 || i == 18 || i > 20)
{
RTCritSectEnter(&pTxsExec->CritSect);
if (pTxsExec->fProcessAlive)
RTProcTerminate(pTxsExec->hProcess);
RTCritSectLeave(&pTxsExec->CritSect);
}
}
/*
* If we don't have a client problem (RT_FAILURE(rc) we'll reply to the
* clients exec packet now.
*/
if (RT_SUCCESS(rc))
rc = txsExecSendExitStatus(pTxsExec, pTxsExec->fProcessAlive, fProcessTimedOut, MsProcessKilled);
RTMemFree(StdInBuf.pch);
return rc;
}
/**
* Creates a poll set for the pipes and let the transport layer add stuff to it
* as well.
*
* @returns IPRT status code, reply to client made on error.
* @param pTxsExec The TXSEXEC instance.
*/
static int txsExecSetupPollSet(PTXSEXEC pTxsExec)
{
int rc = RTPollSetCreate(&pTxsExec->hPollSet);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPollSetCreate");
rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdInW, RTPOLL_EVT_ERROR, TXSEXECHNDID_STDIN);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdin");
rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdOutR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
TXSEXECHNDID_STDOUT);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdout");
rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdErrR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
TXSEXECHNDID_STDERR);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stderr");
rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hTestPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
TXSEXECHNDID_TESTPIPE);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/test");
rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hWakeUpPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
TXSEXECHNDID_THREAD);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/wakeup");
if (g_pTransport->pfnPollSetAdd)
{
rc = g_pTransport->pfnPollSetAdd(pTxsExec->hPollSet, TXSEXECHNDID_TRANSPORT);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "%s->pfnPollSetAdd/stdin", g_pTransport->szName);
}
return VINF_SUCCESS;
}
/**
* Thread that calls RTProcWait and signals the main thread when it returns.
*
* The thread is created before the process is started and is waiting for a user
* signal from the main thread before it calls RTProcWait.
*
* @returns VINF_SUCCESS (ignored).
* @param hThreadSelf The thread handle.
* @param pvUser The TXEEXEC structure.
*/
static DECLCALLBACK(int) txsExecWaitThreadProc(RTTHREAD hThreadSelf, void *pvUser)
{
PTXSEXEC pTxsExec = (PTXSEXEC)pvUser;
/* Wait for the go ahead... */
int rc = RTThreadUserWait(hThreadSelf, RT_INDEFINITE_WAIT); AssertRC(rc);
RTCritSectEnter(&pTxsExec->CritSect);
for (;;)
{
RTCritSectLeave(&pTxsExec->CritSect);
rc = RTProcWaitNoResume(pTxsExec->hProcess, RTPROCWAIT_FLAGS_BLOCK, &pTxsExec->ProcessStatus);
RTCritSectEnter(&pTxsExec->CritSect);
/* If the pipe is NIL, the destructor wants us to get lost ASAP. */
if (pTxsExec->hWakeUpPipeW == NIL_RTPIPE)
break;
if (RT_FAILURE(rc))
{
rc = RTProcWait(pTxsExec->hProcess, RTPROCWAIT_FLAGS_NOBLOCK, &pTxsExec->ProcessStatus);
if (rc == VERR_PROCESS_RUNNING)
continue;
if (RT_FAILURE(rc))
{
AssertRC(rc);
pTxsExec->ProcessStatus.iStatus = rc;
pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND;
}
}
/* The process finished, signal the main thread over the pipe. */
ASMAtomicWriteBool(&pTxsExec->fProcessAlive, false);
size_t cbIgnored;
RTPipeWrite(pTxsExec->hWakeUpPipeW, "done", 4, &cbIgnored);
RTPipeClose(pTxsExec->hWakeUpPipeW);
pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
break;
}
RTCritSectLeave(&pTxsExec->CritSect);
return VINF_SUCCESS;
}
/**
* Sets up the thread that waits for the process to complete.
*
* @returns IPRT status code, reply to client made on error.
* @param pTxsExec The TXSEXEC instance.
*/
static int txsExecSetupThread(PTXSEXEC pTxsExec)
{
int rc = RTPipeCreate(&pTxsExec->hWakeUpPipeR, &pTxsExec->hWakeUpPipeW, 0 /*fFlags*/);
if (RT_FAILURE(rc))
{
pTxsExec->hWakeUpPipeR = pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/wait");
}
rc = RTThreadCreate(&pTxsExec->hThreadWaiter, txsExecWaitThreadProc,
pTxsExec, 0 /*cbStack */, RTTHREADTYPE_DEFAULT,
RTTHREADFLAGS_WAITABLE, "TxsProcW");
if (RT_FAILURE(rc))
{
pTxsExec->hThreadWaiter = NIL_RTTHREAD;
return txsExecReplyRC(pTxsExec, rc, "RTThreadCreate");
}
return VINF_SUCCESS;
}
/**
* Sets up the test pipe.
*
* @returns IPRT status code, reply to client made on error.
* @param pTxsExec The TXSEXEC instance.
* @param pszTestPipe How to set up the test pipe.
*/
static int txsExecSetupTestPipe(PTXSEXEC pTxsExec, const char *pszTestPipe)
{
if (strcmp(pszTestPipe, "|"))
return VINF_SUCCESS;
int rc = RTPipeCreate(&pTxsExec->hTestPipeR, &pTxsExec->hTestPipeW, RTPIPE_C_INHERIT_WRITE);
if (RT_FAILURE(rc))
{
pTxsExec->hTestPipeR = pTxsExec->hTestPipeW = NIL_RTPIPE;
return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/test/%s", pszTestPipe);
}
char szVal[64];
RTStrPrintf(szVal, sizeof(szVal), "%#llx", (uint64_t)RTPipeToNative(pTxsExec->hTestPipeW));
rc = RTEnvSetEx(pTxsExec->hEnv, "IPRT_TEST_PIPE", szVal);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTEnvSetEx/test/%s", pszTestPipe);
return VINF_SUCCESS;
}
/**
* Sets up the redirection / pipe / nothing for one of the standard handles.
*
* @returns IPRT status code, reply to client made on error.
* @param pTxsExec The TXSEXEC instance.
