EMAll.cpp revision 8d5210f02ffa3d8f8f21a917c1ee0d83c664e644
/* $Id$ */
/** @file
* EM - Execution Monitor(/Manager) - All contexts
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_EM
#include <VBox/em.h>
#include <VBox/mm.h>
#include <VBox/selm.h>
#include <VBox/patm.h>
#include <VBox/csam.h>
#include <VBox/pgm.h>
#include <VBox/iom.h>
#include <VBox/stam.h>
#include "EMInternal.h"
#include <VBox/vm.h>
#include <VBox/vmm.h>
#include <VBox/hwaccm.h>
#include <VBox/tm.h>
#include <VBox/pdmapi.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/log.h>
#include <include/internal/pgm.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @def EM_ASSERT_FAULT_RETURN
* Safety check.
*
* Could in theory misfire on a cross page boundary access...
*
* Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
* turns up an alias page instead of the original faulting one and annoying the
* heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
*/
#if 0
# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
#else
# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
#endif
/* Used to pass information during instruction disassembly. */
typedef struct
{
PVM pVM;
PVMCPU pVCpu;
RTGCPTR GCPtr;
uint8_t aOpcode[8];
} EMDISSTATE, *PEMDISSTATE;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize, EMCODETYPE enmCodeType = EMCODETYPE_SUPERVISOR);
/**
* Get the current execution manager status.
*
* @returns Current status.
* @param pVCpu The VMCPU to operate on.
*/
VMMDECL(EMSTATE) EMGetState(PVMCPU pVCpu)
{
return pVCpu->em.s.enmState;
}
/**
* Sets the current execution manager status. (use only when you know what you're doing!)
*
* @param pVCpu The VMCPU to operate on.
*/
VMMDECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
{
/* Only allowed combination: */
Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
pVCpu->em.s.enmState = enmNewState;
}
/**
* Read callback for disassembly function; supports reading bytes that cross a page boundary
*
* @returns VBox status code.
* @param pSrc GC source pointer
* @param pDest HC destination pointer
* @param cb Number of bytes to read
* @param dwUserdata Callback specific user data (pDis)
*
*/
DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
{
PDISCPUSTATE pDis = (PDISCPUSTATE)pvUserdata;
PEMDISSTATE pState = (PEMDISSTATE)pDis->apvUserData[0];
PVM pVM = pState->pVM;
PVMCPU pVCpu = pState->pVCpu;
# ifdef IN_RING0
int rc;
if ( pState->GCPtr
&& pSrc + cb <= pState->GCPtr + sizeof(pState->aOpcode))
{
unsigned offset = pSrc - pState->GCPtr;
Assert(pSrc >= pState->GCPtr);
for (unsigned i=0; i<cb; i++)
{
pDest[i] = pState->aOpcode[offset + i];
}
return VINF_SUCCESS;
}
rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x rc=%d\n", pSrc, cb, rc));
# elif defined(IN_RING3)
if (!PATMIsPatchGCAddr(pVM, pSrc))
{
int rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
AssertRC(rc);
}
else
memcpy(pDest, PATMR3GCPtrToHCPtr(pVM, pSrc), cb);
# elif defined(IN_RC)
if (!PATMIsPatchGCAddr(pVM, pSrc))
{
int rc = MMGCRamRead(pVM, pDest, (void *)(uintptr_t)pSrc, cb);
if (rc == VERR_ACCESS_DENIED)
{
/* Recently flushed; access the data manually. */
rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
AssertRC(rc);
}
}
else /* the hypervisor region is always present. */
memcpy(pDest, (RTRCPTR)(uintptr_t)pSrc, cb);
# endif /* IN_RING3 */
return VINF_SUCCESS;
}
#ifndef IN_RC
DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
{
EMDISSTATE State;
State.pVM = pVM;
State.pVCpu = pVCpu;
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, InstrGC, sizeof(State.aOpcode));
if (RT_SUCCESS(rc))
{
State.GCPtr = InstrGC;
}
else
{
if (PAGE_ADDRESS(InstrGC) == PAGE_ADDRESS(InstrGC + sizeof(State.aOpcode) - 1))
{
if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
HWACCMInvalidatePage(pVCpu, InstrGC);
Log(("emDisCoreOne: read failed with %d\n", rc));
return rc;
}
State.GCPtr = NIL_RTGCPTR;
}
return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
}
#else /* IN_RC */
DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
{
EMDISSTATE State;
State.pVM = pVM;
State.pVCpu = pVCpu;
State.GCPtr = InstrGC;
return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
}
#endif /* IN_RC */
/**
* Disassembles one instruction.
*
* @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
* details.
* @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
*
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pCtxCore The context core (used for both the mode and instruction).
