/* $Id$ */
/** @file
* PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_pgm PGM - The Page Manager and Monitor
*
* @see grp_pgm,
* @ref pg_pgm_pool,
* @ref pg_pgm_phys.
*
*
* @section sec_pgm_modes Paging Modes
*
* There are three memory contexts: Host Context (HC), Guest Context (GC)
* and intermediate context. When talking about paging HC can also be referred
* to as "host paging", and GC referred to as "shadow paging".
*
* We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
* is defined by the host operating system. The mode used in the shadow paging mode
* depends on the host paging mode and what the mode the guest is currently in. The
* following relation between the two is defined:
*
* @verbatim
Host > 32-bit | PAE | AMD64 |
Guest | | | |
==v================================
32-bit 32-bit PAE PAE
-------|--------|--------|--------|
PAE PAE PAE PAE
-------|--------|--------|--------|
AMD64 AMD64 AMD64 AMD64
-------|--------|--------|--------| @endverbatim
*
* All configuration except those in the diagonal (upper left) are expected to
* require special effort from the switcher (i.e. a bit slower).
*
*
*
*
* @section sec_pgm_shw The Shadow Memory Context
*
*
* [..]
*
* Because of guest context mappings requires PDPT and PML4 entries to allow
* writing on AMD64, the two upper levels will have fixed flags whatever the
* guest is thinking of using there. So, when shadowing the PD level we will
* calculate the effective flags of PD and all the higher levels. In legacy
* PAE mode this only applies to the PWT and PCD bits (the rest are
* ignored/reserved/MBZ). We will ignore those bits for the present.
*
*
*
* @section sec_pgm_int The Intermediate Memory Context
*
* The world switch goes thru an intermediate memory context which purpose it is
* to provide different mappings of the switcher code. All guest mappings are also
* present in this context.
*
* The switcher code is mapped at the same location as on the host, at an
* identity mapped location (physical equals virtual address), and at the
* hypervisor location. The identity mapped location is for when the world
* switches that involves disabling paging.
*
* PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
* simplifies switching guest CPU mode and consistency at the cost of more
* code to do the work. All memory use for those page tables is located below
* 4GB (this includes page tables for guest context mappings).
*
* Note! The intermediate memory context is also used for 64-bit guest
* execution on 32-bit hosts. Because we need to load 64-bit registers
* prior to switching to guest context, we need to be in 64-bit mode
* first. So, HM has some 64-bit worker routines in VMMRC.rc that get
* invoked via the special world switcher code in LegacyToAMD64.asm.
*
*
* @subsection subsec_pgm_int_gc Guest Context Mappings
*
* During assignment and relocation of a guest context mapping the intermediate
* memory context is used to verify the new location.
*
* Guest context mappings are currently restricted to below 4GB, for reasons
* of simplicity. This may change when we implement AMD64 support.
*
*
*
*
* @section sec_pgm_misc Misc
*
*
* @subsection sec_pgm_misc_A20 The A20 Gate
*
* PGM implements the A20 gate masking when translating a virtual guest address
* into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
* the code reading the guest page table entries during shadowing. The masking
* is done consistenly for all CPU modes, paged ones included. Large pages are
* also masked correctly. (On current CPUs, experiments indicates that AMD does
* not apply A20M in paged modes and intel only does it for the 2nd MB of
* memory.)
*
* The A20 gate implementation is per CPU core. It can be configured on a per
* core basis via the keyboard device and PC architecture device. This is
* probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
* guest OSes try pushing things anyway, so who cares. (On current real systems
* the A20M signal is probably only sent to the boot CPU and it affects all
* thread and probably all cores in that package.)
*
* The keyboard device and the PC architecture device doesn't OR their A20
* config bits together, rather they are currently implemented such that they
* mirror the CPU state. So, flipping the bit in either of them will change the
* A20 state. (On real hardware the bits of the two devices should probably be
* ORed together to indicate enabled, i.e. both needs to be cleared to disable
* A20 masking.)
*
* The A20 state will change immediately, transmeta fashion. There is no delays
* due to buses, wiring or other physical stuff. (On real hardware there are
* normally delays, the delays differs between the two devices and probably also
* between chipsets and CPU generations. Note that it's said that transmeta CPUs
* does the change immediately like us, they apparently intercept/handles the
* port accesses in microcode. Neat.)
*
* @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
*
*
* @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
*
* The differences between legacy PAE and long mode PAE are:
* -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
* all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
* usual meanings while 6 is ignored (AMD). This means that upon switching to
* legacy PAE mode we'll have to clear these bits and when going to long mode
* they must be set. This applies to both intermediate and shadow contexts,
* however we don't need to do it for the intermediate one since we're
* executing with CR0.WP at that time.
* -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
* a page aligned one is required.
*
*
* @section sec_pgm_handlers Access Handlers
*
* Placeholder.
*
*
* @subsection sec_pgm_handlers_virt Virtual Access Handlers
*
* Placeholder.
*
*
* @subsection sec_pgm_handlers_virt Virtual Access Handlers
*
* We currently implement three types of virtual access handlers: ALL, WRITE
* and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
*
* The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
* to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
* a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
* rest of this section is going to be about these handlers.
*
* We'll go thru the life cycle of a handler and try make sense of it all, don't know
* how successful this is gonna be...
*
* 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
* PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
* and create a new node that is inserted into the AVL tree (range key). Then
* a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
*
* 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
*
* 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
* via the current guest CR3 and update the physical page -> virtual handler
* translation. Needless to say, this doesn't exactly scale very well. If any changes
* are detected, it will flag a virtual bit update just like we did on registration.
* PGMPHYS pages with changes will have their virtual handler state reset to NONE.
*
* 2b. The virtual bit update process will iterate all the pages covered by all the
* virtual handlers and update the PGMPAGE virtual handler state to the max of all
* virtual handlers on that page.
*
* 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
* we don't miss any alias mappings of the monitored pages.
*
* 2d. SyncCR3 will then proceed with syncing the CR3 table.
*
* 3. \#PF(np,read) on a page in the range. This will cause it to be synced
* read-only and resumed if it's a WRITE handler. If it's an ALL handler we
* will call the handlers like in the next step. If the physical mapping has
* changed we will - some time in the future - perform a handler callback
* (optional) and update the physical -> virtual handler cache.
*
* 4. \#PF(,write) on a page in the range. This will cause the handler to
* be invoked.
*
* 5. The guest invalidates the page and changes the physical backing or
* unmaps it. This should cause the invalidation callback to be invoked
* (it might not yet be 100% perfect). Exactly what happens next... is
* this where we mess up and end up out of sync for a while?
*
* 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
* We will then set all PGMPAGEs in the physical -> virtual handler cache for
* this handler to NONE and trigger a full PGM resync (basically the same
* as int step 1). Which means 2 is executed again.
*
*
* @subsubsection sub_sec_pgm_handler_virt_todo TODOs
*
* There is a bunch of things that needs to be done to make the virtual handlers
* work 100% correctly and work more efficiently.
*
* The first bit hasn't been implemented yet because it's going to slow the
* whole mess down even more, and besides it seems to be working reliably for
* our current uses. OTOH, some of the optimizations might end up more or less
* implementing the missing bits, so we'll see.
*
* On the optimization side, the first thing to do is to try avoid unnecessary
* cache flushing. Then try team up with the shadowing code to track changes
* in mappings by means of access to them (shadow in), updates to shadows pages,
* invlpg, and shadow PT discarding (perhaps).
*
* Some idea that have popped up for optimization for current and new features:
* - bitmap indicating where there are virtual handlers installed.
* (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
* - Further optimize this by min/max (needs min/max avl getters).
* - Shadow page table entry bit (if any left)?
*
*/
/** @page pg_pgm_phys PGM Physical Guest Memory Management
*
*
* Objectives:
* - Guest RAM over-commitment using memory ballooning,
* zero pages and general page sharing.
* - Moving or mirroring a VM onto a different physical machine.
*
*
* @subsection subsec_pgmPhys_Definitions Definitions
*
* Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
* machinery associated with it.
*
*
*
*
* @subsection subsec_pgmPhys_AllocPage Allocating a page.
*
* Initially we map *all* guest memory to the (per VM) zero page, which
* means that none of the read functions will cause pages to be allocated.
*
* Exception, access bit in page tables that have been shared. This must
* be handled, but we must also make sure PGMGst*Modify doesn't make
* unnecessary modifications.