* @param pszHowTo How to set up this standard handle.
* @param fd Which standard handle it is (0 == stdin, 1 ==
* stdout, 2 == stderr).
* @param ph The generic handle that @a pph may be set
* pointing to. Always set.
* @param pph Pointer to the RTProcCreateExec argument.
* Always set.
* @param phPipe Where to return the end of the pipe that we
* should service. Always set.
*/
static int txsExecSetupRedir(PTXSEXEC pTxsExec, const char *pszHowTo, const char *pszStdWhat, int fd, PRTHANDLE ph, PRTHANDLE *pph, PRTPIPE phPipe)
{
ph->enmType = RTHANDLETYPE_PIPE;
ph->u.hPipe = NIL_RTPIPE;
*pph = NULL;
*phPipe = NIL_RTPIPE;
int rc;
if (!strcmp(pszHowTo, "|"))
{
/*
* Setup a pipe for forwarding to/from the client.
*/
if (fd == 0)
rc = RTPipeCreate(&ph->u.hPipe, phPipe, RTPIPE_C_INHERIT_READ);
else
rc = RTPipeCreate(phPipe, &ph->u.hPipe, RTPIPE_C_INHERIT_WRITE);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/%s/%s", pszStdWhat, pszHowTo);
ph->enmType = RTHANDLETYPE_PIPE;
*pph = ph;
}
else if (!strcmp(pszHowTo, "/dev/null"))
{
/*
* Redirect to/from /dev/null.
*/
RTFILE hFile;
rc = RTFileOpenBitBucket(&hFile, fd == 0 ? RTFILE_O_READ : RTFILE_O_WRITE);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTFileOpenBitBucket/%s/%s", pszStdWhat, pszHowTo);
ph->enmType = RTHANDLETYPE_FILE;
ph->u.hFile = hFile;
*pph = ph;
}
else if (*pszHowTo)
{
/*
* Redirect to/from file.
*/
uint32_t fFlags;
if (fd == 0)
fFlags = RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN;
else
{
if (pszHowTo[0] != '>' || pszHowTo[1] != '>')
fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE;
else
{
/* append */
pszHowTo += 2;
fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_NONE | RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND;
}
}
RTFILE hFile;
rc = RTFileOpen(&hFile, pszHowTo, fFlags);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTFileOpen/%s/%s", pszStdWhat, pszHowTo);
ph->enmType = RTHANDLETYPE_FILE;
ph->u.hFile = hFile;
*pph = ph;
}
else
/* same as parent (us) */
rc = VINF_SUCCESS;
return rc;
}
/**
* Create the environment.
*
* @returns IPRT status code, reply to client made on error.
* @param pTxsExec The TXSEXEC instance.
* @param cEnvVars The number of environment variables.
* @param papszEnv The environment variables (var=value).
*/
static int txsExecSetupEnv(PTXSEXEC pTxsExec, uint32_t cEnvVars, const char * const *papszEnv)
{
/*
* Create the environment.
*/
int rc = RTEnvClone(&pTxsExec->hEnv, RTENV_DEFAULT);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTEnvClone");
for (size_t i = 0; i < cEnvVars; i++)
{
rc = RTEnvPutEx(pTxsExec->hEnv, papszEnv[i]);
if (RT_FAILURE(rc))
return txsExecReplyRC(pTxsExec, rc, "RTEnvPutEx(,'%s')", papszEnv[i]);
}
return VINF_SUCCESS;
}
/**
* Deletes the TXSEXEC structure and frees the memory backing it.
*
* @param pTxsExec The structure to destroy.
*/
static void txsExecDestroy(PTXSEXEC pTxsExec)
{
int rc2;
rc2 = RTEnvDestroy(pTxsExec->hEnv); AssertRC(rc2);
pTxsExec->hEnv = NIL_RTENV;
rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2);
pTxsExec->hTestPipeW = NIL_RTPIPE;
rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2);
pTxsExec->StdErr.phChild = NULL;
rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2);
pTxsExec->StdOut.phChild = NULL;
rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2);
pTxsExec->StdIn.phChild = NULL;
rc2 = RTPipeClose(pTxsExec->hTestPipeR); AssertRC(rc2);
pTxsExec->hTestPipeR = NIL_RTPIPE;
rc2 = RTPipeClose(pTxsExec->hStdErrR); AssertRC(rc2);
pTxsExec->hStdErrR = NIL_RTPIPE;
rc2 = RTPipeClose(pTxsExec->hStdOutR); AssertRC(rc2);
pTxsExec->hStdOutR = NIL_RTPIPE;
rc2 = RTPipeClose(pTxsExec->hStdInW); AssertRC(rc2);
pTxsExec->hStdInW = NIL_RTPIPE;
RTPollSetDestroy(pTxsExec->hPollSet);
pTxsExec->hPollSet = NIL_RTPOLLSET;
/*
* If the process is still running we're in a bit of a fix... Try kill it,
* although that's potentially racing process termination and reusage of
* the pid.
*/
RTCritSectEnter(&pTxsExec->CritSect);
RTPipeClose(pTxsExec->hWakeUpPipeW);
pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
RTPipeClose(pTxsExec->hWakeUpPipeR);
pTxsExec->hWakeUpPipeR = NIL_RTPIPE;
if ( pTxsExec->hProcess != NIL_RTPROCESS
&& pTxsExec->fProcessAlive)
RTProcTerminate(pTxsExec->hProcess);
RTCritSectLeave(&pTxsExec->CritSect);
int rcThread = VINF_SUCCESS;
if (pTxsExec->hThreadWaiter != NIL_RTTHREAD)
rcThread = RTThreadWait(pTxsExec->hThreadWaiter, 5000, NULL);
if (RT_SUCCESS(rcThread))
{
pTxsExec->hThreadWaiter = NIL_RTTHREAD;
RTCritSectDelete(&pTxsExec->CritSect);
RTMemFree(pTxsExec);
}
/* else: leak it or RTThreadWait may cause heap corruption later. */
}
/**
* Initializes the TXSEXEC structure.
*
* @returns VINF_SUCCESS and non-NULL *ppTxsExec on success, reply send status
* and *ppTxsExec set to NULL on failure.
* @param pPktHdr The exec packet.
