/* $Id$ */
/** @file
* TM - Time Manager.
*/
/*
* Copyright (C) 2006-2015 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_tm TM - The Time Manager
*
* The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
* device and drivers.
*
* @see grp_tm
*
*
* @section sec_tm_clocks Clocks
*
* There are currently 4 clocks:
* - Virtual (guest).
* - Synchronous virtual (guest).
* - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
* function of the virtual clock.
* - Real (host). This is only used for display updates atm.
*
* The most important clocks are the three first ones and of these the second is
* the most interesting.
*
*
* The synchronous virtual clock is tied to the virtual clock except that it
* will take into account timer delivery lag caused by host scheduling. It will
* normally never advance beyond the head timer, and when lagging too far behind
* it will gradually speed up to catch up with the virtual clock. All devices
* implementing time sources accessible to and used by the guest is using this
* clock (for timers and other things). This ensures consistency between the
* time sources.
*
* The virtual clock is implemented as an offset to a monotonic, high
* resolution, wall clock. The current time source is using the RTTimeNanoTS()
* machinery based upon the Global Info Pages (GIP), that is, we're using TSC
* deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
* a fairly high res clock that works in all contexts and on all hosts. The
* virtual clock is paused when the VM isn't in the running state.
*
* The CPU tick (TSC) is normally virtualized as a function of the synchronous
* virtual clock, where the frequency defaults to the host cpu frequency (as we
* measure it). In this mode it is possible to configure the frequency. Another
* (non-default) option is to use the raw unmodified host TSC values. And yet
* another, to tie it to time spent executing guest code. All these things are
* configurable should non-default behavior be desirable.
*
* The real clock is a monotonic clock (when available) with relatively low
* resolution, though this a bit host specific. Note that we're currently not
* servicing timers using the real clock when the VM is not running, this is
* simply because it has not been needed yet therefore not implemented.
*
*
* @subsection subsec_tm_timesync Guest Time Sync / UTC time
*
* Guest time syncing is primarily taken care of by the VMM device. The
* principle is very simple, the guest additions periodically asks the VMM
* device what the current UTC time is and makes adjustments accordingly.
*
* A complicating factor is that the synchronous virtual clock might be doing
* catchups and the guest perception is currently a little bit behind the world
* but it will (hopefully) be catching up soon as we're feeding timer interrupts
* at a slightly higher rate. Adjusting the guest clock to the current wall
* time in the real world would be a bad idea then because the guest will be
* advancing too fast and run ahead of world time (if the catchup works out).
* To solve this problem TM provides the VMM device with an UTC time source that
* gets adjusted with the current lag, so that when the guest eventually catches
* up the lag it will be showing correct real world time.
*
*
* @section sec_tm_timers Timers
*
* The timers can use any of the TM clocks described in the previous section.
* Each clock has its own scheduling facility, or timer queue if you like.
* There are a few factors which makes it a bit complex. First, there is the
* usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
* is the timer thread that periodically checks whether any timers has expired
* without EMT noticing. On the API level, all but the create and save APIs
* must be multithreaded. EMT will always run the timers.
*
* The design is using a doubly linked list of active timers which is ordered
* by expire date. This list is only modified by the EMT thread. Updates to
* the list are batched in a singly linked list, which is then processed by the
* EMT thread at the first opportunity (immediately, next time EMT modifies a
* timer on that clock, or next timer timeout). Both lists are offset based and
* all the elements are therefore allocated from the hyper heap.
*
* For figuring out when there is need to schedule and run timers TM will:
* - Poll whenever somebody queries the virtual clock.
* - Poll the virtual clocks from the EM and REM loops.
* - Poll the virtual clocks from trap exit path.
* - Poll the virtual clocks and calculate first timeout from the halt loop.
* - Employ a thread which periodically (100Hz) polls all the timer queues.
*
*
* @image html TMTIMER-Statechart-Diagram.gif
*
* @section sec_tm_timer Logging
*
* Level 2: Logs a most of the timer state transitions and queue servicing.
* Level 3: Logs a few oddments.
* Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_TM
#include <VBox/vmm/tm.h>
#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGIP from sup.h */
#include <VBox/vmm/vmm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/gim.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/dbgftrace.h>
#ifdef VBOX_WITH_REM
# include <VBox/vmm/rem.h>
#endif
#include <VBox/vmm/pdmapi.h>
#include <VBox/vmm/iom.h>
#include "TMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>
#include <VBox/vmm/pdmdev.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/asm.h>
#include <iprt/asm-math.h>
#include <iprt/assert.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include <iprt/timer.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
#include <iprt/env.h>
#include "TMInline.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The current saved state version.*/
#define TM_SAVED_STATE_VERSION 3
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static bool tmR3HasFixedTSC(PVM pVM);
static const char * tmR3GetTSCModeName(PVM pVM);
static uint64_t tmR3CalibrateTSC(PVM pVM);
static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
static void tmR3TimerQueueRunVirtualSync(PVM pVM);
static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
#endif
static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
/**
* Initializes the TM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMM_INT_DECL(int) TMR3Init(PVM pVM)
{
LogFlow(("TMR3Init:\n"));
/*
* Assert alignment and sizes.
*/
AssertCompileMemberAlignment(VM, tm.s, 32);
AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
AssertCompileMemberAlignment(TM, TimerCritSect, 8);
AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
/*
* Init the structure.
*/
void *pv;
int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
AssertRCReturn(rc, rc);
pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
/*
* We directly use the GIP to calculate the virtual time. We map the
* the GIP into the guest context so we can do this calculation there
* as well and save costly world switches.
*/
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
pVM->tm.s.pvGIPR3 = (void *)pGip;
AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
VERR_TM_GIP_VERSION);
RTHCPHYS HCPhysGIP;
rc = SUPR3GipGetPhys(&HCPhysGIP);
AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
RTGCPTR GCPtr;
#ifdef SUP_WITH_LOTS_OF_CPUS
rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
"GIP", &GCPtr);
#else
rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
#endif
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
return rc;
}
pVM->tm.s.pvGIPRC = GCPtr;
LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
/* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
&& pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
/* Log GIP info that may come in handy. */
LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
{
uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
if (iGipCpu != UINT16_MAX)
LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
}
/*
* Setup the VirtualGetRaw backend.
*/
pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBadPrev;
pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
/* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
/*
* Init the locks.
*/
rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
if (RT_FAILURE(rc))
return rc;
rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
if (RT_FAILURE(rc))
return rc;
/*
* Get our CFGM node, create it if necessary.
*/
PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
if (!pCfgHandle)
{
rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
AssertRCReturn(rc, rc);
}
/*
* Specific errors about some obsolete TM settings (remove after 2015-12-03).
*/
if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"Mode\" setting instead."));
if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"Mode\" setting instead."));
if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"Mode\" setting instead."));
/*
* Validate the rest of the TM settings.
*/
rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
"TSCMode|"
"TSCModeSwitchAllowed|"
"TSCTicksPerSecond|"
"TSCTiedToExecution|"
"TSCNotTiedToHalt|"
"ScheduleSlack|"
"CatchUpStopThreshold|"
"CatchUpGiveUpThreshold|"
"CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
"CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
"CatchUpStartThreshold8|CatchUpStartThreshold9|"
"CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
"CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
"CatchUpPrecentage8|CatchUpPrecentage9|"
"UTCOffset|"
"WarpDrivePercentage|"
"HostHzMax|"
"HostHzFudgeFactorTimerCpu|"
"HostHzFudgeFactorOtherCpu|"
"HostHzFudgeFactorCatchUp100|"
"HostHzFudgeFactorCatchUp200|"
"HostHzFudgeFactorCatchUp400|"
"TimerMillies",
"",
"TM", 0);
if (RT_FAILURE(rc))
return rc;
/*
* Determine the TSC configuration and frequency.
*/
/** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
* The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
* The default depends on the VM configuration and the capabilities of the
* host CPU. Other config options or runtime changes may override the TSC
* mode specified here.