*
* Allocation points:
* - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
* - Replacing a zero page mapping at \#PF.
* - Replacing a shared page mapping at \#PF.
* - ROM registration (currently MMR3RomRegister).
* - VM restore (pgmR3Load).
*
* For the first three it would make sense to keep a few pages handy
* until we've reached the max memory commitment for the VM.
*
* For the ROM registration, we know exactly how many pages we need
* and will request these from ring-0. For restore, we will save
* the number of non-zero pages in the saved state and allocate
* them up front. This would allow the ring-0 component to refuse
* the request if the isn't sufficient memory available for VM use.
*
* Btw. for both ROM and restore allocations we won't be requiring
* zeroed pages as they are going to be filled instantly.
*
*
* @subsection subsec_pgmPhys_FreePage Freeing a page
*
* There are a few points where a page can be freed:
* - After being replaced by the zero page.
* - After being replaced by a shared page.
* - After being ballooned by the guest additions.
* - At reset.
* - At restore.
*
* When freeing one or more pages they will be returned to the ring-0
* component and replaced by the zero page.
*
* The reasoning for clearing out all the pages on reset is that it will
* return us to the exact same state as on power on, and may thereby help
* us reduce the memory load on the system. Further it might have a
* (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
*
* On restore, as mention under the allocation topic, pages should be
* freed / allocated depending on how many is actually required by the
* new VM state. The simplest approach is to do like on reset, and free
* all non-ROM pages and then allocate what we need.
*
* A measure to prevent some fragmentation, would be to let each allocation
* chunk have some affinity towards the VM having allocated the most pages
* from it. Also, try make sure to allocate from allocation chunks that
* are almost full. Admittedly, both these measures might work counter to
* our intentions and its probably not worth putting a lot of effort,
* cpu time or memory into this.
*
*
* @subsection subsec_pgmPhys_SharePage Sharing a page
*
* The basic idea is that there there will be a idle priority kernel
* thread walking the non-shared VM pages hashing them and looking for
* pages with the same checksum. If such pages are found, it will compare
* them byte-by-byte to see if they actually are identical. If found to be
* identical it will allocate a shared page, copy the content, check that
* the page didn't change while doing this, and finally request both the
* VMs to use the shared page instead. If the page is all zeros (special
* checksum and byte-by-byte check) it will request the VM that owns it
* to replace it with the zero page.
*
* To make this efficient, we will have to make sure not to try share a page
* that will change its contents soon. This part requires the most work.
* A simple idea would be to request the VM to write monitor the page for
* a while to make sure it isn't modified any time soon. Also, it may
* make sense to skip pages that are being write monitored since this
* information is readily available to the thread if it works on the
* per-VM guest memory structures (presently called PGMRAMRANGE).
*
*
* @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
*
* The pages are organized in allocation chunks in ring-0, this is a necessity
* if we wish to have an OS agnostic approach to this whole thing. (On Linux we
* could easily work on a page-by-page basis if we liked. Whether this is possible
* or efficient on NT I don't quite know.) Fragmentation within these chunks may
* become a problem as part of the idea here is that we wish to return memory to
* the host system.
*
* For instance, starting two VMs at the same time, they will both allocate the
* guest memory on-demand and if permitted their page allocations will be
* intermixed. Shut down one of the two VMs and it will be difficult to return
* any memory to the host system because the page allocation for the two VMs are
* mixed up in the same allocation chunks.
*
* To further complicate matters, when pages are freed because they have been
* ballooned or become shared/zero the whole idea is that the page is supposed
* to be reused by another VM or returned to the host system. This will cause
* allocation chunks to contain pages belonging to different VMs and prevent
* returning memory to the host when one of those VM shuts down.
*
* The only way to really deal with this problem is to move pages. This can
* either be done at VM shutdown and or by the idle priority worker thread
* that will be responsible for finding sharable/zero pages. The mechanisms
* involved for coercing a VM to move a page (or to do it for it) will be
* the same as when telling it to share/zero a page.
*
*
* @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
*
* There's a difficult balance between keeping the per-page tracking structures
* (global and guest page) easy to use and keeping them from eating too much
* memory. We have limited virtual memory resources available when operating in
* 32-bit kernel space (on 64-bit there'll it's quite a different story). The
* tracking structures will be attempted designed such that we can deal with up
* to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
*
*
* @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
*
* @see pg_GMM
*
* @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
*
* Fixed info is the physical address of the page (HCPhys) and the page id
* (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
* Today we've restricting ourselves to 40(-12) bits because this is the current
* restrictions of all AMD64 implementations (I think Barcelona will up this
* to 48(-12) bits, not that it really matters) and I needed the bits for
* tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
* decent range for the page id: 2^(28+12) = 1024TB.
*
* In additions to these, we'll have to keep maintaining the page flags as we
* currently do. Although it wouldn't harm to optimize these quite a bit, like
* for instance the ROM shouldn't depend on having a write handler installed
* in order for it to become read-only. A RO/RW bit should be considered so
* that the page syncing code doesn't have to mess about checking multiple
* flag combinations (ROM || RW handler || write monitored) in order to
* figure out how to setup a shadow PTE. But this of course, is second
* priority at present. Current this requires 12 bits, but could probably
* be optimized to ~8.
*
* Then there's the 24 bits used to track which shadow page tables are
* currently mapping a page for the purpose of speeding up physical
* access handlers, and thereby the page pool cache. More bit for this
* purpose wouldn't hurt IIRC.
*
* Then there is a new bit in which we need to record what kind of page
* this is, shared, zero, normal or write-monitored-normal. This'll
* require 2 bits. One bit might be needed for indicating whether a
* write monitored page has been written to. And yet another one or
* two for tracking migration status. 3-4 bits total then.
*
* Whatever is left will can be used to record the sharabilitiy of a
* page. The page checksum will not be stored in the per-VM table as
* the idle thread will not be permitted to do modifications to it.
* It will instead have to keep its own working set of potentially
* shareable pages and their check sums and stuff.
*
* For the present we'll keep the current packing of the
* PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
* we'll have to change it to a struct with a total of 128-bits at
* our disposal.
*
* The initial layout will be like this:
* @verbatim
RTHCPHYS HCPhys; The current stuff.
63:40 Current shadow PT tracking stuff.
39:12 The physical page frame number.
11:0 The current flags.
uint32_t u28PageId : 28; The page id.
uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
uint32_t u1Reserved : 1; Reserved for later.
uint32_t u32Reserved; Reserved for later, mostly sharing stats.
@endverbatim
*
* The final layout will be something like this:
* @verbatim
RTHCPHYS HCPhys; The current stuff.
63:48 High page id (12+).
47:12 The physical page frame number.
11:0 Low page id.
uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
@endverbatim
*
* Cost wise, this means we'll double the cost for guest memory. There isn't anyway
* around that I'm afraid. It means that the cost of dealing out 32GB of memory
* to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
* example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
*
* A couple of cost examples for the total cost per-VM + kernel.
* 32-bit Windows and 32-bit linux:
* 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
* 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
* 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
* 64-bit Windows and 64-bit linux:
* 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
* 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
* 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
*
* UPDATE - 2007-09-27:
* Will need a ballooned flag/state too because we cannot
* trust the guest 100% and reporting the same page as ballooned more
* than once will put the GMM off balance.
*
*
* @subsection subsec_pgmPhys_Serializing Serializing Access
*
* Initially, we'll try a simple scheme:
*
* - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
* by the EMT thread of that VM while in the pgm critsect.
* - Other threads in the VM process that needs to make reliable use of
* the per-VM RAM tracking structures will enter the critsect.
* - No process external thread or kernel thread will ever try enter
* the pgm critical section, as that just won't work.
* - The idle thread (and similar threads) doesn't not need 100% reliable
* data when performing it tasks as the EMT thread will be the one to
* do the actual changes later anyway. So, as long as it only accesses
* the main ram range, it can do so by somehow preventing the VM from
* being destroyed while it works on it...
*
* - The over-commitment management, including the allocating/freeing
* chunks, is serialized by a ring-0 mutex lock (a fast one since the
* more mundane mutex implementation is broken on Linux).
* - A separate mutex is protecting the set of allocation chunks so
* that pages can be shared or/and freed up while some other VM is
* allocating more chunks. This mutex can be take from under the other
* one, but not the other way around.