* @param cMsTimeout The time parameter.
* @param ppTxsExec Where to return the structure.
*/
static int txsExecCreate(PCTXSPKTHDR pPktHdr, RTMSINTERVAL cMsTimeout, PTXSEXEC *ppTxsExec)
{
*ppTxsExec = NULL;
/*
* Allocate the basic resources.
*/
PTXSEXEC pTxsExec = (PTXSEXEC)RTMemAlloc(sizeof(*pTxsExec));
if (!pTxsExec)
return txsReplyRC(pPktHdr, VERR_NO_MEMORY, "RTMemAlloc(%zu)", sizeof(*pTxsExec));
int rc = RTCritSectInit(&pTxsExec->CritSect);
if (RT_FAILURE(rc))
{
RTMemFree(pTxsExec);
return txsReplyRC(pPktHdr, rc, "RTCritSectInit");
}
/*
* Initialize the member to NIL values.
*/
pTxsExec->pPktHdr = pPktHdr;
pTxsExec->cMsTimeout = cMsTimeout;
pTxsExec->rcReplySend = VINF_SUCCESS;
pTxsExec->hPollSet = NIL_RTPOLLSET;
pTxsExec->hStdInW = NIL_RTPIPE;
pTxsExec->hStdOutR = NIL_RTPIPE;
pTxsExec->hStdErrR = NIL_RTPIPE;
pTxsExec->hTestPipeR = NIL_RTPIPE;
pTxsExec->hWakeUpPipeR = NIL_RTPIPE;
pTxsExec->hThreadWaiter = NIL_RTTHREAD;
pTxsExec->StdIn.phChild = NULL;
pTxsExec->StdOut.phChild = NULL;
pTxsExec->StdErr.phChild = NULL;
pTxsExec->hTestPipeW = NIL_RTPIPE;
pTxsExec->hEnv = NIL_RTENV;
pTxsExec->hProcess = NIL_RTPROCESS;
pTxsExec->ProcessStatus.iStatus = 254;
pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND;
pTxsExec->fProcessAlive = false;
pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
*ppTxsExec = pTxsExec;
return VINF_SUCCESS;
}
/**
* txsDoExec helper that takes over when txsDoExec has expanded the packet.
*
* @returns IPRT status code from send.
* @param pPktHdr The exec packet.
* @param fFlags Flags, reserved for future use.
* @param pszExecName The executable name.
* @param cArgs The argument count.
* @param papszArgs The arguments.
* @param cEnvVars The environment variable count.
* @param papszEnv The environment variables.
* @param pszStdIn How to deal with standard in.
* @param pszStdOut How to deal with standard out.
* @param pszStdErr How to deal with standard err.
* @param pszTestPipe How to deal with the test pipe.
* @param pszUsername The user to run the program as.
* @param cMillies The process time limit in milliseconds.
*/
static int txsDoExecHlp(PCTXSPKTHDR pPktHdr, uint32_t fFlags, const char *pszExecName,
uint32_t cArgs, const char * const *papszArgs,
uint32_t cEnvVars, const char * const *papszEnv,
const char *pszStdIn, const char *pszStdOut, const char *pszStdErr, const char *pszTestPipe,
const char *pszUsername, RTMSINTERVAL cMillies)
{
int rc2;
/*
* Input validation, filter out things we don't yet support..
*/
Assert(!fFlags);
if (!*pszExecName)
return txsReplyFailure(pPktHdr, "STR ZERO", "Executable name is empty");
if (!*pszStdIn)
return txsReplyFailure(pPktHdr, "STR ZERO", "The stdin howto is empty");
if (!*pszStdOut)
return txsReplyFailure(pPktHdr, "STR ZERO", "The stdout howto is empty");
if (!*pszStdErr)
return txsReplyFailure(pPktHdr, "STR ZERO", "The stderr howto is empty");
if (!*pszTestPipe)
return txsReplyFailure(pPktHdr, "STR ZERO", "The testpipe howto is empty");
if (strcmp(pszTestPipe, "|") && strcmp(pszTestPipe, "/dev/null"))
return txsReplyFailure(pPktHdr, "BAD TSTP", "Only \"|\" and \"/dev/null\" are allowed as testpipe howtos ('%s')",
pszTestPipe);
if (*pszUsername)
return txsReplyFailure(pPktHdr, "NOT IMPL", "Executing as a specific user is not implemented ('%s')", pszUsername);
/*
* Prepare for process launch.
*/
PTXSEXEC pTxsExec;
int rc = txsExecCreate(pPktHdr, cMillies, &pTxsExec);
if (pTxsExec == NULL)
return rc;
rc = txsExecSetupEnv(pTxsExec, cEnvVars, papszEnv);
if (RT_SUCCESS(rc))
rc = txsExecSetupRedir(pTxsExec, pszStdIn, "StdIn", 0, &pTxsExec->StdIn.hChild, &pTxsExec->StdIn.phChild, &pTxsExec->hStdInW);
if (RT_SUCCESS(rc))
rc = txsExecSetupRedir(pTxsExec, pszStdOut, "StdOut", 1, &pTxsExec->StdOut.hChild, &pTxsExec->StdOut.phChild, &pTxsExec->hStdOutR);
if (RT_SUCCESS(rc))
rc = txsExecSetupRedir(pTxsExec, pszStdErr, "StdErr", 2, &pTxsExec->StdErr.hChild, &pTxsExec->StdErr.phChild, &pTxsExec->hStdErrR);
if (RT_SUCCESS(rc))
rc = txsExecSetupTestPipe(pTxsExec, pszTestPipe);
if (RT_SUCCESS(rc))
rc = txsExecSetupThread(pTxsExec);
if (RT_SUCCESS(rc))
rc = txsExecSetupPollSet(pTxsExec);
if (RT_SUCCESS(rc))
{
/*
* Create the process.