* @param pDis Where to return the parsed instruction info.
* @param pcbInstr Where to return the instruction size. (optional)
*/
VMMDECL(int) EMInterpretDisasOne(PVM pVM, PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
{
RTGCPTR GCPtrInstr;
int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
if (RT_FAILURE(rc))
{
Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
return rc;
}
return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
}
/**
* Disassembles one instruction.
*
* This is used by internally by the interpreter and by trap/access handlers.
*
* @returns VBox status code.
* @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
*
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param GCPtrInstr The flat address of the instruction.
* @param pCtxCore The context core (used to determine the cpu mode).
* @param pDis Where to return the parsed instruction info.
* @param pcbInstr Where to return the instruction size. (optional)
*/
VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
{
int rc;
EMDISSTATE State;
State.pVM = pVM;
State.pVCpu = pVCpu;
#ifdef IN_RC
State.GCPtr = GCPtrInstr;
#else /* ring 0/3 */
rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, GCPtrInstr, sizeof(State.aOpcode));
if (RT_SUCCESS(rc))
{
State.GCPtr = GCPtrInstr;
}
else
{
if (PAGE_ADDRESS(GCPtrInstr) == PAGE_ADDRESS(GCPtrInstr + sizeof(State.aOpcode) - 1))
{
if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
HWACCMInvalidatePage(pVCpu, GCPtrInstr);
Log(("EMInterpretDisasOneEx: read failed with %d\n", rc));
return rc;
}
State.GCPtr = NIL_RTGCPTR;
}
#endif
rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
EMReadBytes, &State,
pDis, pcbInstr);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
return VERR_INTERNAL_ERROR;
}
/**
* Interprets the current instruction.
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* Updates the EIP if an instruction was executed successfully.
* @param pvFault The fault address (CR2).
* @param pcbSize Size of the write (if applicable).
*
* @remark Invalid opcode exceptions have a higher priority than GP (see Intel
* Architecture System Developers Manual, Vol 3, 5.5) so we don't need
* to worry about e.g. invalid modrm combinations (!)
*/
VMMDECL(int) EMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
RTGCPTR pbCode;
LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
if (RT_SUCCESS(rc))
{
uint32_t cbOp;
PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
pDis->mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
rc = emDisCoreOne(pVM, pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
if (RT_SUCCESS(rc))
{
Assert(cbOp == pDis->opsize);
rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize);
if (RT_SUCCESS(rc))
pRegFrame->rip += cbOp; /* Move on to the next instruction. */
return rc;
}
}
return VERR_EM_INTERPRETER;
}
/**
* Interprets the current instruction using the supplied DISCPUSTATE structure.
*
* EIP is *NOT* updated!
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions. When these are returned, it
* starts to get a bit tricky to know whether code was
* executed or not... We'll address this when it becomes a problem.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pDis The disassembler cpu state for the instruction to be
* interpreted.
* @param pRegFrame The register frame. EIP is *NOT* changed!
* @param pvFault The fault address (CR2).
* @param pcbSize Size of the write (if applicable).
* @param enmCodeType Code type (user/supervisor)
*
* @remark Invalid opcode exceptions have a higher priority than GP (see Intel
* Architecture System Developers Manual, Vol 3, 5.5) so we don't need
* to worry about e.g. invalid modrm combinations (!)
*
* @todo At this time we do NOT check if the instruction overwrites vital information.
* Make sure this can't happen!! (will add some assertions/checks later)
*/
VMMDECL(int) EMInterpretInstructionCPUEx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize, EMCODETYPE enmCodeType)
{
STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
int rc = emInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, enmCodeType);
STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
if (RT_SUCCESS(rc))
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
else
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
return rc;
}
/**
* Interpret a port I/O instruction.
*
* @returns VBox status code suitable for scheduling.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pCtxCore The context core. This will be updated on successful return.
* @param pDis The instruction to interpret.
* @param cbOp The size of the instruction.
* @remark This may raise exceptions.
*/
VMMDECL(VBOXSTRICTRC) EMInterpretPortIO(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, uint32_t cbOp)
{
/*
* Hand it on to IOM.
*/
#ifdef IN_RC
VBOXSTRICTRC rcStrict = IOMGCIOPortHandler(pVM, pCtxCore, pDis);
if (IOM_SUCCESS(rcStrict))
pCtxCore->rip += cbOp;
return rcStrict;
#else
AssertReleaseMsgFailed(("not implemented\n"));
return VERR_NOT_IMPLEMENTED;
#endif
}
DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
{
#ifdef IN_RC
int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
return rc;
/*
* The page pool cache may end up here in some cases because it
* flushed one of the shadow mappings used by the trapping
* instruction and it either flushed the TLB or the CPU reused it.