*
*
* @subsection subsec_pgmPhys_Request VM Request interface
*
* When in ring-0 it will become necessary to send requests to a VM so it can
* for instance move a page while defragmenting during VM destroy. The idle
* thread will make use of this interface to request VMs to setup shared
* pages and to perform write monitoring of pages.
*
* I would propose an interface similar to the current VMReq interface, similar
* in that it doesn't require locking and that the one sending the request may
* wait for completion if it wishes to. This shouldn't be very difficult to
* realize.
*
* The requests themselves are also pretty simple. They are basically:
* -# Check that some precondition is still true.
* -# Do the update.
* -# Update all shadow page tables involved with the page.
*
* The 3rd step is identical to what we're already doing when updating a
* physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
*
*
*
* @section sec_pgmPhys_MappingCaches Mapping Caches
*
* In order to be able to map in and out memory and to be able to support
* guest with more RAM than we've got virtual address space, we'll employing
* a mapping cache. Normally ring-0 and ring-3 can share the same cache,
* however on 32-bit darwin the ring-0 code is running in a different memory
* context and therefore needs a separate cache. In raw-mode context we also
* need a separate cache. The 32-bit darwin mapping cache and the one for
* raw-mode context share a lot of code, see PGMRZDYNMAP.
*
*
* @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
*
* We've considered implementing the ring-3 mapping cache page based but found
* that this was bother some when one had to take into account TLBs+SMP and
* portability (missing the necessary APIs on several platforms). There were
* also some performance concerns with this approach which hadn't quite been
* worked out.
*
* Instead, we'll be mapping allocation chunks into the VM process. This simplifies
* matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
* only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
* compared to the previous idea is that mapping or unmapping a 1MB chunk is more
* costly than a single page, although how much more costly is uncertain. We'll
* try address this by using a very big cache, preferably bigger than the actual
* VM RAM size if possible. The current VM RAM sizes should give some idea for
* 32-bit boxes, while on 64-bit we can probably get away with employing an
* unlimited cache.
*
* The cache have to parts, as already indicated, the ring-3 side and the
* ring-0 side.
*
* The ring-0 will be tied to the page allocator since it will operate on the
* memory objects it contains. It will therefore require the first ring-0 mutex
* discussed in @ref subsec_pgmPhys_Serializing. We
* some double house keeping wrt to who has mapped what I think, since both
* VMMR0.r0 and RTR0MemObj will keep track of mapping relations
*
* The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
* require anyone that desires to do changes to the mapping cache to do that
* from within this critsect. Alternatively, we could employ a separate critsect
* for serializing changes to the mapping cache as this would reduce potential
* contention with other threads accessing mappings unrelated to the changes
* that are in process. We can see about this later, contention will show
* up in the statistics anyway, so it'll be simple to tell.
*
* The organization of the ring-3 part will be very much like how the allocation
* chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
* having to walk the tree all the time, we'll have a couple of lookaside entries
* like in we do for I/O ports and MMIO in IOM.
*
* The simplified flow of a PGMPhysRead/Write function:
* -# Enter the PGM critsect.
* -# Lookup GCPhys in the ram ranges and get the Page ID.
* -# Calc the Allocation Chunk ID from the Page ID.
* -# Check the lookaside entries and then the AVL tree for the Chunk ID.
* If not found in cache:
* -# Call ring-0 and request it to be mapped and supply
* a chunk to be unmapped if the cache is maxed out already.
* -# Insert the new mapping into the AVL tree (id + R3 address).
* -# Update the relevant lookaside entry and return the mapping address.
* -# Do the read/write according to monitoring flags and everything.
* -# Leave the critsect.
*
*
* @section sec_pgmPhys_Fallback Fallback
*
* Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
* API and thus require a fallback.
*
* So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
* will return to the ring-3 caller (and later ring-0) and asking it to seed
* the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
* then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
* "SeededAllocPages" call to ring-0.
*
* The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
* all page sharing (zero page detection will continue). It will also force
* all allocations to come from the VM which seeded the page. Both these
* measures are taken to make sure that there will never be any need for
* mapping anything into ring-3 - everything will be mapped already.
*
* Whether we'll continue to use the current MM locked memory management
* for this I don't quite know (I'd prefer not to and just ditch that all
* together), we'll see what's simplest to do.
*
*
*
* @section sec_pgmPhys_Changes Changes
*
* Breakdown of the changes involved?
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/cpum.h>
#include <VBox/vmm/iom.h>
#include <VBox/sup.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/stam.h>
#ifdef VBOX_WITH_REM
# include <VBox/vmm/rem.h>
#endif
#include <VBox/vmm/selm.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/hm.h>
#include "PGMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>
#include "PGMInline.h"
#include <VBox/dbg.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/assert.h>
#include <iprt/env.h>
#include <iprt/mem.h>
#include <iprt/file.h>
#include <iprt/string.h>
#include <iprt/thread.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static int pgmR3InitPaging(PVM pVM);
static int pgmR3InitStats(PVM pVM);
static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
#ifdef VBOX_STRICT
static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
#endif
static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
#ifdef VBOX_WITH_DEBUGGER
static FNDBGCCMD pgmR3CmdError;
static FNDBGCCMD pgmR3CmdSync;
static FNDBGCCMD pgmR3CmdSyncAlways;
# ifdef VBOX_STRICT
static FNDBGCCMD pgmR3CmdAssertCR3;
# endif
static FNDBGCCMD pgmR3CmdPhysToFile;
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef VBOX_WITH_DEBUGGER
/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
static const DBGCVARDESC g_aPgmErrorArgs[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
};
static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
{ 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
};
# ifdef DEBUG_sandervl
static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
{ 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
};
# endif
/** Command descriptors. */
static const DBGCCMD g_aCmds[] =
{
/* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
{ "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
{ "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
{ "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
# ifdef VBOX_STRICT
{ "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
# ifdef VBOX_WITH_PAGE_SHARING
{ "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
{ "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
# endif
# endif
{ "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
{ "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
};
#endif
/*
* Shadow - 32-bit mode
*/
#define PGM_SHW_TYPE PGM_TYPE_32BIT
#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
#include "PGMShw.h"
/* Guest - real mode */
#define PGM_GST_TYPE PGM_TYPE_REAL
#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
#include "PGMBth.h"
#include "PGMGstDefs.h"
#include "PGMGst.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - protected mode */
#define PGM_GST_TYPE PGM_TYPE_PROT
#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
#include "PGMBth.h"
#include "PGMGstDefs.h"
#include "PGMGst.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - 32-bit mode */
#define PGM_GST_TYPE PGM_TYPE_32BIT
#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
#include "PGMBth.h"
#include "PGMGstDefs.h"
#include "PGMGst.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
#undef PGM_SHW_NAME_RC_STR
#undef PGM_SHW_NAME_R0_STR
/*
* Shadow - PAE mode
*/
#define PGM_SHW_TYPE PGM_TYPE_PAE
#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
#include "PGMShw.h"
/* Guest - real mode */
#define PGM_GST_TYPE PGM_TYPE_REAL
#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - protected mode */
#define PGM_GST_TYPE PGM_TYPE_PROT
#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - 32-bit mode */
#define PGM_GST_TYPE PGM_TYPE_32BIT
#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - PAE mode */
#define PGM_GST_TYPE PGM_TYPE_PAE
#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
#include "PGMBth.h"
#include "PGMGstDefs.h"
#include "PGMGst.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
#undef PGM_SHW_NAME_RC_STR
#undef PGM_SHW_NAME_R0_STR
/*
* Shadow - AMD64 mode
*/
#define PGM_SHW_TYPE PGM_TYPE_AMD64
#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
#include "PGMShw.h"
#ifdef VBOX_WITH_64_BITS_GUESTS
/* Guest - AMD64 mode */
# define PGM_GST_TYPE PGM_TYPE_AMD64
# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
# include "PGMBth.h"
# include "PGMGstDefs.h"
# include "PGMGst.h"
# undef BTH_PGMPOOLKIND_PT_FOR_BIG
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef BTH_PGMPOOLKIND_ROOT
# undef PGM_BTH_NAME
# undef PGM_BTH_NAME_RC_STR
# undef PGM_BTH_NAME_R0_STR
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# undef PGM_GST_NAME_RC_STR