*/
char szTSCMode[32];
rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
/** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
* fall back on the more expensive emulated mode. With the current TSC handling
* (frequent switching between offsetted mode and taking VM exits, on all VCPUs
* without any kind of coordination) will lead to inconsistent TSC behavior with
* guest SMP, including TSC going backwards. */
pVM->tm.s.enmTSCMode = pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
}
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
else
{
if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
else if (!RTStrCmp(szTSCMode, "Dynamic"))
pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
else
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
}
/**
* @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
* at runtime}
* When using paravirtualized guests, we dynamically switch TSC modes to a more
* optimal one for performance. This setting allows overriding this behaviour.
*/
rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
/* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
pVM->tm.s.fTSCModeSwitchAllowed = true;
}
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
/** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
* The number of TSC ticks per second (i.e. the TSC frequency). This will
* override enmTSCMode.
*/
rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
if ( pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET
&& pVM->tm.s.cTSCTicksPerSecond >= _4G)
{
pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
}
}
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
|| pVM->tm.s.cTSCTicksPerSecond >= _4G)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
pVM->tm.s.cTSCTicksPerSecond);
else
{
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
}
/** @cfgm{/TM/TSCTiedToExecution, bool, false}
* Whether the TSC should be tied to execution. This will exclude most of the
* virtualization overhead, but will by default include the time spent in the
* halt state (see TM/TSCNotTiedToHalt). This setting will override all other
* TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
* be used avoided or used with great care. Note that this will only work right
* together with VT-x or AMD-V, and with a single virtual CPU. */
rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
if (pVM->tm.s.fTSCTiedToExecution)
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
/** @cfgm{/TM/TSCNotTiedToHalt, bool, true}
* For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
* to make the TSC freeze during HLT. */
rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
/*
* Configure the timer synchronous virtual time.
*/
/** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
* Scheduling slack when processing timers. */
rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
/** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
* When to stop a catch-up, considering it successful. */
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
/** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
* When to give up a catch-up attempt. */
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
/** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
* The catch-up percent for a given period. */
/** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
* The catch-up period threshold, or if you like, when a period starts. */
#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
do \
{ \
uint64_t u64; \
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
u64 = UINT64_C(DefStart); \
else if (RT_FAILURE(rc)) \
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
|| u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
else if (RT_FAILURE(rc)) \
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
} while (0)
/* This needs more tuning. Not sure if we really need so many period and be so gentle. */
TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
#undef TM_CFG_PERIOD
/*
* Configure real world time (UTC).
*/
/** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
* The UTC offset. This is used to put the guest back or forwards in time. */
rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.offUTC = 0; /* ns */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
/*
* Setup the warp drive.
*/
/** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
* The warp drive percentage, 100% is normal speed. This is used to speed up
* or slow down the virtual clock, which can be useful for fast forwarding
* borring periods during tests. */
rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
|| pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
pVM->tm.s.u32VirtualWarpDrivePercentage);
pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
if (pVM->tm.s.fVirtualWarpDrive)
{
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
}
/*
* Gather the Host Hz configuration values.
*/
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
/*
* Finally, setup and report.
*/
pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
"TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
/*
* Start the timer (guard against REM not yielding).
*/
/** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
* The watchdog timer interval. */
uint32_t u32Millies;
rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
u32Millies = 10;
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
return rc;
}
Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
pVM->tm.s.u32TimerMillies = u32Millies;
/*
* Register saved state.
*/
rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
NULL, NULL, NULL,
NULL, tmR3Save, NULL,
NULL, tmR3Load, NULL);
if (RT_FAILURE(rc))
return rc;
/*
* Register statistics.
*/
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
#ifdef VBOX_WITH_STATISTICS
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
#endif /* VBOX_WITH_STATISTICS */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
# endif
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
#endif
}
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
#endif
#ifdef VBOX_WITH_STATISTICS
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
{
STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
}
#endif /* VBOX_WITH_STATISTICS */
/*
* Register info handlers.
*/
DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
return VINF_SUCCESS;
}
/**
* Checks if the host CPU has a fixed TSC frequency.
*
* @returns true if it has, false if it hasn't.
*
* @remarks This test doesn't bother with very old CPUs that don't do power
* management or any other stuff that might influence the TSC rate.
* This isn't currently relevant.
*/
static bool tmR3HasFixedTSC(PVM pVM)
{
/*
* ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
* actually has invariant TSC.
*/
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
return true;
/*
* Go by features and model info from the CPUID instruction.
*/
if (ASMHasCpuId())
{
uint32_t uEAX, uEBX, uECX, uEDX;
/*
* By feature. (Used to be AMD specific, intel seems to have picked it up.)
*/
ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
{
ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
&& pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
return true;
}
/*
* By model.
*/
if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
{
/*
* AuthenticAMD - Check for APM support and that TscInvariant is set.
*
* This test isn't correct with respect to fixed/non-fixed TSC and
* older models, but this isn't relevant since the result is currently
* only used for making a decision on AMD-V models.
*/
#if 0 /* Promoted to generic */
ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
if (uEAX >= 0x80000007)
{
ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
&& ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
|| pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
return true;
}
#endif
}
else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
{
/*
* GenuineIntel - Check the model number.
*
* This test is lacking in the same way and for the same reasons
* as the AMD test above.
*/
/** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
unsigned uModel = (uEAX >> 4) & 0x0f;
unsigned uFamily = (uEAX >> 8) & 0x0f;
if (uFamily == 0x0f)
uFamily += (uEAX >> 20) & 0xff;
if (uFamily >= 0x06)
uModel += ((uEAX >> 16) & 0x0f) << 4;
if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
|| (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
return true;
}
else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
{
/*
* CentaurHauls - Check the model, family and stepping.
*
* This only checks for VIA CPU models Nano X2, Nano X3,
* Eden X2 and QuadCore.
*/
/** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
unsigned uStepping = (uEAX & 0x0f);
unsigned uModel = (uEAX >> 4) & 0x0f;
unsigned uFamily = (uEAX >> 8) & 0x0f;
if ( uFamily == 0x06
&& uModel == 0x0f
&& uStepping >= 0x0c
&& uStepping <= 0x0f)
return true;
}
}
return false;
}
/**
* Calibrate the CPU tick.
*
* @returns Number of ticks per second.
*/
static uint64_t tmR3CalibrateTSC(PVM pVM)
{
uint64_t u64Hz;
/*
* Use GIP when available. Prefere the nominal one, no need to wait for it.
*/
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
if (pGip)
{
u64Hz = pGip->u64CpuHz;
if (u64Hz < _1T && u64Hz > _1M)
return u64Hz;
AssertFailed(); /* This shouldn't happen. */
u64Hz = SUPGetCpuHzFromGip(pGip);
if (u64Hz < _1T && u64Hz > _1M)
return u64Hz;
AssertFailed(); /* This shouldn't happen. */
}
/* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
/* Call this once first to make sure it's initialized. */
RTTimeNanoTS();
/*
* Yield the CPU to increase our chances of getting
* a correct value.
*/
RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
uint64_t au64Samples[5];
unsigned i;
for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
{
RTMSINTERVAL cMillies;
int cTries = 5;
uint64_t u64Start = ASMReadTSC();
uint64_t u64End;
uint64_t StartTS = RTTimeNanoTS();
uint64_t EndTS;
do
{
RTThreadSleep(s_auSleep[i]);
u64End = ASMReadTSC();
EndTS = RTTimeNanoTS();
cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
} while ( cMillies == 0 /* the sleep may be interrupted... */
|| (cMillies < 20 && --cTries > 0));
uint64_t u64Diff = u64End - u64Start;
au64Samples[i] = (u64Diff * 1000) / cMillies;
AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
}
/*
* Discard the highest and lowest results and calculate the average.