*/
if (g_fDisplayOutput)
{
RTPrintf("txs: Executing \"%s\": ", pszExecName);
for (uint32_t i = 0; i < cArgs; i++)
RTPrintf(" \"%s\"", papszArgs[i]);
RTPrintf("\n");
}
rc = RTProcCreateEx(pszExecName, papszArgs, pTxsExec->hEnv, 0 /*fFlags*/,
pTxsExec->StdIn.phChild, pTxsExec->StdOut.phChild, pTxsExec->StdErr.phChild,
*pszUsername ? pszUsername : NULL, NULL,
&pTxsExec->hProcess);
if (RT_SUCCESS(rc))
{
ASMAtomicWriteBool(&pTxsExec->fProcessAlive, true);
rc2 = RTThreadUserSignal(pTxsExec->hThreadWaiter); AssertRC(rc2);
/*
* Close the child ends of any pipes and redirected files.
*/
rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2);
pTxsExec->StdIn.phChild = NULL;
rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2);
pTxsExec->StdOut.phChild = NULL;
rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2);
pTxsExec->StdErr.phChild = NULL;
rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2);
pTxsExec->hTestPipeW = NIL_RTPIPE;
/*
* Let another worker function funnel output and input to the
* client as well as the process exit code.
*/
rc = txsDoExecHlp2(pTxsExec);
}
else
rc = txsReplyFailure(pPktHdr, "FAILED ", "Executing process \"%s\" failed with %Rrc",
pszExecName, rc);
}
else
rc = pTxsExec->rcReplySend;
txsExecDestroy(pTxsExec);
return rc;
}
/**
* Execute a program.
*
* @returns IPRT status code from send.
* @param pPktHdr The exec packet.
*/
static int txsDoExec(PCTXSPKTHDR pPktHdr)
{
/*
* This packet has a lot of parameters, most of which are zero terminated
* strings. The strings used in items 7 thru 10 are either file names,
* "/dev/null" or a pipe char (|).
*
* Packet content:
* 1. Flags reserved for future use (32-bit unsigned).
* 2. The executable name (string).
* 3. The argument count given as a 32-bit unsigned integer.
* 4. The arguments strings.
* 5. The number of environment strings (32-bit unsigned).
* 6. The environment strings (var=val) to apply the environment.
* 7. What to do about standard in (string).
* 8. What to do about standard out (string).
* 9. What to do about standard err (string).
* 10. What to do about the test pipe (string).
* 11. The name of the user to run the program as (string). Empty string
* means running it as the current user.
* 12. Process time limit in milliseconds (32-bit unsigned). Max == no limit.
*/
size_t const cbMin = sizeof(TXSPKTHDR)
+ sizeof(uint32_t) /* flags */ + 2
+ sizeof(uint32_t) /* argc */ + 2 /* argv */
+ sizeof(uint32_t) + 0 /* environ */
+ 4 * 1
+ sizeof(uint32_t) /* timeout */;
if (pPktHdr->cb < cbMin)
return txsReplyBadMinSize(pPktHdr, cbMin);
/* unpack the packet */
char const *pchEnd = (char const *)pPktHdr + pPktHdr->cb;
char const *pch = (char const *)(pPktHdr + 1); /* cursor */
/* 1. flags */
uint32_t const fFlags = *(uint32_t const *)pch;
pch += sizeof(uint32_t);
if (fFlags != 0)
return txsReplyFailure(pPktHdr, "BAD FLAG", "Invalid EXEC flags %#x, expected 0", fFlags);
/* 2. exec name */
int rc;
char *pszExecName = NULL;
if (!txsIsStringValid(pPktHdr, "execname", pch, &pszExecName, &pch, &rc))
return rc;
/* 3. argc */
uint32_t const cArgs = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xff;
pch += sizeof(uint32_t);
if (cArgs * 1 >= (size_t)(pchEnd - pch))
rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Bad or missing argument count (%#x)", cArgs);
else if (cArgs > 128)
rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Too many arguments (%#x)", cArgs);
else
{
char **papszArgs = (char **)RTMemTmpAllocZ(sizeof(char *) * (cArgs + 1));
if (papszArgs)
{
/* 4. argv */
bool fOk = true;
for (size_t i = 0; i < cArgs && fOk; i++)
{
fOk = txsIsStringValid(pPktHdr, "argvN", pch, &papszArgs[i], &pch, &rc);
if (!fOk)
break;
}
if (fOk)
{
/* 5. cEnvVars */
uint32_t const cEnvVars = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xfff;
pch += sizeof(uint32_t);
if (cEnvVars * 1 >= (size_t)(pchEnd - pch))
rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Bad or missing environment variable count (%#x)", cEnvVars);
else if (cEnvVars > 256)
rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Too many environment variables (%#x)", cEnvVars);
else
{
char **papszEnv = (char **)RTMemTmpAllocZ(sizeof(char *) * (cEnvVars + 1));
if (papszEnv)
{
/* 6. environ */
for (size_t i = 0; i < cEnvVars && fOk; i++)
{
fOk = txsIsStringValid(pPktHdr, "envN", pch, &papszEnv[i], &pch, &rc);
if (!fOk) /* Bail out on error. */
break;
}
if (fOk)
{
/* 7. stdout */
char *pszStdIn;
if (txsIsStringValid(pPktHdr, "stdin", pch, &pszStdIn, &pch, &rc))
{
/* 8. stdout */
char *pszStdOut;
if (txsIsStringValid(pPktHdr, "stdout", pch, &pszStdOut, &pch, &rc))
{
/* 9. stderr */
char *pszStdErr;
if (txsIsStringValid(pPktHdr, "stderr", pch, &pszStdErr, &pch, &rc))
{
/* 10. testpipe */
char *pszTestPipe;
if (txsIsStringValid(pPktHdr, "testpipe", pch, &pszTestPipe, &pch, &rc))
{
/* 11. username */
char *pszUsername;
if (txsIsStringValid(pPktHdr, "username", pch, &pszUsername, &pch, &rc))
{
/** @todo No password value? */
/* 12. time limit */
uint32_t const cMillies = (size_t)(pchEnd - pch) >= sizeof(uint32_t)
? *(uint32_t const *)pch
: 0;
if ((size_t)(pchEnd - pch) > sizeof(uint32_t))
rc = txsReplyFailure(pPktHdr, "BAD END ", "Timeout argument not at end of packet (%#x)", (size_t)(pchEnd - pch));
else if ((size_t)(pchEnd - pch) < sizeof(uint32_t))
rc = txsReplyFailure(pPktHdr, "BAD NOTO", "No timeout argument");
else if (cMillies < 1000)
rc = txsReplyFailure(pPktHdr, "BAD TO ", "Timeout is less than a second (%#x)", cMillies);
else
{
pch += sizeof(uint32_t);
/*
* Time to employ a helper here before we go way beyond
* the right margin...