# undef PGM_GST_NAME_R0_STR
#endif /* VBOX_WITH_64_BITS_GUESTS */
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
#undef PGM_SHW_NAME_RC_STR
#undef PGM_SHW_NAME_R0_STR
/*
* Shadow - Nested paging mode
*/
#define PGM_SHW_TYPE PGM_TYPE_NESTED
#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
#include "PGMShw.h"
/* Guest - real mode */
#define PGM_GST_TYPE PGM_TYPE_REAL
#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - protected mode */
#define PGM_GST_TYPE PGM_TYPE_PROT
#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - 32-bit mode */
#define PGM_GST_TYPE PGM_TYPE_32BIT
#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - PAE mode */
#define PGM_GST_TYPE PGM_TYPE_PAE
#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
#ifdef VBOX_WITH_64_BITS_GUESTS
/* Guest - AMD64 mode */
# define PGM_GST_TYPE PGM_TYPE_AMD64
# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
# include "PGMGstDefs.h"
# include "PGMBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_BIG
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_BTH_NAME_RC_STR
# undef PGM_BTH_NAME_R0_STR
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# undef PGM_GST_NAME_RC_STR
# undef PGM_GST_NAME_R0_STR
#endif /* VBOX_WITH_64_BITS_GUESTS */
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
#undef PGM_SHW_NAME_RC_STR
#undef PGM_SHW_NAME_R0_STR
/*
* Shadow - EPT
*/
#define PGM_SHW_TYPE PGM_TYPE_EPT
#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
#include "PGMShw.h"
/* Guest - real mode */
#define PGM_GST_TYPE PGM_TYPE_REAL
#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - protected mode */
#define PGM_GST_TYPE PGM_TYPE_PROT
#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - 32-bit mode */
#define PGM_GST_TYPE PGM_TYPE_32BIT
#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
/* Guest - PAE mode */
#define PGM_GST_TYPE PGM_TYPE_PAE
#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
#include "PGMGstDefs.h"
#include "PGMBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef PGM_BTH_NAME
#undef PGM_BTH_NAME_RC_STR
#undef PGM_BTH_NAME_R0_STR
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_GST_NAME_RC_STR
#undef PGM_GST_NAME_R0_STR
#ifdef VBOX_WITH_64_BITS_GUESTS
/* Guest - AMD64 mode */
# define PGM_GST_TYPE PGM_TYPE_AMD64
# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
# include "PGMGstDefs.h"
# include "PGMBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_BIG
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_BTH_NAME_RC_STR
# undef PGM_BTH_NAME_R0_STR
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# undef PGM_GST_NAME_RC_STR
# undef PGM_GST_NAME_R0_STR
#endif /* VBOX_WITH_64_BITS_GUESTS */
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
#undef PGM_SHW_NAME_RC_STR
#undef PGM_SHW_NAME_R0_STR
/**
* Initiates the paging of VM.
*
* @returns VBox status code.
* @param pVM Pointer to VM structure.
*/
VMMR3DECL(int) PGMR3Init(PVM pVM)
{
LogFlow(("PGMR3Init:\n"));
PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
int rc;
/*
* Assert alignment and sizes.
*/
AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
/*
* Init the structure.
*/
pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
{
pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
}
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
{
pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
}
/* Init the per-CPU part. */
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPU pVCpu = &pVM->aCpus[idCpu];
PPGMCPU pPGM = &pVCpu->pgm.s;
pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
pPGM->enmShadowMode = PGMMODE_INVALID;
pPGM->enmGuestMode = PGMMODE_INVALID;
pPGM->GCPhysCR3 = NIL_RTGCPHYS;
pPGM->pGst32BitPdR3 = NULL;
pPGM->pGstPaePdptR3 = NULL;
pPGM->pGstAmd64Pml4R3 = NULL;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
#endif
pPGM->pGst32BitPdRC = NIL_RTRCPTR;
pPGM->pGstPaePdptRC = NIL_RTRCPTR;
for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
{
pPGM->apGstPaePDsR3[i] = NULL;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
#endif
pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
}
pPGM->fA20Enabled = true;
pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
}
pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
true
#else
false
#endif
);
AssertLogRelRCReturn(rc, rc);
#if HC_ARCH_BITS == 32
# ifdef RT_OS_DARWIN
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
# else
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
# endif
#else
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
#endif
AssertLogRelRCReturn(rc, rc);
for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
/*
* Get the configured RAM size - to estimate saved state size.
*/
uint64_t cbRam;
rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
cbRam = 0;
else if (RT_SUCCESS(rc))
{
if (cbRam < PAGE_SIZE)
cbRam = 0;
cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
}
else
{
AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
return rc;
}
/*
* Check for PCI pass-through.
*/
rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
#ifdef VBOX_WITH_STATISTICS
/*
* Allocate memory for the statistics before someone tries to use them.
*/
size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
void *pv;
rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
AssertRCReturn(rc, rc);
pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
{
pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
}
#endif /* VBOX_WITH_STATISTICS */
/*
* Register callbacks, string formatters and the saved state data unit.
*/
#ifdef VBOX_STRICT
VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
#endif
PGMRegisterStringFormatTypes();
rc = pgmR3InitSavedState(pVM, cbRam);
if (RT_FAILURE(rc))
return rc;
/*
* Initialize the PGM critical section and flush the phys TLBs
*/
rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
AssertRCReturn(rc, rc);
PGMR3PhysChunkInvalidateTLB(pVM);
pgmPhysInvalidatePageMapTLB(pVM);
/*
* For the time being we sport a full set of handy pages in addition to the base
* memory to simplify things.
*/
rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
AssertRCReturn(rc, rc);
/*
* Trees
*/
rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
if (RT_SUCCESS(rc))
{
pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
/*
* Allocate the zero page.
*/
rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
}
if (RT_SUCCESS(rc))
{
pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
/*
* Allocate the invalid MMIO page.
* (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
*/
rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
}
if (RT_SUCCESS(rc))
{
ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
/*
* Init the paging.
*/
rc = pgmR3InitPaging(pVM);
}
if (RT_SUCCESS(rc))
{
/*
* Init the page pool.
*/
rc = pgmR3PoolInit(pVM);
}
if (RT_SUCCESS(rc))
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
if (RT_FAILURE(rc))
break;
}
}
if (RT_SUCCESS(rc))
{
/*
* Info & statistics
*/
DBGFR3InfoRegisterInternal(pVM, "mode",
"Shows the current paging mode. "
"Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
pgmR3InfoMode);
DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
"Dumps all the entries in the top level paging table. No arguments.",
pgmR3InfoCr3);
DBGFR3InfoRegisterInternal(pVM, "phys",
"Dumps all the physical address ranges. No arguments.",
pgmR3PhysInfo);
DBGFR3InfoRegisterInternal(pVM, "handlers",
"Dumps physical, virtual and hyper virtual handlers. "
"Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
"Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
pgmR3InfoHandlers);
DBGFR3InfoRegisterInternal(pVM, "mappings",
"Dumps guest mappings.",
pgmR3MapInfo);
pgmR3InitStats(pVM);
#ifdef VBOX_WITH_DEBUGGER
/*
* Debugger commands.
*/
static bool s_fRegisteredCmds = false;
if (!s_fRegisteredCmds)
{
int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
if (RT_SUCCESS(rc2))
s_fRegisteredCmds = true;
}
#endif
return VINF_SUCCESS;
}
/* Almost no cleanup necessary, MM frees all memory. */
PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
return rc;
}
/**
* Init paging.
*
* Since we need to check what mode the host is operating in before we can choose
* the right paging functions for the host we have to delay this until R0 has
* been initialized.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
static int pgmR3InitPaging(PVM pVM)
{
/*
* Force a recalculation of modes and switcher so everyone gets notified.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
}
pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
/*
* Allocate static mapping space for whatever the cr3 register
* points to and in the case of PAE mode to the 4 PDs.
*/
int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
return rc;
}
MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
/*
* Allocate pages for the three possible intermediate contexts
* (AMD64, PAE and plain 32-Bit). We maintain all three contexts
* for the sake of simplicity. The AMD64 uses the PAE for the
* lower levels, making the total number of pages 11 (3 + 7 + 1).
*
* We assume that two page tables will be enought for the core code
* mappings (HC virtual and identity).
*/
pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
/*
* Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
*/
ASMMemZeroPage(pVM->pgm.s.pInterPD);
ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
{
ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
| MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
}
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
{
const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
| MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
}
RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
| HCPhysInterPaePDPT64;
/*
* Initialize paging workers and mode from current host mode
* and the guest running in real mode.