*/
unsigned iHigh = 0;
unsigned iLow = 0;
for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
{
if (au64Samples[i] < au64Samples[iLow])
iLow = i;
if (au64Samples[i] > au64Samples[iHigh])
iHigh = i;
}
au64Samples[iLow] = 0;
au64Samples[iHigh] = 0;
u64Hz = au64Samples[0];
for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
u64Hz += au64Samples[i];
u64Hz /= RT_ELEMENTS(au64Samples) - 2;
return u64Hz;
}
/**
* Finalizes the TM initialization.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
{
int rc;
/*
* Resolve symbols.
*/
if (!HMIsEnabled(pVM))
{
rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadPrev", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
AssertRCReturn(rc, rc);
rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
AssertRCReturn(rc, rc);
rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
AssertRCReturn(rc, rc);
pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
}
rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadPrev", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
AssertRCReturn(rc, rc);
rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
AssertRCReturn(rc, rc);
rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
AssertRCReturn(rc, rc);
pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Create a timer for refreshing the CPU load stats.
*/
PTMTIMER pTimer;
rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
if (RT_SUCCESS(rc))
rc = TMTimerSetMillies(pTimer, 1000);
#endif
/*
* GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
*/
pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && HMIsEnabled(pVM);
LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
return rc;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* @param pVM The VM.
* @param offDelta Relocation delta relative to old location.
*/
VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
{
LogFlow(("TMR3Relocate\n"));
pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
if (!HMIsEnabled(pVM))
{
pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
pVM->tm.s.pfnVirtualGetRawRC += offDelta;
}
/*
* Iterate the timers updating the pVMRC pointers.
*/
for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
{
pTimer->pVMRC = pVM->pVMRC;
pTimer->pVMR0 = pVM->pVMR0;
}
}
/**
* Terminates the TM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMM_INT_DECL(int) TMR3Term(PVM pVM)
{
AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
if (pVM->tm.s.pTimer)
{
int rc = RTTimerDestroy(pVM->tm.s.pTimer);
AssertRC(rc);
pVM->tm.s.pTimer = NULL;
}
return VINF_SUCCESS;
}
/**
* The VM is being reset.
*
* For the TM component this means that a rescheduling is preformed,
* the FF is cleared and but without running the queues. We'll have to
* check if this makes sense or not, but it seems like a good idea now....
*
* @param pVM Pointer to the VM.
*/
VMM_INT_DECL(void) TMR3Reset(PVM pVM)
{
LogFlow(("TMR3Reset:\n"));
VM_ASSERT_EMT(pVM);
TM_LOCK_TIMERS(pVM);
/*
* Abort any pending catch up.
* This isn't perfect...
*/
if (pVM->tm.s.fVirtualSyncCatchUp)
{
const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
if (pVM->tm.s.fVirtualSyncCatchUp)
{
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
Assert(offOld <= offNew);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
}
}
/*
* Process the queues.
*/
for (int i = 0; i < TMCLOCK_MAX; i++)
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
#endif
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
/*
* Switch TM TSC mode back to the original mode after a reset for
* paravirtualized guests that alter the TM TSC mode during operation.
*/
if ( pVM->tm.s.fTSCModeSwitchAllowed
&& pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
{
VM_ASSERT_EMT0(pVM);
tmR3CpuTickParavirtDisable(pVM, &pVM->aCpus[0], NULL /* pvData */);
}
Assert(!GIMIsParavirtTscEnabled(pVM));
pVM->tm.s.fParavirtTscEnabled = false;
TM_UNLOCK_TIMERS(pVM);
}
/**
* Resolve a builtin RC symbol.
* Called by PDM when loading or relocating GC modules.
*
* @returns VBox status
* @param pVM Pointer to the VM.
* @param pszSymbol Symbol to resolve.
* @param pRCPtrValue Where to store the symbol value.
* @remark This has to work before TMR3Relocate() is called.
*/
VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
{
if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
*pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
//else if (..)
else
return VERR_SYMBOL_NOT_FOUND;
return VINF_SUCCESS;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("tmR3Save:\n"));
#ifdef VBOX_STRICT
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
Assert(!pVCpu->tm.s.fTSCTicking);
}
Assert(!pVM->tm.s.cVirtualTicking);
Assert(!pVM->tm.s.fVirtualSyncTicking);
Assert(!pVM->tm.s.cTSCsTicking);
#endif
/*
* Save the virtual clocks.
*/
/* the virtual clock. */
SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
/* the virtual timer synchronous clock. */
SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
/* real time clock */
SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
/* the cpu tick clock. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
}
return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
* @param uVersion Data layout version.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
LogFlow(("tmR3Load:\n"));
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
#ifdef VBOX_STRICT
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
Assert(!pVCpu->tm.s.fTSCTicking);
}
Assert(!pVM->tm.s.cVirtualTicking);
Assert(!pVM->tm.s.fVirtualSyncTicking);
Assert(!pVM->tm.s.cTSCsTicking);
#endif
/*
* Validate version.
*/
if (uVersion != TM_SAVED_STATE_VERSION)
{
AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Load the virtual clock.
*/
pVM->tm.s.cVirtualTicking = 0;
/* the virtual clock. */
uint64_t u64Hz;
int rc = SSMR3GetU64(pSSM, &u64Hz);
if (RT_FAILURE(rc))
return rc;
if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
{
AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
u64Hz, TMCLOCK_FREQ_VIRTUAL));
return VERR_SSM_VIRTUAL_CLOCK_HZ;
}
SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
pVM->tm.s.u64VirtualOffset = 0;
/* the virtual timer synchronous clock. */
pVM->tm.s.fVirtualSyncTicking = false;
uint64_t u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.u64VirtualSync = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.offVirtualSync = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.offVirtualSyncGivenUp = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
bool f;
SSMR3GetBool(pSSM, &f);
pVM->tm.s.fVirtualSyncCatchUp = f;
/* the real clock */
rc = SSMR3GetU64(pSSM, &u64Hz);
if (RT_FAILURE(rc))
return rc;
if (u64Hz != TMCLOCK_FREQ_REAL)
{
AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
u64Hz, TMCLOCK_FREQ_REAL));
return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
}
/* the cpu tick clock. */
pVM->tm.s.cTSCsTicking = 0;
pVM->tm.s.offTSCPause = 0;
pVM->tm.s.u64LastPausedTSC = 0;
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->tm.s.fTSCTicking = false;
SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
}
rc = SSMR3GetU64(pSSM, &u64Hz);
if (RT_FAILURE(rc))
return rc;
if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
pVM->tm.s.cTSCTicksPerSecond = u64Hz;
/** @todo Compare with real TSC rate even when restoring with real-tsc-offset
* mode. */
LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
/*
* Make sure timers get rescheduled immediately.
*/
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
return VINF_SUCCESS;
}
/**
* Internal TMR3TimerCreate worker.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param enmClock The timer clock.
* @param pszDesc The timer description.
* @param ppTimer Where to store the timer pointer on success.
*/
static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
{
VM_ASSERT_EMT(pVM);
/*
* Allocate the timer.
*/
PTMTIMERR3 pTimer = NULL;
if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
{
pTimer = pVM->tm.s.pFree;
pVM->tm.s.pFree = pTimer->pBigNext;
Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
}
if (!pTimer)
{
int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
if (RT_FAILURE(rc))
return rc;
Log3(("TM: Allocated new timer %p\n", pTimer));
}
/*
* Initialize it.
*/
pTimer->u64Expire = 0;
pTimer->enmClock = enmClock;
pTimer->pVMR3 = pVM;
pTimer->pVMR0 = pVM->pVMR0;
pTimer->pVMRC = pVM->pVMRC;
pTimer->enmState = TMTIMERSTATE_STOPPED;
pTimer->offScheduleNext = 0;
pTimer->offNext = 0;
pTimer->offPrev = 0;
pTimer->pvUser = NULL;
pTimer->pCritSect = NULL;
pTimer->pszDesc = pszDesc;
/* insert into the list of created timers. */
TM_LOCK_TIMERS(pVM);
pTimer->pBigPrev = NULL;
pTimer->pBigNext = pVM->tm.s.pCreated;
pVM->tm.s.pCreated = pTimer;
if (pTimer->pBigNext)
pTimer->pBigNext->pBigPrev = pTimer;
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
#endif
TM_UNLOCK_TIMERS(pVM);
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/**
* Creates a device timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param pDevIns Device instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser The user argument to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
PFNTMTIMERDEV pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
{
AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
/*
* Allocate and init stuff.