*/
rc = txsDoExecHlp(pPktHdr, fFlags, pszExecName,
cArgs, papszArgs,
cEnvVars, papszEnv,
pszStdIn, pszStdOut, pszStdErr, pszTestPipe,
pszUsername,
cMillies == UINT32_MAX ? RT_INDEFINITE_WAIT : cMillies);
}
RTStrFree(pszUsername);
}
RTStrFree(pszTestPipe);
}
RTStrFree(pszStdErr);
}
RTStrFree(pszStdOut);
}
RTStrFree(pszStdIn);
}
}
for (size_t i = 0; i < cEnvVars; i++)
RTStrFree(papszEnv[i]);
RTMemTmpFree(papszEnv);
}
else
rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes environ", sizeof(char *) * (cEnvVars + 1));
}
}
for (size_t i = 0; i < cArgs; i++)
RTStrFree(papszArgs[i]);
RTMemTmpFree(papszArgs);
}
else
rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes for argv", sizeof(char *) * (cArgs + 1));
}
RTStrFree(pszExecName);
return rc;
}
/**
* The main loop.
*
* @returns exit code.
*/
static RTEXITCODE txsMainLoop(void)
{
RTEXITCODE enmExitCode = RTEXITCODE_SUCCESS;
while (!g_fTerminate)
{
/*
* Read client command packet and process it.
*/
PTXSPKTHDR pPktHdr;
int rc = txsRecvPkt(&pPktHdr, true /*fAutoRetryOnFailure*/);
if (RT_FAILURE(rc))
continue;
/*
* Do a string switch on the opcode bit.
*/
/* Connection: */
if ( txsIsSameOpcode(pPktHdr, "HOWDY "))
rc = txsDoHowdy(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "BYE "))
rc = txsDoBye(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "UUID "))
rc = txsDoUuid(pPktHdr);
/* Process: */
else if (txsIsSameOpcode(pPktHdr, "EXEC "))
rc = txsDoExec(pPktHdr);
/* Admin: */
else if (txsIsSameOpcode(pPktHdr, "REBOOT "))
rc = txsDoReboot(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "SHUTDOWN"))
rc = txsDoShutdown(pPktHdr);
/* CD/DVD control: */
else if (txsIsSameOpcode(pPktHdr, "CD EJECT"))
rc = txsDoCdEject(pPktHdr);
/* File system: */
else if (txsIsSameOpcode(pPktHdr, "CLEANUP "))
rc = txsDoCleanup(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "MKDIR "))
rc = txsDoMkDir(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "MKDRPATH"))
rc = txsDoMkDrPath(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "MKSYMLNK"))
rc = txsDoMkSymlnk(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "RMDIR "))
rc = txsDoRmDir(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "RMFILE "))
rc = txsDoRmFile(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "RMSYMLNK"))
rc = txsDoRmSymlnk(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "RMTREE "))
rc = txsDoRmTree(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "CHMOD "))
rc = txsDoChMod(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "CHOWN "))
rc = txsDoChOwn(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "CHGRP "))
rc = txsDoChGrp(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "ISDIR "))
rc = txsDoIsDir(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "ISFILE "))
rc = txsDoIsFile(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "ISSYMLNK"))
rc = txsDoIsSymlnk(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "STAT "))
rc = txsDoStat(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "LSTAT "))
rc = txsDoLStat(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "LIST "))
rc = txsDoList(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "PUT FILE"))
rc = txsDoPutFile(pPktHdr);
else if (txsIsSameOpcode(pPktHdr, "GET FILE"))
rc = txsDoGetFile(pPktHdr);
#ifndef RT_OS_WINDOWS
else if (txsIsSameOpcode(pPktHdr, "UNPKFILE"))
rc = txsDoUnpackFile(pPktHdr);
#endif
/* Misc: */
else
rc = txsReplyUnknown(pPktHdr);
RTMemFree(pPktHdr);
}
return enmExitCode;
}
/**
* Finalizes the scratch directory, making sure it exists.
*
* @returns exit code.
*/
static RTEXITCODE txsFinalizeScratch(void)
{
RTPathStripTrailingSlash(g_szScratchPath);
char *pszFilename = RTPathFilename(g_szScratchPath);
if (!pszFilename)
return RTMsgErrorExit(RTEXITCODE_FAILURE, "cannot use root for scratch (%s)\n", g_szScratchPath);
int rc;
if (strchr(pszFilename, 'X'))
{
char ch = *pszFilename;
rc = RTDirCreateFullPath(g_szScratchPath, 0700);
*pszFilename = ch;
if (RT_SUCCESS(rc))
rc = RTDirCreateTemp(g_szScratchPath, 0700);
}
else
{
if (RTDirExists(g_szScratchPath))
rc = VINF_SUCCESS;
else
rc = RTDirCreateFullPath(g_szScratchPath, 0700);
}
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "failed to create scratch directory: %Rrc (%s)\n", rc, g_szScratchPath);
return RTEXITCODE_SUCCESS;
}
/**
* Attempts to complete an upgrade by updating the original and relaunching
* ourselves from there again.
*
* On failure, we'll continue running as the temporary copy.
*
* @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
* @param argc The number of arguments.
* @param argv The argument vector.
* @param pfExit For indicating exit when the exit code is zero.
*/
static RTEXITCODE txsAutoUpdateStage2(int argc, char **argv, bool *pfExit, const char *pszUpgrading)
{
/*
* Copy the current executable onto the original.
* Note that we're racing the original program on some platforms, thus the
* 60 sec sleep mess.