*/
pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
break;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
if (ARCH_BITS != 64)
{
AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
}
#endif
break;
default:
AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
}
rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
if (RT_SUCCESS(rc))
{
LogFlow(("pgmR3InitPaging: returns successfully\n"));
#if HC_ARCH_BITS == 64
LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
#endif
/*
* Log the host paging mode. It may come in handy.
*/
const char *pszHostMode;
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
default: pszHostMode = "???"; break;
}
LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
return VINF_SUCCESS;
}
LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
return rc;
}
/**
* Init statistics
* @returns VBox status code.
*/
static int pgmR3InitStats(PVM pVM)
{
PPGM pPGM = &pVM->pgm.s;
int rc;
/*
* Release statistics.
*/
/* Common - misc variables */
STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
/* Live save */
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
#ifdef VBOX_WITH_STATISTICS
# define PGM_REG_COUNTER(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
AssertRC(rc);
# define PGM_REG_COUNTER_BYTES(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
AssertRC(rc);
# define PGM_REG_PROFILE(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
AssertRC(rc);
PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
/* GC only: */
PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
# undef PGM_REG_COUNTER
# undef PGM_REG_PROFILE
#endif
/*
* Note! The layout below matches the member layout exactly!
*/
/*
* Common - stats
*/
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
#define PGM_REG_COUNTER(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
AssertRC(rc);
#define PGM_REG_PROFILE(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
AssertRC(rc);
PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
#ifdef VBOX_WITH_STATISTICS
PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
# if 0 /* rarely useful; leave for debugging. */
for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
# endif
/* R0 only: */
PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
/* RZ only: */
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
#if 0 /* rarely useful; leave for debugging. */
for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
#endif
PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
//PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
/* HC only: */
/* RZ & R3: */
PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
#endif /* VBOX_WITH_STATISTICS */
#undef PGM_REG_PROFILE
#undef PGM_REG_COUNTER
}
return VINF_SUCCESS;
}
/**
* Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
*
* The dynamic mapping area will also be allocated and initialized at this
* time. We could allocate it during PGMR3Init of course, but the mapping
* wouldn't be allocated at that time preventing us from setting up the
* page table entries with the dummy page.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
{
RTGCPTR GCPtr;
int rc;
/*
* Reserve space for the dynamic mappings.
*/
rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
if (RT_SUCCESS(rc))
pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
if ( RT_SUCCESS(rc)
&& (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
{
rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
if (RT_SUCCESS(rc))
pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
}
if (RT_SUCCESS(rc))
{
AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
}
return rc;
}
/**
* Ring-3 init finalizing.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
{
int rc;
/*
* Reserve space for the dynamic mappings.
* Initialize the dynamic mapping pages with dummy pages to simply the cache.
*/
/* get the pointer to the page table entries. */
PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
AssertRelease(pMapping);
const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
const unsigned iPT = off >> X86_PD_SHIFT;
const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
/* init cache area */
RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
{
rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
AssertRCReturn(rc, rc);
}
/*
* Determine the max physical address width (MAXPHYADDR) and apply it to
* all the mask members and stuff.
*/
uint32_t cMaxPhysAddrWidth;
uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
if ( uMaxExtLeaf >= 0x80000008
&& uMaxExtLeaf <= 0x80000fff)
{
cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
}
else
{
LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
cMaxPhysAddrWidth = 48;
pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
}
/** @todo query from CPUM. */
pVM->pgm.s.GCPhysInvAddrMask = 0;
for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
/*
* Initialize the invalid paging entry masks, assuming NX is disabled.
*/
uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
{
PVMCPU pVCpu = &pVM->aCpus[iCpu];
/** @todo The manuals are not entirely clear whether the physical
* address width is relevant. See table 5-9 in the intel
* manual vs the PDE4M descriptions. Write testcase (NP). */
pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
| X86_PDE4M_MBZ_MASK;
pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
}
/*
* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
* Intel only goes up to 36 bits, so we stick to 36 as well.
* Update: More recent intel manuals specifies 40 bits just like AMD.
*/
uint32_t u32Dummy, u32Features;
CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
else
pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
/*
* Allocate memory if we're supposed to do that.
*/
if (pVM->pgm.s.fRamPreAlloc)
rc = pgmR3PhysRamPreAllocate(pVM);
LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
return rc;
}
/**
* Init phase completed callback.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param enmWhat What has been completed.
* @thread EMT(0)
*/
VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
{
switch (enmWhat)
{
case VMINITCOMPLETED_HM:
#ifdef VBOX_WITH_PCI_PASSTHROUGH
if (pVM->pgm.s.fPciPassthrough)
{
AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
/*
* Report assignments to the IOMMU (hope that's good enough for now).
*/
if (pVM->pgm.s.fPciPassthrough)
{
int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
AssertRCReturn(rc, rc);
}
}
#else
AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
#endif
break;
default:
/* shut up gcc */
break;
}
return VINF_SUCCESS;
}
/**
* Applies relocations to data and code managed by this component.
*
* This function will be called at init and whenever the VMM need to relocate it
* self inside the GC.
*
* @param pVM The VM.
* @param offDelta Relocation delta relative to old location.
*/
VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
{
LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
/*
* Paging stuff.
*/
pVM->pgm.s.GCPtrCR3Mapping += offDelta;
pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
/* Shadow, guest and both mode switch & relocation for each VCPU. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
}
/*
* Trees.
*/
pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
/*
* Ram ranges.
*/
if (pVM->pgm.s.pRamRangesXR3)
{
/* Update the pSelfRC pointers and relink them. */
for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
pgmR3PhysRelinkRamRanges(pVM);
/* Flush the RC TLB. */
for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
}
/*
* Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
* be mapped and thus not included in the above exercise.
*/
for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
/*
* Update the two page directories with all page table mappings.
* (One or more of them have changed, that's why we're here.)
*/
pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
/* Relocate GC addresses of Page Tables. */
for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
{
for (RTHCUINT i = 0; i < pCur->cPTs; i++)
{
pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
}
}
/*
* Dynamic page mapping area.
*/
pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
if (pVM->pgm.s.pRCDynMap)
{
pVM->pgm.s.pRCDynMap += offDelta;
PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
pDynMap->paPages += offDelta;
PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
{
paPages[iPage].pvPage += offDelta;
paPages[iPage].uPte.pLegacy += offDelta;
paPages[iPage].uPte.pPae += offDelta;
}
}
/*
* The Zero page.
*/
pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
#else
AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
#endif
/*
* Physical and virtual handlers.
*/
RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
/*
* The page pool.
*/
pgmR3PoolRelocate(pVM);
#ifdef VBOX_WITH_STATISTICS
/*
* Statistics.
*/
pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
#endif
}
/**
* Callback function for relocating a physical access handler.
*
* @returns 0 (continue enum)
* @param pNode Pointer to a PGMPHYSHANDLER node.
* @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
* not certain the delta will fit in a void pointer for all possible configs.
*/
static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
{
PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
if (pHandler->pfnHandlerRC)
pHandler->pfnHandlerRC += offDelta;
if (pHandler->pvUserRC >= 0x10000)
pHandler->pvUserRC += offDelta;
return 0;
}
/**
* Callback function for relocating a virtual access handler.
*
* @returns 0 (continue enum)
* @param pNode Pointer to a PGMVIRTHANDLER node.
* @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
* not certain the delta will fit in a void pointer for all possible configs.
*/
static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
|| pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
Assert(pHandler->pfnHandlerRC);
pHandler->pfnHandlerRC += offDelta;
return 0;
}
/**
* Callback function for relocating a virtual access handler for the hypervisor mapping.
*
* @returns 0 (continue enum)
* @param pNode Pointer to a PGMVIRTHANDLER node.
* @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
* not certain the delta will fit in a void pointer for all possible configs.
*/
static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
Assert(pHandler->pfnHandlerRC);
pHandler->pfnHandlerRC += offDelta;
return 0;
}
/**
* Resets a virtual CPU when unplugged.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
{
int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
AssertRC(rc);
rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
AssertRC(rc);
STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
/*
* Re-init other members.
*/
pVCpu->pgm.s.fA20Enabled = true;
pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
/*
* Clear the FFs PGM owns.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
}
/**
* The VM is being reset.
*
* For the PGM component this means that any PD write monitors
* needs to be removed.