*/
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
if (RT_SUCCESS(rc))
{
(*ppTimer)->enmType = TMTIMERTYPE_DEV;
(*ppTimer)->u.Dev.pfnTimer = pfnCallback;
(*ppTimer)->u.Dev.pDevIns = pDevIns;
(*ppTimer)->pvUser = pvUser;
if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
(*ppTimer)->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates a USB device timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param pUsbIns The USB device instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser The user argument to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
PFNTMTIMERUSB pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
{
AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
/*
* Allocate and init stuff.
*/
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
if (RT_SUCCESS(rc))
{
(*ppTimer)->enmType = TMTIMERTYPE_USB;
(*ppTimer)->u.Usb.pfnTimer = pfnCallback;
(*ppTimer)->u.Usb.pUsbIns = pUsbIns;
(*ppTimer)->pvUser = pvUser;
//if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
//{
// if (pDevIns->pCritSectR3)
// (*ppTimer)->pCritSect = pUsbIns->pCritSectR3;
// else
// (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
//}
Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates a driver timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param pDrvIns Driver instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser The user argument to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
{
AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
/*
* Allocate and init stuff.
*/
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
if (RT_SUCCESS(rc))
{
(*ppTimer)->enmType = TMTIMERTYPE_DRV;
(*ppTimer)->u.Drv.pfnTimer = pfnCallback;
(*ppTimer)->u.Drv.pDrvIns = pDrvIns;
(*ppTimer)->pvUser = pvUser;
Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates an internal timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser User argument to be passed to the callback.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
{
/*
* Allocate and init stuff.
*/
PTMTIMER pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
if (RT_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_INTERNAL;
pTimer->u.Internal.pfnTimer = pfnCallback;
pTimer->pvUser = pvUser;
*ppTimer = pTimer;
Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates an external timer.
*
* @returns Timer handle on success.
* @returns NULL on failure.
* @param pVM The VM to create the timer in.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser User argument.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
*/
VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
{
/*
* Allocate and init stuff.
*/
PTMTIMERR3 pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
if (RT_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_EXTERNAL;
pTimer->u.External.pfnTimer = pfnCallback;
pTimer->pvUser = pvUser;
Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
return pTimer;
}
return NULL;
}
/**
* Destroy a timer
*
* @returns VBox status.
* @param pTimer Timer handle as returned by one of the create functions.
*/
VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
{
/*
* Be extra careful here.
*/
if (!pTimer)
return VINF_SUCCESS;
AssertPtr(pTimer);
Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
PVM pVM = pTimer->CTX_SUFF(pVM);
PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
bool fActive = false;
bool fPending = false;
AssertMsg( !pTimer->pCritSect
|| VMR3GetState(pVM) != VMSTATE_RUNNING
|| PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
/*
* The rest of the game happens behind the lock, just
* like create does. All the work is done here.
*/
TM_LOCK_TIMERS(pVM);
for (int cRetries = 1000;; cRetries--)
{
/*
* Change to the DESTROY state.
*/
TMTIMERSTATE const enmState = pTimer->enmState;
Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
switch (enmState)
{
case TMTIMERSTATE_STOPPED:
case TMTIMERSTATE_EXPIRED_DELIVER:
break;
case TMTIMERSTATE_ACTIVE:
fActive = true;
break;
case TMTIMERSTATE_PENDING_STOP:
case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
case TMTIMERSTATE_PENDING_RESCHEDULE:
fActive = true;
fPending = true;
break;
case TMTIMERSTATE_PENDING_SCHEDULE:
fPending = true;
break;
/*
* This shouldn't happen as the caller should make sure there are no races.
*/
case TMTIMERSTATE_EXPIRED_GET_UNLINK:
case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
TM_UNLOCK_TIMERS(pVM);
if (!RTThreadYield())
RTThreadSleep(1);
AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
VERR_TM_UNSTABLE_STATE);
TM_LOCK_TIMERS(pVM);
continue;
/*
* Invalid states.
*/
case TMTIMERSTATE_FREE:
case TMTIMERSTATE_DESTROY:
TM_UNLOCK_TIMERS(pVM);
AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
default:
AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
TM_UNLOCK_TIMERS(pVM);
return VERR_TM_UNKNOWN_STATE;
}
/*
* Try switch to the destroy state.
* This should always succeed as the caller should make sure there are no race.
*/
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
if (fRc)
break;
AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
TM_UNLOCK_TIMERS(pVM);
AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
VERR_TM_UNSTABLE_STATE);
TM_LOCK_TIMERS(pVM);
}
/*
* Unlink from the active list.
*/
if (fActive)
{
const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
if (pPrev)
TMTIMER_SET_NEXT(pPrev, pNext);
else
{
TMTIMER_SET_HEAD(pQueue, pNext);
pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
}
if (pNext)
TMTIMER_SET_PREV(pNext, pPrev);
pTimer->offNext = 0;
pTimer->offPrev = 0;
}
/*
* Unlink from the schedule list by running it.
*/
if (fPending)
{
Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
Assert(pQueue->offSchedule);
tmTimerQueueSchedule(pVM, pQueue);
STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
}
/*
* Read to move the timer from the created list and onto the free list.
*/
Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
/* unlink from created list */
if (pTimer->pBigPrev)
pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
else
pVM->tm.s.pCreated = pTimer->pBigNext;
if (pTimer->pBigNext)
pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
pTimer->pBigNext = 0;
pTimer->pBigPrev = 0;
/* free */
Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
pTimer->pBigNext = pVM->tm.s.pFree;
pVM->tm.s.pFree = pTimer;
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
#endif
TM_UNLOCK_TIMERS(pVM);
return VINF_SUCCESS;
}
/**
* Destroy all timers owned by a device.
*
* @returns VBox status.
* @param pVM Pointer to the VM.
* @param pDevIns Device which timers should be destroyed.
*/
VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
{
LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
if (!pDevIns)
return VERR_INVALID_PARAMETER;
TM_LOCK_TIMERS(pVM);
PTMTIMER pCur = pVM->tm.s.pCreated;
while (pCur)
{
PTMTIMER pDestroy = pCur;
pCur = pDestroy->pBigNext;
if ( pDestroy->enmType == TMTIMERTYPE_DEV
&& pDestroy->u.Dev.pDevIns == pDevIns)
{
int rc = TMR3TimerDestroy(pDestroy);
AssertRC(rc);
}
}
TM_UNLOCK_TIMERS(pVM);
LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Destroy all timers owned by a USB device.
*
* @returns VBox status.
* @param pVM Pointer to the VM.
* @param pUsbIns USB device which timers should be destroyed.
*/
VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
{
LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
if (!pUsbIns)
return VERR_INVALID_PARAMETER;
TM_LOCK_TIMERS(pVM);
PTMTIMER pCur = pVM->tm.s.pCreated;
while (pCur)
{
PTMTIMER pDestroy = pCur;
pCur = pDestroy->pBigNext;
if ( pDestroy->enmType == TMTIMERTYPE_USB
&& pDestroy->u.Usb.pUsbIns == pUsbIns)
{
int rc = TMR3TimerDestroy(pDestroy);
AssertRC(rc);
}
}
TM_UNLOCK_TIMERS(pVM);
LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Destroy all timers owned by a driver.
*
* @returns VBox status.
* @param pVM Pointer to the VM.
* @param pDrvIns Driver which timers should be destroyed.