*/
char szUpgradePath[RTPATH_MAX];
if (!RTProcGetExecutablePath(szUpgradePath, sizeof(szUpgradePath)))
{
RTMsgError("RTProcGetExecutablePath failed (step 2)\n");
return RTEXITCODE_SUCCESS;
}
void *pvUpgrade;
size_t cbUpgrade;
int rc = RTFileReadAll(szUpgradePath, &pvUpgrade, &cbUpgrade);
if (RT_FAILURE(rc))
{
RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc (step 2)\n", szUpgradePath, rc);
return RTEXITCODE_SUCCESS;
}
uint64_t StartMilliTS = RTTimeMilliTS();
RTFILE hFile;
rc = RTFileOpen(&hFile, pszUpgrading,
RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE
| (0755 << RTFILE_O_CREATE_MODE_SHIFT));
while ( RT_FAILURE(rc)
&& RTTimeMilliTS() - StartMilliTS < 60000)
{
RTThreadSleep(1000);
rc = RTFileOpen(&hFile, pszUpgrading,
RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE
| (0755 << RTFILE_O_CREATE_MODE_SHIFT));
}
if (RT_SUCCESS(rc))
{
rc = RTFileWrite(hFile, pvUpgrade, cbUpgrade, NULL);
RTFileClose(hFile);
if (RT_SUCCESS(rc))
{
/*
* Relaunch the service with the original name, foricbly barring
* further upgrade cycles in case of bugs (and simplifying the code).
*/
const char **papszArgs = (const char **)RTMemAlloc((argc + 1 + 1) * sizeof(char **));
if (papszArgs)
{
papszArgs[0] = pszUpgrading;
for (int i = 1; i < argc; i++)
papszArgs[i] = argv[i];
papszArgs[argc] = "--no-auto-upgrade";
papszArgs[argc + 1] = NULL;
RTMsgInfo("Launching upgraded image: \"%s\"\n", pszUpgrading);
RTPROCESS hProc;
rc = RTProcCreate(pszUpgrading, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc);
if (RT_SUCCESS(rc))
*pfExit = true;
else
RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 2)\n", pszUpgrading, rc);
RTMemFree(papszArgs);
}
else
RTMsgError("RTMemAlloc failed during upgrade attempt (stage 2)\n");
}
else
RTMsgError("RTFileWrite(%s,,%zu): %Rrc (step 2) - BAD\n", pszUpgrading, cbUpgrade, rc);
}
else
RTMsgError("RTFileOpen(,%s,): %Rrc\n", pszUpgrading, rc);
RTFileReadAllFree(pvUpgrade, cbUpgrade);
return RTEXITCODE_SUCCESS;
}
/**
* Checks for an upgrade and respawns if there is.
*
* @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
* @param argc The number of arguments.
* @param argv The argument vector.
* @param pfExit For indicating exit when the exit code is zero.
*/
static RTEXITCODE txsAutoUpdateStage1(int argc, char **argv, bool *pfExit)
{
/*
* Figure names of the current service image and the potential upgrade.
*/
char szOrgPath[RTPATH_MAX];
if (!RTProcGetExecutablePath(szOrgPath, sizeof(szOrgPath)))
{
RTMsgError("RTProcGetExecutablePath failed\n");
return RTEXITCODE_SUCCESS;
}
char szUpgradePath[RTPATH_MAX];
int rc = RTPathJoin(szUpgradePath, sizeof(szUpgradePath), g_szCdRomPath, g_szOsSlashArchShortName);
if (RT_SUCCESS(rc))
rc = RTPathAppend(szUpgradePath, sizeof(szUpgradePath), RTPathFilename(szOrgPath));
if (RT_FAILURE(rc))
{
RTMsgError("Failed to construct path to potential service upgrade: %Rrc\n", rc);
return RTEXITCODE_SUCCESS;
}
/*
* Query information about the two images and read the entire potential source file.
*/
RTFSOBJINFO UpgradeInfo;
rc = RTPathQueryInfo(szUpgradePath, &UpgradeInfo, RTFSOBJATTRADD_NOTHING);
if ( rc == VERR_FILE_NOT_FOUND
|| rc == VERR_PATH_NOT_FOUND
|| rc == VERR_MEDIA_NOT_PRESENT
|| rc == VERR_MEDIA_NOT_RECOGNIZED)
return RTEXITCODE_SUCCESS;
if (RT_FAILURE(rc))
{
RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (upgrade)\n", szUpgradePath, rc);
return RTEXITCODE_SUCCESS;
}
RTFSOBJINFO OrgInfo;
rc = RTPathQueryInfo(szOrgPath, &OrgInfo, RTFSOBJATTRADD_NOTHING);
if (RT_FAILURE(rc))
{
RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc);
return RTEXITCODE_SUCCESS;
}
void *pvUpgrade;
size_t cbUpgrade;
rc = RTFileReadAllEx(szUpgradePath, 0, UpgradeInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvUpgrade, &cbUpgrade);
if (RT_FAILURE(rc))
{
RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc);
return RTEXITCODE_SUCCESS;
}
/*
* Compare and see if we've got a different service image or not.
*/
if (OrgInfo.cbObject == UpgradeInfo.cbObject)
{
/* must compare bytes. */
void *pvOrg;
size_t cbOrg;
rc = RTFileReadAllEx(szOrgPath, 0, OrgInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvOrg, &cbOrg);
if (RT_FAILURE(rc))
{
RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc\n", szOrgPath, rc);
RTFileReadAllFree(pvUpgrade, cbUpgrade);
return RTEXITCODE_SUCCESS;
}
bool fSame = !memcmp(pvUpgrade, pvOrg, OrgInfo.cbObject);
RTFileReadAllFree(pvOrg, cbOrg);
if (fSame)
{
RTFileReadAllFree(pvUpgrade, cbUpgrade);
return RTEXITCODE_SUCCESS;
}
}
/*
* Should upgrade. Start by creating an executable copy of the update
* image in the scratch area.
*/
RTEXITCODE rcExit = txsFinalizeScratch();
if (rcExit == RTEXITCODE_SUCCESS)
{
char szTmpPath[RTPATH_MAX];
rc = RTPathJoin(szTmpPath, sizeof(szTmpPath), g_szScratchPath, RTPathFilename(szOrgPath));
if (RT_SUCCESS(rc))
{
RTFileDelete(szTmpPath); /* shouldn't hurt. */
RTFILE hFile;
rc = RTFileOpen(&hFile, szTmpPath,
RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE
| (0755 << RTFILE_O_CREATE_MODE_SHIFT));
if (RT_SUCCESS(rc))
{
rc = RTFileWrite(hFile, pvUpgrade, UpgradeInfo.cbObject, NULL);
RTFileClose(hFile);
if (RT_SUCCESS(rc))
{
/*
* Try execute the new image and quit if it works.