*
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
{
LogFlow(("PGMR3Reset:\n"));
VM_ASSERT_EMT(pVM);
pgmLock(pVM);
/*
* Unfix any fixed mappings and disable CR3 monitoring.
*/
pVM->pgm.s.fMappingsFixed = false;
pVM->pgm.s.fMappingsFixedRestored = false;
pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
pVM->pgm.s.cbMappingFixed = 0;
/*
* Exit the guest paging mode before the pgm pool gets reset.
* Important to clean up the amd64 case.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
AssertReleaseRC(rc);
}
#ifdef DEBUG
DBGFR3_INFO_LOG(pVM, "mappings", NULL);
DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
#endif
/*
* Switch mode back to real mode. (before resetting the pgm pool!)
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
AssertReleaseRC(rc);
STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
}
/*
* Reset the shadow page pool.
*/
pgmR3PoolReset(pVM);
/*
* Re-init various other members and clear the FFs that PGM owns.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
PGMNotifyNxeChanged(pVCpu, false);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
if (!pVCpu->pgm.s.fA20Enabled)
{
pVCpu->pgm.s.fA20Enabled = true;
pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
#ifdef PGM_WITH_A20
pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
pgmR3RefreshShadowModeAfterA20Change(pVCpu);
HMFlushTLB(pVCpu);
#endif
}
}
pgmUnlock(pVM);
}
/**
* Memory setup after VM construction or reset.
*
* @param pVM Pointer to the VM.
* @param fAtReset Indicates the context, after reset if @c true or after
* construction if @c false.
*/
VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
{
if (fAtReset)
{
pgmLock(pVM);
int rc = pgmR3PhysRamZeroAll(pVM);
AssertReleaseRC(rc);
rc = pgmR3PhysRomReset(pVM);
AssertReleaseRC(rc);
pgmUnlock(pVM);
}
}
#ifdef VBOX_STRICT
/**
* VM state change callback for clearing fNoMorePhysWrites after
* a snapshot has been created.
*/
static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
{
if ( enmState == VMSTATE_RUNNING
|| enmState == VMSTATE_RESUMING)
pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
NOREF(enmOldState); NOREF(pvUser);
}
#endif
/**
* Private API to reset fNoMorePhysWrites.
*/
VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
{
pVM->pgm.s.fNoMorePhysWrites = false;
}
/**
* Terminates the PGM.
*
* @returns VBox status code.
* @param pVM Pointer to VM structure.
*/
VMMR3DECL(int) PGMR3Term(PVM pVM)
{
/* Must free shared pages here. */
pgmLock(pVM);
pgmR3PhysRamTerm(pVM);
pgmR3PhysRomTerm(pVM);
pgmUnlock(pVM);
PGMDeregisterStringFormatTypes();
return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
}
/**
* Show paging mode.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs "all" (default), "guest", "shadow" or "host".
*/
static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/* digest argument. */
bool fGuest, fShadow, fHost;
if (pszArgs)
pszArgs = RTStrStripL(pszArgs);
if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
fShadow = fHost = fGuest = true;
else
{
fShadow = fHost = fGuest = false;
if (strstr(pszArgs, "guest"))
fGuest = true;
if (strstr(pszArgs, "shadow"))
fShadow = true;
if (strstr(pszArgs, "host"))
fHost = true;
}
/** @todo SMP support! */
/* print info. */
if (fGuest)
pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
if (fShadow)
pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
if (fHost)
{
const char *psz;
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
case SUPPAGINGMODE_PAE: psz = "PAE"; break;
case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
default: psz = "unknown"; break;
}
pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
}
}
/**
* Dump registered MMIO ranges to the log.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"RAM ranges (pVM=%p)\n"
"%.*s %.*s\n",
pVM,
sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
sizeof(RTHCPTR) * 2, "pvHC ");
for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
pHlp->pfnPrintf(pHlp,
"%RGp-%RGp %RHv %s\n",
pCur->GCPhys,
pCur->GCPhysLast,
pCur->pvR3,
pCur->pszDesc);
}
/**
* Dump the page directory to the log.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/** @todo SMP support!! */
PVMCPU pVCpu = &pVM->aCpus[0];
/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
/* Big pages supported? */
const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
/* Global pages supported? */
const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
NOREF(pszArgs);
/*
* Get page directory addresses.
*/
pgmLock(pVM);
PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
Assert(pPDSrc);
/*
* Iterate the page directory.
*/
for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
{
X86PDE PdeSrc = pPDSrc->a[iPD];
if (PdeSrc.n.u1Present)
{
if (PdeSrc.b.u1Size && fPSE)
pHlp->pfnPrintf(pHlp,
"%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
iPD,
pgmGstGet4MBPhysPage(pVM, PdeSrc),
PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
else
pHlp->pfnPrintf(pHlp,
"%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
iPD,
(RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
}
}
pgmUnlock(pVM);
}
/**
* Service a VMMCALLRING3_PGM_LOCK call.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) PGMR3LockCall(PVM pVM)
{
int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
AssertRC(rc);
return rc;
}
/**
* Converts a PGMMODE value to a PGM_TYPE_* \#define.
*
* @returns PGM_TYPE_*.
* @param pgmMode The mode value to convert.
*/
DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
{
switch (pgmMode)
{
case PGMMODE_REAL: return PGM_TYPE_REAL;
case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
case PGMMODE_PAE:
case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
case PGMMODE_NESTED: return PGM_TYPE_NESTED;
case PGMMODE_EPT: return PGM_TYPE_EPT;
default:
AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
}
}
/**
* Gets the index into the paging mode data array of a SHW+GST mode.
*
* @returns PGM::paPagingData index.
* @param uShwType The shadow paging mode type.
* @param uGstType The guest paging mode type.
*/
DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
{
Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
+ (uGstType - PGM_TYPE_REAL);
}
/**
* Gets the index into the paging mode data array of a SHW+GST mode.
*
* @returns PGM::paPagingData index.
* @param enmShw The shadow paging mode.
* @param enmGst The guest paging mode.
*/
DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
{
Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
}
/**
* Calculates the max data index.
* @returns The number of entries in the paging data array.
*/
DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
{
return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
}
/**
* Initializes the paging mode data kept in PGM::paModeData.
*
* @param pVM Pointer to the VM.
* @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
* This is used early in the init process to avoid trouble with PDM
* not being initialized yet.
*/
static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
{
PPGMMODEDATA pModeData;
int rc;
/*
* Allocate the array on the first call.
*/
if (!pVM->pgm.s.paModeData)
{
pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
}
/*
* Initialize the array entries.
*/
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
pModeData->uShwType = PGM_TYPE_32BIT;
pModeData->uGstType = PGM_TYPE_REAL;
rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
pModeData->uShwType = PGM_TYPE_32BIT;
pModeData->uGstType = PGM_TYPE_PROT;
rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
pModeData->uShwType = PGM_TYPE_32BIT;
pModeData->uGstType = PGM_TYPE_32BIT;
rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
pModeData->uShwType = PGM_TYPE_PAE;
pModeData->uGstType = PGM_TYPE_REAL;
rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
pModeData->uShwType = PGM_TYPE_PAE;
pModeData->uGstType = PGM_TYPE_PROT;
rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
pModeData->uShwType = PGM_TYPE_PAE;
pModeData->uGstType = PGM_TYPE_32BIT;
rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
pModeData->uShwType = PGM_TYPE_PAE;
pModeData->uGstType = PGM_TYPE_PAE;
rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
#ifdef VBOX_WITH_64_BITS_GUESTS
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
pModeData->uShwType = PGM_TYPE_AMD64;
pModeData->uGstType = PGM_TYPE_AMD64;
rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
#endif
/* The nested paging mode. */
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
pModeData->uShwType = PGM_TYPE_NESTED;
pModeData->uGstType = PGM_TYPE_REAL;
rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
pModeData->uShwType = PGM_TYPE_NESTED;
pModeData->uGstType = PGM_TYPE_PROT;
rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
pModeData->uShwType = PGM_TYPE_NESTED;
pModeData->uGstType = PGM_TYPE_32BIT;
rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
pModeData->uShwType = PGM_TYPE_NESTED;
pModeData->uGstType = PGM_TYPE_PAE;
rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
#ifdef VBOX_WITH_64_BITS_GUESTS
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
pModeData->uShwType = PGM_TYPE_NESTED;
pModeData->uGstType = PGM_TYPE_AMD64;
rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
#endif
/* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
switch (pVM->pgm.s.enmHostMode)
{
#if HC_ARCH_BITS == 32
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
{
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
}
# ifdef VBOX_WITH_64_BITS_GUESTS
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
# endif
break;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
{
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
}
# ifdef VBOX_WITH_64_BITS_GUESTS
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
# endif
break;
#endif /* HC_ARCH_BITS == 32 */
#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
# ifdef VBOX_WITH_64_BITS_GUESTS
for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
# else
for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
# endif
{
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
}
break;
#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
default:
AssertFailed();
break;
}
/* Extended paging (EPT) / Intel VT-x */
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
pModeData->uShwType = PGM_TYPE_EPT;
pModeData->uGstType = PGM_TYPE_REAL;
rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
pModeData->uShwType = PGM_TYPE_EPT;
pModeData->uGstType = PGM_TYPE_PROT;
rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
pModeData->uShwType = PGM_TYPE_EPT;
pModeData->uGstType = PGM_TYPE_32BIT;
rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
pModeData->uShwType = PGM_TYPE_EPT;
pModeData->uGstType = PGM_TYPE_PAE;
rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
#ifdef VBOX_WITH_64_BITS_GUESTS
pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
pModeData->uShwType = PGM_TYPE_EPT;
pModeData->uGstType = PGM_TYPE_AMD64;
rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
#endif
return VINF_SUCCESS;
}
/**
* Switch to different (or relocated in the relocate case) mode data.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param enmShw The shadow paging mode.