*/
VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
{
LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
if (!pDrvIns)
return VERR_INVALID_PARAMETER;
TM_LOCK_TIMERS(pVM);
PTMTIMER pCur = pVM->tm.s.pCreated;
while (pCur)
{
PTMTIMER pDestroy = pCur;
pCur = pDestroy->pBigNext;
if ( pDestroy->enmType == TMTIMERTYPE_DRV
&& pDestroy->u.Drv.pDrvIns == pDrvIns)
{
int rc = TMR3TimerDestroy(pDestroy);
AssertRC(rc);
}
}
TM_UNLOCK_TIMERS(pVM);
LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Internal function for getting the clock time.
*
* @returns clock time.
* @param pVM Pointer to the VM.
* @param enmClock The clock.
*/
DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
{
switch (enmClock)
{
case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
case TMCLOCK_REAL: return TMRealGet(pVM);
case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
default:
AssertMsgFailed(("enmClock=%d\n", enmClock));
return ~(uint64_t)0;
}
}
/**
* Checks if the sync queue has one or more expired timers.
*
* @returns true / false.
*
* @param pVM Pointer to the VM.
* @param enmClock The queue.
*/
DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
{
const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
}
/**
* Checks for expired timers in all the queues.
*
* @returns true / false.
* @param pVM Pointer to the VM.
*/
DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
{
/*
* Combine the time calculation for the first two since we're not on EMT
* TMVirtualSyncGet only permits EMT.
*/
uint64_t u64Now = TMVirtualGetNoCheck(pVM);
if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
return true;
u64Now = pVM->tm.s.fVirtualSyncTicking
? u64Now - pVM->tm.s.offVirtualSync
: pVM->tm.s.u64VirtualSync;
if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
return true;
/*
* The remaining timers.
*/
if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
return true;
if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
return true;
return false;
}
/**
* Schedule timer callback.
*
* @param pTimer Timer handle.
* @param pvUser Pointer to the VM.
* @thread Timer thread.
*
* @remark We cannot do the scheduling and queues running from a timer handler
* since it's not executing in EMT, and even if it was it would be async
* and we wouldn't know the state of the affairs.
* So, we'll just raise the timer FF and force any REM execution to exit.
*/
static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
{
PVM pVM = (PVM)pvUser;
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
NOREF(pTimer);
AssertCompile(TMCLOCK_MAX == 4);
STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
#ifdef DEBUG_Sander /* very annoying, keep it private. */
if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
Log(("tmR3TimerCallback: timer event still pending!!\n"));
#endif
if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
&& ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
|| pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
|| pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
|| pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
|| tmR3AnyExpiredTimers(pVM)
)
&& !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
&& !pVM->tm.s.fRunningQueues
)
{
Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
#ifdef VBOX_WITH_REM
REMR3NotifyTimerPending(pVM, pVCpuDst);
#endif
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
}
}
/**
* Schedules and runs any pending timers.
*
* This is normally called from a forced action handler in EMT.
*
* @param pVM The VM to run the timers for.
*
* @thread EMT (actually EMT0, but we fend off the others)
*/
VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
{
/*
* Only the dedicated timer EMT should do stuff here.
* (fRunningQueues is only used as an indicator.)
*/
Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
if (VMMGetCpu(pVM) != pVCpuDst)
{
Assert(pVM->cCpus > 1);
return;
}
STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
Log2(("TMR3TimerQueuesDo:\n"));
Assert(!pVM->tm.s.fRunningQueues);
ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
TM_LOCK_TIMERS(pVM);
/*
* Process the queues.
*/
AssertCompile(TMCLOCK_MAX == 4);
/* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
tmR3TimerQueueRunVirtualSync(pVM);
if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
/* TMCLOCK_VIRTUAL */
STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
/* TMCLOCK_TSC */
Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
/* TMCLOCK_REAL */
STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
#ifdef VBOX_STRICT
/* check that we didn't screw up. */
tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
#endif
/* done */
Log2(("TMR3TimerQueuesDo: returns void\n"));
ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
TM_UNLOCK_TIMERS(pVM);
STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
}
//RT_C_DECLS_BEGIN
//int iomLock(PVM pVM);
//void iomUnlock(PVM pVM);
//RT_C_DECLS_END
/**
* Schedules and runs any pending times in the specified queue.
*
* This is normally called from a forced action handler in EMT.
*
* @param pVM The VM to run the timers for.
* @param pQueue The queue to run.
*/
static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
{
VM_ASSERT_EMT(pVM);
/*
* Run timers.
*
* We check the clock once and run all timers which are ACTIVE
* and have an expire time less or equal to the time we read.
*
* N.B. A generic unlink must be applied since other threads
* are allowed to mess with any active timer at any time.
* However, we only allow EMT to handle EXPIRED_PENDING
* timers, thus enabling the timer handler function to
* arm the timer again.
*/
PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
if (!pNext)
return;
const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
while (pNext && pNext->u64Expire <= u64Now)
{
PTMTIMER pTimer = pNext;
pNext = TMTIMER_GET_NEXT(pTimer);
PPDMCRITSECT pCritSect = pTimer->pCritSect;
if (pCritSect)
PDMCritSectEnter(pCritSect, VERR_IGNORED);
Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
if (fRc)
{
Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
/* unlink */
const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
if (pPrev)
TMTIMER_SET_NEXT(pPrev, pNext);
else
{
TMTIMER_SET_HEAD(pQueue, pNext);
pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
}
if (pNext)
TMTIMER_SET_PREV(pNext, pPrev);
pTimer->offNext = 0;
pTimer->offPrev = 0;
/* fire */
TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
switch (pTimer->enmType)
{
case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
default:
AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
break;
}
/* change the state if it wasn't changed already in the handler. */
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
}
if (pCritSect)
PDMCritSectLeave(pCritSect);
} /* run loop */
}
/**
* Schedules and runs any pending times in the timer queue for the
* synchronous virtual clock.
*
* This scheduling is a bit different from the other queues as it need
* to implement the special requirements of the timer synchronous virtual
* clock, thus this 2nd queue run function.
*
* @param pVM The VM to run the timers for.
*
* @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
* longer important.
*/
static void tmR3TimerQueueRunVirtualSync(PVM pVM)
{
PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
VM_ASSERT_EMT(pVM);
Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
/*
* Any timers?
*/
PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
if (RT_UNLIKELY(!pNext))
{
Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
return;
}
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
/*
* Calculate the time frame for which we will dispatch timers.
*
* We use a time frame ranging from the current sync time (which is most likely the
* same as the head timer) and some configurable period (100000ns) up towards the
* current virtual time. This period might also need to be restricted by the catch-up
* rate so frequent calls to this function won't accelerate the time too much, however
* this will be implemented at a later point if necessary.
*
* Without this frame we would 1) having to run timers much more frequently
* and 2) lag behind at a steady rate.
*/
const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
uint64_t u64Now;
if (!pVM->tm.s.fVirtualSyncTicking)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
u64Now = pVM->tm.s.u64VirtualSync;
Assert(u64Now <= pNext->u64Expire);
}
else
{
/* Calc 'now'. */
bool fStopCatchup = false;
bool fUpdateStuff = false;
uint64_t off = pVM->tm.s.offVirtualSync;
if (pVM->tm.s.fVirtualSyncCatchUp)
{
uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
if (RT_LIKELY(!(u64Delta >> 32)))
{
uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
if (off > u64Sub + offSyncGivenUp)
{
off -= u64Sub;
Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
}
else
{
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
fStopCatchup = true;
off = offSyncGivenUp;
}
fUpdateStuff = true;
}
}
u64Now = u64VirtualNow - off;
/* Adjust against last returned time. */
uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
if (u64Last > u64Now)
{
u64Now = u64Last + 1;
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
}
/* Check if stopped by expired timer. */
uint64_t const u64Expire = pNext->u64Expire;
if (u64Now >= u64Expire)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
u64Now = u64Expire;
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
}
else
{
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
if (fUpdateStuff)
{
ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
if (fStopCatchup)
{
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
}
}
}
}
/* calc end of frame. */
uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
if (u64Max > u64VirtualNow - offSyncGivenUp)
u64Max = u64VirtualNow - offSyncGivenUp;
/* assert sanity */
Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
Assert(u64Now <= u64Max);
Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
/*
* Process the expired timers moving the clock along as we progress.