*/
const char **papszArgs = (const char **)RTMemAlloc((argc + 2 + 1) * sizeof(char **));
if (papszArgs)
{
papszArgs[0] = szTmpPath;
for (int i = 1; i < argc; i++)
papszArgs[i] = argv[i];
papszArgs[argc] = "--upgrading";
papszArgs[argc + 1] = szOrgPath;
papszArgs[argc + 2] = NULL;
RTMsgInfo("Launching intermediate automatic upgrade stage: \"%s\"\n", szTmpPath);
RTPROCESS hProc;
rc = RTProcCreate(szTmpPath, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc);
if (RT_SUCCESS(rc))
*pfExit = true;
else
RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 1)\n", szTmpPath, rc);
RTMemFree(papszArgs);
}
else
RTMsgError("RTMemAlloc failed during upgrade attempt (stage)\n");
}
else
RTMsgError("RTFileWrite(%s,,%zu): %Rrc\n", szTmpPath, UpgradeInfo.cbObject, rc);
}
else
RTMsgError("RTFileOpen(,%s,): %Rrc\n", szTmpPath, rc);
}
else
RTMsgError("Failed to construct path to temporary upgrade image: %Rrc\n", rc);
}
RTFileReadAllFree(pvUpgrade, cbUpgrade);
return rcExit;
}
/**
* Determines the default configuration.
*/
static void txsSetDefaults(void)
{
/*
* OS and ARCH.
*/
AssertCompile(sizeof(KBUILD_TARGET) <= sizeof(g_szOsShortName));
strcpy(g_szOsShortName, KBUILD_TARGET);
AssertCompile(sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szArchShortName));
strcpy(g_szArchShortName, KBUILD_TARGET_ARCH);
AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsDotArchShortName));
strcpy(g_szOsDotArchShortName, KBUILD_TARGET);
g_szOsDotArchShortName[sizeof(KBUILD_TARGET) - 1] = '.';
strcpy(&g_szOsDotArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH);
AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsSlashArchShortName));
strcpy(g_szOsSlashArchShortName, KBUILD_TARGET);
g_szOsSlashArchShortName[sizeof(KBUILD_TARGET) - 1] = '/';
strcpy(&g_szOsSlashArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH);
#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
strcpy(g_szExeSuff, ".exe");
strcpy(g_szScriptSuff, ".cmd");
#else
strcpy(g_szExeSuff, "");
strcpy(g_szScriptSuff, ".sh");
#endif
/*
* The CD/DVD-ROM location.
*/
/** @todo do a better job here :-) */
#ifdef RT_OS_WINDOWS
strcpy(g_szDefCdRomPath, "D:/");
#elif defined(RT_OS_OS2)
strcpy(g_szDefCdRomPath, "D:/");
#else
if (RTDirExists("/media"))
strcpy(g_szDefCdRomPath, "/media/cdrom");
else
strcpy(g_szDefCdRomPath, "/mnt/cdrom");
#endif
strcpy(g_szCdRomPath, g_szDefCdRomPath);
/*
* Temporary directory.
*/
int rc = RTPathTemp(g_szDefScratchPath, sizeof(g_szDefScratchPath));
if (RT_SUCCESS(rc))
#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) || defined(RT_OS_DOS)
rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXX.tmp");
#else
rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXXXXXXX.tmp");
#endif
if (RT_FAILURE(rc))
{
RTMsgError("RTPathTemp/Append failed when constructing scratch path: %Rrc\n", rc);
strcpy(g_szDefScratchPath, "/tmp/txs-XXXX.tmp");
}
strcpy(g_szScratchPath, g_szDefScratchPath);
/*
* The default transporter is the first one.
*/
g_pTransport = g_apTransports[0];
}
/**
* Prints the usage.
*
* @param pStrm Where to print it.
* @param pszArgv0 The program name (argv[0]).
*/
static void txsUsage(PRTSTREAM pStrm, const char *argv0)
{
RTStrmPrintf(pStrm,
"Usage: %Rbn [options]\n"
"\n"
"Options:\n"
" --cdrom <path>\n"
" Where the CD/DVD-ROM will be mounted.\n"
" Default: %s\n"
" --scratch <path>\n"
" Where to put scratch files.\n"
" Default: %s \n"
,
argv0,
g_szDefCdRomPath,
g_szDefScratchPath);
RTStrmPrintf(pStrm,
" --transport <name>\n"
" Use the specified transport layer, one of the following:\n");
for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
RTStrmPrintf(pStrm, " %s - %s\n", g_apTransports[i]->szName, g_apTransports[i]->pszDesc);
RTStrmPrintf(pStrm, " Default: %s\n", g_pTransport->szName);
RTStrmPrintf(pStrm,
" --auto-upgrade, --no-auto-upgrade\n"
" To enable or disable the automatic upgrade mechanism where any different\n"
" version found on the CD-ROM on startup will replace the initial copy.\n"
" Default: --auto-upgrade\n"
" --upgrading <org-path>\n"
" Internal use only.\n");
RTStrmPrintf(pStrm,
" --display-output, --no-display-output\n"
" Display the output and the result of all child processes.\n");
RTStrmPrintf(pStrm,
" --foreground\n"
" Don't daemonize, run in the foreground.\n");
RTStrmPrintf(pStrm,
" --help, -h, -?\n"
" Display this message and exit.\n"
" --version, -V\n"
" Display the version and exit.\n");
for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
if (g_apTransports[i]->cOpts)
{
RTStrmPrintf(pStrm,
"\n"
"Options for %s:\n", g_apTransports[i]->szName);
g_apTransports[i]->pfnUsage(g_pStdOut);
}
}
/**
* Parses the arguments.
*
* @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
* @param argc The number of arguments.
* @param argv The argument vector.
* @param pfExit For indicating exit when the exit code is zero.