* @param enmGst The guest paging mode.
*/
static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
{
PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
Assert(pModeData->uGstType == pgmModeToType(enmGst));
Assert(pModeData->uShwType == pgmModeToType(enmShw));
/* shadow */
pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
/* guest */
pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
Assert(pVCpu->pgm.s.pfnR3GstGetPage);
pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
/* both */
pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
#ifdef VBOX_STRICT
pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
#endif
pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
#ifdef VBOX_STRICT
pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
#endif
pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
#ifdef VBOX_STRICT
pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
#endif
pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
}
/**
* Calculates the shadow paging mode.
*
* @returns The shadow paging mode.
* @param pVM Pointer to the VM.
* @param enmGuestMode The guest mode.
* @param enmHostMode The host mode.
* @param enmShadowMode The current shadow mode.
* @param penmSwitcher Where to store the switcher to use.
* VMMSWITCHER_INVALID means no change.
*/
static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
{
VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
switch (enmGuestMode)
{
/*
* When switching to real or protected mode we don't change
* anything since it's likely that we'll switch back pretty soon.
*
* During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
* and is supposed to determine which shadow paging and switcher to
* use during init.
*/
case PGMMODE_REAL:
case PGMMODE_PROTECTED:
if ( enmShadowMode != PGMMODE_INVALID
&& !HMIsEnabled(pVM) /* always switch in hm mode! */)
break; /* (no change) */
switch (enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
enmShadowMode = PGMMODE_32_BIT;
enmSwitcher = VMMSWITCHER_32_TO_32;
break;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
#ifdef DEBUG_bird
if (RTEnvExist("VBOX_32BIT"))
{
enmShadowMode = PGMMODE_32_BIT;
enmSwitcher = VMMSWITCHER_PAE_TO_32;
}
#endif
break;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
#ifdef DEBUG_bird
if (RTEnvExist("VBOX_32BIT"))
{
enmShadowMode = PGMMODE_32_BIT;
enmSwitcher = VMMSWITCHER_AMD64_TO_32;
}
#endif
break;
default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
}
break;
case PGMMODE_32_BIT:
switch (enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
enmShadowMode = PGMMODE_32_BIT;
enmSwitcher = VMMSWITCHER_32_TO_32;
break;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
#ifdef DEBUG_bird
if (RTEnvExist("VBOX_32BIT"))
{
enmShadowMode = PGMMODE_32_BIT;
enmSwitcher = VMMSWITCHER_PAE_TO_32;
}
#endif
break;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
#ifdef DEBUG_bird
if (RTEnvExist("VBOX_32BIT"))
{
enmShadowMode = PGMMODE_32_BIT;
enmSwitcher = VMMSWITCHER_AMD64_TO_32;
}
#endif
break;
default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
}
break;
case PGMMODE_PAE:
case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
switch (enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_32_TO_PAE;
break;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
break;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
enmShadowMode = PGMMODE_PAE;
enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
break;
default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
}
break;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
switch (enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
enmShadowMode = PGMMODE_AMD64;
enmSwitcher = VMMSWITCHER_32_TO_AMD64;
break;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
enmShadowMode = PGMMODE_AMD64;
enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
break;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
enmShadowMode = PGMMODE_AMD64;
enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
break;
default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
}
break;
default:
AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
*penmSwitcher = VMMSWITCHER_INVALID;
return PGMMODE_INVALID;
}
/* Override the shadow mode is nested paging is active. */
pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
if (pVM->pgm.s.fNestedPaging)
enmShadowMode = HMGetShwPagingMode(pVM);
*penmSwitcher = enmSwitcher;
return enmShadowMode;
}
/**
* Performs the actual mode change.
* This is called by PGMChangeMode and pgmR3InitPaging().
*
* @returns VBox status code. May suspend or power off the VM on error, but this
* will trigger using FFs and not status codes.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param enmGuestMode The new guest mode. This is assumed to be different from
* the current mode.
*/
VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
{
#if HC_ARCH_BITS == 32
bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
#endif
bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
/*
* Calc the shadow mode and switcher.
*/
VMMSWITCHER enmSwitcher;
PGMMODE enmShadowMode;
enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
#ifdef VBOX_WITH_RAW_MODE
if ( enmSwitcher != VMMSWITCHER_INVALID
&& !HMIsEnabled(pVM))
{
/*
* Select new switcher.
*/
int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
if (RT_FAILURE(rc))
{
AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
return rc;
}
}
#endif
/*
* Exit old mode(s).
*/
#if HC_ARCH_BITS == 32
/* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
&& enmShadowMode == PGMMODE_NESTED);
#else
const bool fForceShwEnterExit = false;
#endif
/* shadow */
if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
|| fForceShwEnterExit)
{
LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
if (PGM_SHW_PFN(Exit, pVCpu))
{
int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
return rc;
}
}
}
else
LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
/* guest */
if (PGM_GST_PFN(Exit, pVCpu))
{
int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
return rc;
}
}
/*
* Load new paging mode data.
*/
pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
/*
* Enter new shadow mode (if changed).
*/
if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
|| fForceShwEnterExit)
{
int rc;
pVCpu->pgm.s.enmShadowMode = enmShadowMode;
switch (enmShadowMode)
{
case PGMMODE_32_BIT:
rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
break;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
break;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
break;
case PGMMODE_NESTED:
rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
break;
case PGMMODE_EPT:
rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
break;
case PGMMODE_REAL:
case PGMMODE_PROTECTED:
default:
AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
return VERR_INTERNAL_ERROR;
}
if (RT_FAILURE(rc))
{
AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
return rc;
}
}
/*
* Always flag the necessary updates
*/
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
/*
* Enter the new guest and shadow+guest modes.