*/
#ifdef VBOX_STRICT
uint64_t u64Prev = u64Now; NOREF(u64Prev);
#endif
while (pNext && pNext->u64Expire <= u64Max)
{
/* Advance */
PTMTIMER pTimer = pNext;
pNext = TMTIMER_GET_NEXT(pTimer);
/* Take the associated lock. */
PPDMCRITSECT pCritSect = pTimer->pCritSect;
if (pCritSect)
PDMCritSectEnter(pCritSect, VERR_IGNORED);
Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
/* Advance the clock - don't permit timers to be out of order or armed
in the 'past'. */
#ifdef VBOX_STRICT
AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
u64Prev = pTimer->u64Expire;
#endif
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
/* Unlink it, change the state and do the callout. */
tmTimerQueueUnlinkActive(pQueue, pTimer);
TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
switch (pTimer->enmType)
{
case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
default:
AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
break;
}
/* Change the state if it wasn't changed already in the handler.
Reset the Hz hint too since this is the same as TMTimerStop. */
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
if (fRc && pTimer->uHzHint)
{
if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
pTimer->uHzHint = 0;
}
Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
/* Leave the associated lock. */
if (pCritSect)
PDMCritSectLeave(pCritSect);
} /* run loop */
/*
* Restart the clock if it was stopped to serve any timers,
* and start/adjust catch-up if necessary.
*/
if ( !pVM->tm.s.fVirtualSyncTicking
&& pVM->tm.s.cVirtualTicking)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
/* calc the slack we've handed out. */
const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
Assert(u64VirtualNow2 >= u64VirtualNow);
AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
STAM_STATS({
if (offSlack)
{
PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
p->cPeriods++;
p->cTicks += offSlack;
if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
}
});
/* Let the time run a little bit while we were busy running timers(?). */
uint64_t u64Elapsed;
#define MAX_ELAPSED 30000U /* ns */
if (offSlack > MAX_ELAPSED)
u64Elapsed = 0;
else
{
u64Elapsed = u64VirtualNow2 - u64VirtualNow;
if (u64Elapsed > MAX_ELAPSED)
u64Elapsed = MAX_ELAPSED;
u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
}
#undef MAX_ELAPSED
/* Calc the current offset. */
uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
Assert(!(offNew & RT_BIT_64(63)));
uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
Assert(!(offLag & RT_BIT_64(63)));
/*
* Deal with starting, adjusting and stopping catchup.
*/
if (pVM->tm.s.fVirtualSyncCatchUp)
{
if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
{
/* stop */
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
}
else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
{
/* adjust */
unsigned i = 0;
while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
&& offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
i++;
if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
{
STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
}
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
}
else
{
/* give up */
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
}
}
else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
{
if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
{
/* start */
STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
unsigned i = 0;
while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
&& offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
i++;
STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
}
else
{
/* don't bother */
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
}
}
/*
* Update the offset and restart the clock.
*/
Assert(!(offNew & RT_BIT_64(63)));
ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
}
}
/**
* Deals with stopped Virtual Sync clock.
*
* This is called by the forced action flag handling code in EM when it
* encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
* will block on the VirtualSyncLock until the pending timers has been executed
* and the clock restarted.
*
* @param pVM The VM to run the timers for.
* @param pVCpu The virtual CPU we're running at.
*
* @thread EMTs
*/
VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
{
Log2(("TMR3VirtualSyncFF:\n"));
/*
* The EMT doing the timers is diverted to them.
*/
if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
TMR3TimerQueuesDo(pVM);
/*
* The other EMTs will block on the virtual sync lock and the first owner
* will run the queue and thus restarting the clock.
*
* Note! This is very suboptimal code wrt to resuming execution when there
* are more than two Virtual CPUs, since they will all have to enter
* the critical section one by one. But it's a very simple solution
* which will have to do the job for now.
*/
else
{
STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
if (pVM->tm.s.fVirtualSyncTicking)
{
STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
Log2(("TMR3VirtualSyncFF: ticking\n"));
}
else
{
PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
/* try run it. */
TM_LOCK_TIMERS(pVM);
PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
if (pVM->tm.s.fVirtualSyncTicking)
Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
else
{
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
Log2(("TMR3VirtualSyncFF: running queue\n"));
Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
tmR3TimerQueueRunVirtualSync(pVM);
if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
}
STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
TM_UNLOCK_TIMERS(pVM);
}
}
}
/** @name Saved state values
* @{ */
#define TMTIMERSTATE_SAVED_PENDING_STOP 4
#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
/** @} */
/**
* Saves the state of a timer to a saved state.
*
* @returns VBox status.
* @param pTimer Timer to save.
* @param pSSM Save State Manager handle.
*/
VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
{
LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
switch (pTimer->enmState)
{
case TMTIMERSTATE_STOPPED:
case TMTIMERSTATE_PENDING_STOP:
case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
if (!RTThreadYield())
RTThreadSleep(1);
/* fall thru */
case TMTIMERSTATE_ACTIVE:
case TMTIMERSTATE_PENDING_SCHEDULE:
case TMTIMERSTATE_PENDING_RESCHEDULE:
SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
return SSMR3PutU64(pSSM, pTimer->u64Expire);
case TMTIMERSTATE_EXPIRED_GET_UNLINK:
case TMTIMERSTATE_EXPIRED_DELIVER:
case TMTIMERSTATE_DESTROY:
case TMTIMERSTATE_FREE:
AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
}
AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
}
/**
* Loads the state of a timer from a saved state.
*
* @returns VBox status.
* @param pTimer Timer to restore.
* @param pSSM Save State Manager handle.
*/
VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
{
Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
/*
* Load the state and validate it.
*/
uint8_t u8State;
int rc = SSMR3GetU8(pSSM, &u8State);
if (RT_FAILURE(rc))
return rc;
#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
|| u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
u8State--;
#endif
if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
&& u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
{
AssertLogRelMsgFailed(("u8State=%d\n", u8State));
return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
}
/* Enter the critical sections to make TMTimerSet/Stop happy. */
if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
PDMCritSectEnter(&pTimer->pVMR3->tm.s.VirtualSyncLock, VERR_IGNORED);
PPDMCRITSECT pCritSect = pTimer->pCritSect;
if (pCritSect)
PDMCritSectEnter(pCritSect, VERR_IGNORED);
if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
{
/*
* Load the expire time.
*/
uint64_t u64Expire;
rc = SSMR3GetU64(pSSM, &u64Expire);
if (RT_FAILURE(rc))
return rc;
/*
* Set it.
*/
Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
rc = TMTimerSet(pTimer, u64Expire);
}
else
{
/*
* Stop it.
*/
Log(("u8State=%d\n", u8State));
rc = TMTimerStop(pTimer);
}
if (pCritSect)
PDMCritSectLeave(pCritSect);
if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
PDMCritSectLeave(&pTimer->pVMR3->tm.s.VirtualSyncLock);
/*
* On failure set SSM status.
*/
if (RT_FAILURE(rc))
rc = SSMR3HandleSetStatus(pSSM, rc);
return rc;
}
/**
* Associates a critical section with a timer.
*
* The critical section will be entered prior to doing the timer call back, thus
* avoiding potential races between the timer thread and other threads trying to
* stop or adjust the timer expiration while it's being delivered. The timer
* thread will leave the critical section when the timer callback returns.
*
* In strict builds, ownership of the critical section will be asserted by
* TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
* runtime).
*
* @retval VINF_SUCCESS on success.
* @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
* (asserted).
* @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
* (asserted).
* @retval VERR_ALREADY_EXISTS if a critical section was already associated
* with the timer (asserted).
* @retval VERR_INVALID_STATE if the timer isn't stopped.
*
* @param pTimer The timer handle.