*/
static RTEXITCODE txsParseArgv(int argc, char **argv, bool *pfExit)
{
*pfExit = false;
/*
* Storage for locally handled options.
*/
bool fAutoUpgrade = true;
bool fDaemonize = true;
bool fDaemonized = false;
bool fTransportFixed = false;
const char *pszUpgrading = NULL;
/*
* Combine the base and transport layer option arrays.
*/
static const RTGETOPTDEF s_aBaseOptions[] =
{
{ "--transport", 't', RTGETOPT_REQ_STRING },
{ "--cdrom", 'c', RTGETOPT_REQ_STRING },
{ "--scratch", 's', RTGETOPT_REQ_STRING },
{ "--auto-upgrade", 'a', RTGETOPT_REQ_NOTHING },
{ "--no-auto-upgrade", 'A', RTGETOPT_REQ_NOTHING },
{ "--upgrading", 'U', RTGETOPT_REQ_STRING },
{ "--display-output", 'd', RTGETOPT_REQ_NOTHING },
{ "--no-display-output",'D', RTGETOPT_REQ_NOTHING },
{ "--foreground", 'f', RTGETOPT_REQ_NOTHING },
{ "--daemonized", 'Z', RTGETOPT_REQ_NOTHING },
};
size_t cOptions = RT_ELEMENTS(s_aBaseOptions);
for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
cOptions += g_apTransports[i]->cOpts;
PRTGETOPTDEF paOptions = (PRTGETOPTDEF)alloca(cOptions * sizeof(RTGETOPTDEF));
if (!paOptions)
return RTMsgErrorExit(RTEXITCODE_FAILURE, "alloca failed\n");
memcpy(paOptions, s_aBaseOptions, sizeof(s_aBaseOptions));
cOptions = RT_ELEMENTS(s_aBaseOptions);
for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
{
memcpy(&paOptions[cOptions], g_apTransports[i]->paOpts, g_apTransports[i]->cOpts * sizeof(RTGETOPTDEF));
cOptions += g_apTransports[i]->cOpts;
}
/*
* Parse the arguments.
*/
RTGETOPTSTATE GetState;
int rc = RTGetOptInit(&GetState, argc, argv, paOptions, cOptions, 1, 0 /* fFlags */);
AssertRC(rc);
int ch;
RTGETOPTUNION Val;
while ((ch = RTGetOpt(&GetState, &Val)))
{
switch (ch)
{
case 'a':
fAutoUpgrade = true;
break;
case 'A':
fAutoUpgrade = false;
break;
case 'c':
rc = RTStrCopy(g_szCdRomPath, sizeof(g_szCdRomPath), Val.psz);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "CD/DVD-ROM is path too long (%Rrc)\n", rc);
break;
case 'd':
g_fDisplayOutput = true;
break;
case 'D':
g_fDisplayOutput = false;
break;
case 'f':
fDaemonize = false;
break;
case 'h':
txsUsage(g_pStdOut, argv[0]);
*pfExit = true;
return RTEXITCODE_SUCCESS;
case 's':
rc = RTStrCopy(g_szScratchPath, sizeof(g_szScratchPath), Val.psz);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "scratch path is too long (%Rrc)\n", rc);
break;
case 't':
{
PCTXSTRANSPORT pTransport = NULL;
for (size_t i = 0; RT_ELEMENTS(g_apTransports); i++)
if (!strcmp(g_apTransports[i]->szName, Val.psz))
{
pTransport = g_apTransports[i];
break;
}
if (!pTransport)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Unknown transport layer name '%s'\n", Val.psz);
g_pTransport = pTransport;
break;
}
case 'U':
pszUpgrading = Val.psz;
break;
case 'V':
RTPrintf("$Revision$\n");
*pfExit = true;
return RTEXITCODE_SUCCESS;
case 'Z':
fDaemonized = true;
fDaemonize = false;
break;
default:
{
rc = VERR_TRY_AGAIN;
for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
if (g_apTransports[i]->cOpts)
{
rc = g_apTransports[i]->pfnOption(ch, &Val);
if (RT_SUCCESS(rc))
break;
if (rc != VERR_TRY_AGAIN)
{
*pfExit = true;
return RTEXITCODE_SYNTAX;
}
}
if (rc == VERR_TRY_AGAIN)
{
*pfExit = true;
return RTGetOptPrintError(ch, &Val);
}
break;
}
}
}
/*
* Handle automatic upgrading of the service.
*/
if (fAutoUpgrade && !*pfExit)
{
RTEXITCODE rcExit;
if (pszUpgrading)
rcExit = txsAutoUpdateStage2(argc, argv, pfExit, pszUpgrading);
else
rcExit = txsAutoUpdateStage1(argc, argv, pfExit);
if ( *pfExit
|| rcExit != RTEXITCODE_SUCCESS)
return rcExit;
}
/*
* Daemonize ourselves if asked to.
*/
if (fDaemonize && !*pfExit)
{
rc = RTProcDaemonize(argv, "--daemonized");
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTProcDaemonize: %Rrc\n", rc);
*pfExit = true;
}
return RTEXITCODE_SUCCESS;
}
int main(int argc, char **argv)
{
/*
* Initialize the runtime.
*/
int rc = RTR3InitExe(argc, &argv, 0);
if (RT_FAILURE(rc))
return RTMsgInitFailure(rc);
/*
* Determine defaults and parse the arguments.
*/
txsSetDefaults();
bool fExit;
RTEXITCODE rcExit = txsParseArgv(argc, argv, &fExit);
if (rcExit != RTEXITCODE_SUCCESS || fExit)
return rcExit;
/*
* Generate a UUID for this TXS instance.
*/
rc = RTUuidCreate(&g_InstanceUuid);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTUuidCreate failed: %Rrc", rc);
/*
* Finalize the scratch directory and initialize the transport layer.
*/
rcExit = txsFinalizeScratch();
if (rcExit != RTEXITCODE_SUCCESS)
return rcExit;
rc = g_pTransport->pfnInit();
if (RT_FAILURE(rc))
return RTEXITCODE_FAILURE;
/*
* Ok, start working
*/
rcExit = txsMainLoop();
/*
* Cleanup.
*/
g_pTransport->pfnTerm();
return rcExit;
}