*/
int rc = -1;
int rc2 = -1;
RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
pVCpu->pgm.s.enmGuestMode = enmGuestMode;
switch (enmGuestMode)
{
case PGMMODE_REAL:
rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
switch (pVCpu->pgm.s.enmShadowMode)
{
case PGMMODE_32_BIT:
rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_NESTED:
rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_EPT:
rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
AssertMsgFailed(("Should use PAE shadow mode!\n"));
default: AssertFailed(); break;
}
break;
case PGMMODE_PROTECTED:
rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
switch (pVCpu->pgm.s.enmShadowMode)
{
case PGMMODE_32_BIT:
rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_NESTED:
rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_EPT:
rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
break;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
AssertMsgFailed(("Should use PAE shadow mode!\n"));
default: AssertFailed(); break;
}
break;
case PGMMODE_32_BIT:
GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
switch (pVCpu->pgm.s.enmShadowMode)
{
case PGMMODE_32_BIT:
rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_NESTED:
rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_EPT:
rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
AssertMsgFailed(("Should use PAE shadow mode!\n"));
default: AssertFailed(); break;
}
break;
case PGMMODE_PAE_NX:
case PGMMODE_PAE:
{
uint32_t u32Dummy, u32Features;
CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (System/Processor)"));
GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
switch (pVCpu->pgm.s.enmShadowMode)
{
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_NESTED:
rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_EPT:
rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_32_BIT:
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
AssertMsgFailed(("Should use PAE shadow mode!\n"));
default: AssertFailed(); break;
}
break;
}
#ifdef VBOX_WITH_64_BITS_GUESTS
case PGMMODE_AMD64_NX:
case PGMMODE_AMD64:
GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
switch (pVCpu->pgm.s.enmShadowMode)
{
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_NESTED:
rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_EPT:
rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
break;
case PGMMODE_32_BIT:
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
default: AssertFailed(); break;
}
break;
#endif
default:
AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
rc = VERR_NOT_IMPLEMENTED;
break;
}
/* status codes. */
AssertRC(rc);
AssertRC(rc2);
if (RT_SUCCESS(rc))
{
rc = rc2;
if (RT_SUCCESS(rc)) /* no informational status codes. */
rc = VINF_SUCCESS;
}
/* Notify HM as well. */
HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
return rc;
}
/**
* Called by pgmPoolFlushAllInt prior to flushing the pool.
*
* @returns VBox status code, fully asserted.
* @param pVCpu Pointer to the VMCPU.
*/
int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
{
/* Unmap the old CR3 value before flushing everything. */
int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
AssertRC(rc);
/* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
AssertRC(rc);
Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
return rc;
}
/**
* Called by pgmPoolFlushAllInt after flushing the pool.
*
* @returns VBox status code, fully asserted.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
{
pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
AssertRCReturn(rc, rc);
AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
|| CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
return rc;
}
/**
* Called by PGMR3PhysSetA20 after changing the A20 state.
*
* @param pVCpu Pointer to the VMCPU.
*/
void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
{
/** @todo Probably doing a bit too much here. */
int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
AssertReleaseRC(rc);
rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
AssertReleaseRC(rc);
}
#ifdef VBOX_WITH_DEBUGGER
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
*/
static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVM pVM = pUVM->pVM;
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
if (!cArgs)
{
/*
* Print the list of error injection locations with status.
*/
DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
}
else
{
/*
* String switch on where to inject the error.
*/
bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
const char *pszWhere = paArgs[0].u.pszString;
if (!strcmp(pszWhere, "handy"))
ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
else
return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
DBGCCmdHlpPrintf(pCmdHlp, "done\n");
}
return VINF_SUCCESS;
}
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
*/
static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
if (!pVCpu)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
/*
* Force page directory sync.
*/
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
if (RT_FAILURE(rc))
return rc;
return VINF_SUCCESS;
}
#ifdef VBOX_STRICT
/**
* EMT callback for pgmR3CmdAssertCR3.
*
* @returns VBox status code.
* @param pUVM The user mode VM handle.
* @param pcErrors Where to return the error count.
*/
static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
{
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
PVMCPU pVCpu = VMMGetCpu(pVM);
*pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
return VINF_SUCCESS;
}
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
*/
static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
if (RT_FAILURE(rc))
return rc;
unsigned cErrors = 0;
rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
if (cErrors > 0)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
}
#endif /* VBOX_STRICT */
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
*/
static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
if (!pVCpu)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
/*
* Force page directory sync.
*/
int rc;
if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
{
ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
}
else
{
ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
}
return rc;
}
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
*/
static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVM pVM = pUVM->pVM;
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING);
if (cArgs == 2)
{
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[2].enmType != DBGCVAR_TYPE_STRING);
if (strcmp(paArgs[1].u.pszString, "nozero"))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
}
bool fIncZeroPgs = cArgs < 2;
/*
* Open the output file and get the ram parameters.
*/
RTFILE hFile;
int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
if (RT_FAILURE(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
uint32_t cbRamHole = 0;
CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
uint64_t cbRam = 0;
CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
/*
* Dump the physical memory, page by page.
*/
RTGCPHYS GCPhys = 0;
char abZeroPg[PAGE_SIZE];
RT_ZERO(abZeroPg);
pgmLock(pVM);
for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
pRam = pRam->pNextR3)
{
/* fill the gap */
if (pRam->GCPhys > GCPhys && fIncZeroPgs)
{
while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
{
rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
GCPhys += PAGE_SIZE;
}
}
PCPGMPAGE pPage = &pRam->aPages[0];
while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
{
if ( PGM_PAGE_IS_ZERO(pPage)
|| PGM_PAGE_IS_BALLOONED(pPage))
{
if (fIncZeroPgs)
{
rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
if (RT_FAILURE(rc))
DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
}
}
else
{
switch (PGM_PAGE_GET_TYPE(pPage))
{
case PGMPAGETYPE_RAM:
case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
case PGMPAGETYPE_ROM:
case PGMPAGETYPE_MMIO2:
{
void const *pvPage;
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
if (RT_SUCCESS(rc))
{
rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
PGMPhysReleasePageMappingLock(pVM, &Lock);
if (RT_FAILURE(rc))
DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
}
else
DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
break;
}
default:
AssertFailed();
case PGMPAGETYPE_MMIO:
case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
if (fIncZeroPgs)
{
rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
if (RT_FAILURE(rc))
DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
}
break;
}
}
/* advance */
GCPhys += PAGE_SIZE;
pPage++;
}
}
pgmUnlock(pVM);
RTFileClose(hFile);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
return VINF_SUCCESS;
}
#endif /* VBOX_WITH_DEBUGGER */
/**
* pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
*/
typedef struct PGMCHECKINTARGS
{
bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
PPGMPHYSHANDLER pPrevPhys;
PPGMVIRTHANDLER pPrevVirt;
PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
PVM pVM;
} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
/**
* Validate a node in the physical handler tree.
*
* @returns 0 on if ok, other wise 1.
* @param pNode The handler node.
* @param pvUser pVM.
*/
static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
{
PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
AssertReleaseMsg( !pArgs->pPrevPhys
|| (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
("pPrevPhys=%p %RGp-%RGp %s\n"
" pCur=%p %RGp-%RGp %s\n",
pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
pArgs->pPrevPhys = pCur;
return 0;
}
/**
* Validate a node in the virtual handler tree.
*
* @returns 0 on if ok, other wise 1.
* @param pNode The handler node.
* @param pvUser pVM.
*/
static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
AssertReleaseMsg( !pArgs->pPrevVirt
|| (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
("pPrevVirt=%p %RGv-%RGv %s\n"
" pCur=%p %RGv-%RGv %s\n",
pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
{
AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
("pCur=%p %RGv-%RGv %s\n"
"iPage=%d offVirtHandle=%#x expected %#x\n",
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
}
pArgs->pPrevVirt = pCur;
return 0;
}
/**
* Validate a node in the virtual handler tree.
*
* @returns 0 on if ok, other wise 1.
* @param pNode The handler node.
* @param pvUser pVM.
*/
static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
{
PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
AssertReleaseMsg( !pArgs->pPrevPhys2Virt
|| (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
("pPrevPhys2Virt=%p %RGp-%RGp\n"
" pCur=%p %RGp-%RGp\n",
pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
pCur, pCur->Core.Key, pCur->Core.KeyLast));
AssertReleaseMsg( !pArgs->pPrevPhys2Virt
|| (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
("pPrevPhys2Virt=%p %RGp-%RGp\n"
" pCur=%p %RGp-%RGp\n",
pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
pCur, pCur->Core.Key, pCur->Core.KeyLast));
AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
{
PPGMPHYS2VIRTHANDLER pCur2 = pCur;
for (;;)
{
pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
AssertReleaseMsg(pCur2 != pCur,
(" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
(" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
"pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
(" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
"pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
(" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
"pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
break;
}
}
pArgs->pPrevPhys2Virt = pCur;
return 0;
}
/**
* Perform an integrity check on the PGM component.
*
* @returns VINF_SUCCESS if everything is fine.
* @returns VBox error status after asserting on integrity breach.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
{
AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
/*
* Check the trees.
*/
int cErrors = 0;
const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
PGMCHECKINTARGS Args = s_LeftToRight;
cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
Args = s_RightToLeft;
cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
Args = s_LeftToRight;
cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
Args = s_RightToLeft;
cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
Args = s_LeftToRight;
cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
Args = s_RightToLeft;
cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
Args = s_LeftToRight;
cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
Args = s_RightToLeft;
cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
}