* @param pCritSect The critical section. The caller must make sure this
* is around for the life time of the timer.
*
* @thread Any, but the caller is responsible for making sure the timer is not
* active.
*/
VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
{
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
AssertReturn(pszName, VERR_INVALID_PARAMETER);
AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
pTimer->pCritSect = pCritSect;
return VINF_SUCCESS;
}
/**
* Get the real world UTC time adjusted for VM lag.
*
* @returns pTime.
* @param pVM The VM instance.
* @param pTime Where to store the time.
*/
VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
{
/* Get a stable set of VirtualSync parameters before querying UTC. */
uint64_t offVirtualSync;
uint64_t offVirtualSyncGivenUp;
do
{
offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
} while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
Assert(offVirtualSync >= offVirtualSyncGivenUp);
uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
RTTimeNow(pTime);
RTTimeSpecSubNano(pTime, offLag);
RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
return pTime;
}
/**
* Pauses all clocks except TMCLOCK_REAL.
*
* @returns VBox status code, all errors are asserted.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @thread EMT corresponding to Pointer to the VMCPU.
*/
VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
{
VMCPU_ASSERT_EMT(pVCpu);
/*
* The shared virtual clock (includes virtual sync which is tied to it).
*/
TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
int rc = tmVirtualPauseLocked(pVM);
TM_UNLOCK_TIMERS(pVM);
if (RT_FAILURE(rc))
return rc;
/*
* Pause the TSC last since it is normally linked to the virtual
* sync clock, so the above code may actually stop both clocks.
*/
if (!pVM->tm.s.fTSCTiedToExecution)
{
TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
rc = tmCpuTickPauseLocked(pVM, pVCpu);
TM_UNLOCK_TIMERS(pVM);
if (RT_FAILURE(rc))
return rc;
}
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Update cNsTotal.
*/
uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
#endif
return VINF_SUCCESS;
}
/**
* Resumes all clocks except TMCLOCK_REAL.
*
* @returns VBox status code, all errors are asserted.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @thread EMT corresponding to Pointer to the VMCPU.
*/
VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
{
VMCPU_ASSERT_EMT(pVCpu);
int rc;
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Set u64NsTsStartTotal. There is no need to back this out if either of
* the two calls below fail.
*/
pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
#endif
/*
* Resume the TSC first since it is normally linked to the virtual sync
* clock, so it may actually not be resumed until we've executed the code
* below.
*/
if (!pVM->tm.s.fTSCTiedToExecution)
{
TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
rc = tmCpuTickResumeLocked(pVM, pVCpu);
TM_UNLOCK_TIMERS(pVM);
if (RT_FAILURE(rc))
return rc;
}
/*
* The shared virtual clock (includes virtual sync which is tied to it).
*/
TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
rc = tmVirtualResumeLocked(pVM);
TM_UNLOCK_TIMERS(pVM);
return rc;
}
/**
* Sets the warp drive percent of the virtual time.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param u32Percent The new percentage. 100 means normal operation.
*/
VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
{
return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
}
/**
* EMT worker for TMR3SetWarpDrive.
*
* @returns VBox status code.
* @param pUVM The user mode VM handle.
* @param u32Percent See TMR3SetWarpDrive().
* @internal
*/
static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
{
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
PVMCPU pVCpu = VMMGetCpu(pVM);
/*
* Validate it.
*/
AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
VERR_INVALID_PARAMETER);
/** @todo This isn't a feature specific to virtual time, move the variables to
* TM level and make it affect TMR3UTCNow as well! */
/*
* If the time is running we'll have to pause it before we can change
* the warp drive settings.
*/
TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
bool fPaused = !!pVM->tm.s.cVirtualTicking;
if (fPaused) /** @todo this isn't really working, but wtf. */
TMR3NotifySuspend(pVM, pVCpu);
/** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
if (fPaused)
TMR3NotifyResume(pVM, pVCpu);
TM_UNLOCK_TIMERS(pVM);
return VINF_SUCCESS;
}
/**
* Gets the current warp drive percent.
*
* @returns The warp drive percent.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
return pVM->tm.s.u32VirtualWarpDrivePercentage;
}
/**
* Gets the performance information for one virtual CPU as seen by the VMM.
*
* The returned times covers the period where the VM is running and will be
* reset when restoring a previous VM state (at least for the time being).
*
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_IMPLEMENTED if not compiled in.
* @retval VERR_INVALID_STATE if the VM handle is bad.
* @retval VERR_INVALID_PARAMETER if idCpu is out of range.
*
* @param pVM Pointer to the VM.
* @param idCpu The ID of the virtual CPU which times to get.
* @param pcNsTotal Where to store the total run time (nano seconds) of
* the CPU, i.e. the sum of the three other returns.
* Optional.
* @param pcNsExecuting Where to store the time (nano seconds) spent
* executing guest code. Optional.
* @param pcNsHalted Where to store the time (nano seconds) spent
* halted. Optional
* @param pcNsOther Where to store the time (nano seconds) spent
* preempted by the host scheduler, on virtualization
* overhead and on other tasks.
*/
VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
uint64_t *pcNsHalted, uint64_t *pcNsOther)
{
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Get a stable result set.
* This should be way quicker than an EMT request.
*/
PVMCPU pVCpu = &pVM->aCpus[idCpu];
uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
uint64_t cNsOther = pVCpu->tm.s.cNsOther;
while ( (uTimesGen & 1) /* update in progress */
|| uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
{
RTThreadYield();
uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
cNsTotal = pVCpu->tm.s.cNsTotal;
cNsExecuting = pVCpu->tm.s.cNsExecuting;
cNsHalted = pVCpu->tm.s.cNsHalted;
cNsOther = pVCpu->tm.s.cNsOther;
}
/*
* Fill in the return values.
*/
if (pcNsTotal)
*pcNsTotal = cNsTotal;
if (pcNsExecuting)
*pcNsExecuting = cNsExecuting;
if (pcNsHalted)
*pcNsHalted = cNsHalted;
if (pcNsOther)
*pcNsOther = cNsOther;
return VINF_SUCCESS;
#else
return VERR_NOT_IMPLEMENTED;
#endif
}
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/**
* Helper for tmR3CpuLoadTimer.
* @returns
* @param pState The state to update.
* @param cNsTotalDelta Total time.
* @param cNsExecutingDelta Time executing.
* @param cNsHaltedDelta Time halted.
*/
DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState,
uint64_t cNsTotal,
uint64_t cNsExecuting,
uint64_t cNsHalted)
{
/* Calc deltas */
uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
pState->cNsPrevTotal = cNsTotal;
uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
pState->cNsPrevExecuting = cNsExecuting;
uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
pState->cNsPrevHalted = cNsHalted;
/* Calc pcts. */
if (!cNsTotalDelta)
{
pState->cPctExecuting = 0;
pState->cPctHalted = 100;
pState->cPctOther = 0;
}
else if (cNsTotalDelta < UINT64_MAX / 4)
{
pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
}
else
{
pState->cPctExecuting = 0;
pState->cPctHalted = 100;
pState->cPctOther = 0;
}
}
/**
* Timer callback that calculates the CPU load since the last time it was
* called.
*
* @param pVM Pointer to the VM.
* @param pTimer The timer.
* @param pvUser NULL, unused.
*/
static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
{
/*
* Re-arm the timer first.
*/
int rc = TMTimerSetMillies(pTimer, 1000);
AssertLogRelRC(rc);
NOREF(pvUser);
/*
* Update the values for each CPU.
*/
uint64_t cNsTotalAll = 0;
uint64_t cNsExecutingAll = 0;
uint64_t cNsHaltedAll = 0;
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
{
PVMCPU pVCpu = &pVM->aCpus[iCpu];
/* Try get a stable data set. */
uint32_t cTries = 3;
uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
|| uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
{
if (!--cTries)
break;
ASMNopPause();
uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
cNsTotal = pVCpu->tm.s.cNsTotal;
cNsExecuting = pVCpu->tm.s.cNsExecuting;
cNsHalted = pVCpu->tm.s.cNsHalted;
}
/* Totals */
cNsTotalAll += cNsTotal;
cNsExecutingAll += cNsExecuting;
cNsHaltedAll += cNsHalted;
/* Calc the PCTs and update the state. */
tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
}
/*
* Update the value for all the CPUs.
*/
tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
/** @todo Try add 1, 5 and 15 min load stats. */
}
#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
/**
* @callback_method_impl{PFNVMMEMTRENDEZVOUS,
* Worker for TMR3CpuTickParavirtEnable}
*/
static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
{
AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
Assert(tmR3HasFixedTSC(pVM));
/*
* The return value of TMCpuTickGet() and the guest's TSC value for each
* CPU must remain constant across the TM TSC mode-switch. Thus we have
* the following equation (new/old signifies the new/old tsc modes):
* uNewTsc = uOldTsc
*
* Where (see tmCpuTickGetInternal):
* uOldTsc = uRawOldTsc - offTscRawSrcOld
* uNewTsc = uRawNewTsc - offTscRawSrcNew
*
* Solve it for offTscRawSrcNew without replacing uOldTsc:
* uRawNewTsc - offTscRawSrcNew = uOldTsc
* => -offTscRawSrcNew = uOldTsc - uRawNewTsc
* => offTscRawSrcNew = uRawNewTsc - uOldTsc
*/
uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
uint64_t uRawNewTsc = SUPReadTsc();
uint32_t cCpus = pVM->cCpus;
for (uint32_t i = 0; i < cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
}
pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
LogRel(("TM: Switched TSC mode. New enmTSCMode=%d (%s)\n", pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
return VINF_SUCCESS;
}
/**
* Notify TM that the guest has enabled usage of a paravirtualized TSC.
*
* This may perform a EMT rendezvous and change the TSC virtualization mode.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
{
int rc = VINF_SUCCESS;
if (pVM->tm.s.fTSCModeSwitchAllowed)
{
if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
}
else
LogRel(("TM: Host/VM is not suitable for using TSC mode %d (%s). Request to change TSC mode ignored.\n",
TMTSCMODE_REAL_TSC_OFFSET, tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
pVM->tm.s.fParavirtTscEnabled = true;
return rc;
}
/**
* @callback_method_impl{PFNVMMEMTRENDEZVOUS,
* Worker for TMR3CpuTickParavirtDisable}
*/
static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
{
AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
&& pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
/*
* See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
*/
uint64_t uRawOldTsc = SUPReadTsc();
uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
uint32_t cCpus = pVM->cCpus;
for (uint32_t i = 0; i < cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
/* Update the last-seen tick here as we havent't been updating it (as we don't
need it) while in pure TSC-offsetting mode. */
pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
}
pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
LogRel(("TM: Switched TSC mode. New enmTSCMode=%d (%s)\n", pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
return VINF_SUCCESS;
}
/**
* Notify TM that the guest has disabled usage of a paravirtualized TSC.
*
* If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
* perform an EMT rendezvous to revert those changes.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
{
int rc = VINF_SUCCESS;
if ( pVM->tm.s.fTSCModeSwitchAllowed
&& pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
&& pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
pVM->tm.s.fParavirtTscEnabled = false;
return rc;
}
/**
* Check whether the guest can be presented a fixed rate & monotonic TSC.
*
* @returns true if TSC is stable, false otherwise.
* @param pVM Pointer to the VM.
* @param fWithParavirtEnabled Whether it's fixed & monotonic when
* paravirt. TSC is enabled or not.
*
* @remarks Must be called only after TMR3InitFinalize().
*/
VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
{
/** @todo figure out what exactly we want here later. */
NOREF(fWithParavirtEnabled);
return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
&& g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
}
/**
* Gets the 5 char clock name for the info tables.
*
* @returns The name.
* @param enmClock The clock.
*/
DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
{
switch (enmClock)
{
case TMCLOCK_REAL: return "Real ";
case TMCLOCK_VIRTUAL: return "Virt ";
case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
case TMCLOCK_TSC: return "TSC ";
default: return "Bad ";
}
}
/**
* Display all timers.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"Timers (pVM=%p)\n"
"%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
pVM,
sizeof(RTR3PTR) * 2, "pTimerR3 ",
sizeof(int32_t) * 2, "offNext ",
sizeof(int32_t) * 2, "offPrev ",
sizeof(int32_t) * 2, "offSched ",
"Time",
"Expire",
"HzHint",
"State");
TM_LOCK_TIMERS(pVM);
for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
{
pHlp->pfnPrintf(pHlp,
"%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
pTimer,
pTimer->offNext,
pTimer->offPrev,
pTimer->offScheduleNext,
tmR3Get5CharClockName(pTimer->enmClock),
TMTimerGet(pTimer),
pTimer->u64Expire,
pTimer->uHzHint,
tmTimerState(pTimer->enmState),
pTimer->pszDesc);
}
TM_UNLOCK_TIMERS(pVM);
}
/**
* Display all active timers.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"Active Timers (pVM=%p)\n"
"%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
pVM,
sizeof(RTR3PTR) * 2, "pTimerR3 ",
sizeof(int32_t) * 2, "offNext ",
sizeof(int32_t) * 2, "offPrev ",
sizeof(int32_t) * 2, "offSched ",
"Time",
"Expire",
"HzHint",
"State");
for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
{
TM_LOCK_TIMERS(pVM);
for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
pTimer;
pTimer = TMTIMER_GET_NEXT(pTimer))
{
pHlp->pfnPrintf(pHlp,
"%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
pTimer,
pTimer->offNext,
pTimer->offPrev,
pTimer->offScheduleNext,
tmR3Get5CharClockName(pTimer->enmClock),
TMTimerGet(pTimer),
pTimer->u64Expire,
pTimer->uHzHint,
tmTimerState(pTimer->enmState),
pTimer->pszDesc);
}
TM_UNLOCK_TIMERS(pVM);
}
}
/**
* Display all clocks.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
/*
* Read the times first to avoid more than necessary time variation.
*/
const uint64_t u64Virtual = TMVirtualGet(pVM);
const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
const uint64_t u64Real = TMRealGet(pVM);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
uint64_t u64TSC = TMCpuTickGet(pVCpu);
/*
* TSC
*/
pHlp->pfnPrintf(pHlp,
"Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
{
pHlp->pfnPrintf(pHlp, " - real tsc offset");
if (pVCpu->tm.s.offTSCRawSrc)
pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
}
else
pHlp->pfnPrintf(pHlp, " - virtual clock");
pHlp->pfnPrintf(pHlp, "\n");
}
/*
* virtual
*/
pHlp->pfnPrintf(pHlp,
" Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
if (pVM->tm.s.fVirtualWarpDrive)
pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
pHlp->pfnPrintf(pHlp, "\n");
/*
* virtual sync
*/
pHlp->pfnPrintf(pHlp,
"VirtSync: %18RU64 (%#016RX64) %s%s",
u64VirtualSync, u64VirtualSync,
pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
if (pVM->tm.s.offVirtualSync)
{
pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
}
pHlp->pfnPrintf(pHlp, "\n");
/*
* real
*/
pHlp->pfnPrintf(pHlp,
" Real: %18RU64 (%#016RX64) %RU64Hz\n",
u64Real, u64Real, TMRealGetFreq(pVM));
}
/**
* Gets the descriptive TM TSC mode name given the enum value.
*
* @returns The name.
* @param pVM Pointer to the VM.
*/
static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
{
switch (enmMode)
{
case TMTSCMODE_REAL_TSC_OFFSET: return "RealTscOffset";
case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTscEmulated";
case TMTSCMODE_DYNAMIC: return "Dynamic";
default: return "???";
}
}
/**
* Gets the descriptive TM TSC mode name.
*
* @returns The name.
* @param pVM Pointer to the VM.
*/
static const char *tmR3GetTSCModeName(PVM pVM)
{
Assert(pVM);
return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
}