*/
#endif
return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
}
DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
{
/* Don't use MMGCRamWrite here as it does not respect zero pages, shared
pages or write monitored pages. */
return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
}
/** Convert sel:addr to a flat GC address. */
DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, POP_PARAMETER pParam, RTGCPTR pvAddr)
{
DIS_SELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
}
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
/**
* Get the mnemonic for the disassembled instruction.
*
* GC/R0 doesn't include the strings in the DIS tables because
* of limited space.
*/
static const char *emGetMnemonic(PDISCPUSTATE pDis)
{
switch (pDis->pCurInstr->opcode)
{
case OP_XCHG: return "Xchg";
case OP_DEC: return "Dec";
case OP_INC: return "Inc";
case OP_POP: return "Pop";
case OP_OR: return "Or";
case OP_AND: return "And";
case OP_MOV: return "Mov";
case OP_INVLPG: return "InvlPg";
case OP_CPUID: return "CpuId";
case OP_MOV_CR: return "MovCRx";
case OP_MOV_DR: return "MovDRx";
case OP_LLDT: return "LLdt";
case OP_LGDT: return "LGdt";
case OP_LIDT: return "LIdt";
case OP_CLTS: return "Clts";
case OP_MONITOR: return "Monitor";
case OP_MWAIT: return "MWait";
case OP_RDMSR: return "Rdmsr";
case OP_WRMSR: return "Wrmsr";
case OP_ADD: return "Add";
case OP_ADC: return "Adc";
case OP_SUB: return "Sub";
case OP_SBB: return "Sbb";
case OP_RDTSC: return "Rdtsc";
case OP_STI: return "Sti";
case OP_CLI: return "Cli";
case OP_XADD: return "XAdd";
case OP_HLT: return "Hlt";
case OP_IRET: return "Iret";
case OP_MOVNTPS: return "MovNTPS";
case OP_STOSWD: return "StosWD";
case OP_WBINVD: return "WbInvd";
case OP_XOR: return "Xor";
case OP_BTR: return "Btr";
case OP_BTS: return "Bts";
case OP_BTC: return "Btc";
case OP_LMSW: return "Lmsw";
case OP_SMSW: return "Smsw";
case OP_CMPXCHG: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
case OP_CMPXCHG8B: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
default:
Log(("Unknown opcode %d\n", pDis->pCurInstr->opcode));
return "???";
}
}
#endif /* VBOX_STRICT || LOG_ENABLED */
/**
* XCHG instruction emulation.
*/
static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0, pParam2 = 0;
uint64_t valpar1, valpar2;
AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
valpar1 = param1.val.val64;
break;
case PARMTYPE_ADDRESS:
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_ADDRESS:
pParam2 = (RTGCPTR)param2.val.val64;
pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pParam2);
EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
}
break;
case PARMTYPE_IMMEDIATE:
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Write value of parameter 2 to parameter 1 (reg or memory address) */
if (pParam1 == 0)
{
Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
switch(param1.size)
{
case 1: //special case for AH etc
rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t )valpar2); break;
case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)valpar2); break;
case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)valpar2); break;
case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, valpar2); break;
default: AssertFailedReturn(VERR_EM_INTERPRETER);
}
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
}
else
{
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
/* Write value of parameter 1 to parameter 2 (reg or memory address) */
if (pParam2 == 0)
{
Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
switch(param2.size)
{
case 1: //special case for AH etc
rc = DISWriteReg8(pRegFrame, pDis->param2.base.reg_gen, (uint8_t )valpar1); break;
case 2: rc = DISWriteReg16(pRegFrame, pDis->param2.base.reg_gen, (uint16_t)valpar1); break;
case 4: rc = DISWriteReg32(pRegFrame, pDis->param2.base.reg_gen, (uint32_t)valpar1); break;
case 8: rc = DISWriteReg64(pRegFrame, pDis->param2.base.reg_gen, valpar1); break;
default: AssertFailedReturn(VERR_EM_INTERPRETER);
}
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
}
else
{
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
*pcbSize = param2.size;
return VINF_SUCCESS;
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* INC and DEC emulation.
*/
static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM2 pfnEmulate)
{
OP_PARAMVAL param1;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0;
uint64_t valpar1;
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
#ifdef IN_RC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
AssertFailed();
return VERR_EM_INTERPRETER;
}
uint32_t eflags;
eflags = pfnEmulate(&valpar1, param1.size);
/* Write result back */
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* All done! */
*pcbSize = param1.size;
return VINF_SUCCESS;
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* POP Emulation.
*/
static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0;
uint32_t valpar1;
RTGCPTR pStackVal;
/* Read stack value first */
if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
/* Convert address; don't bother checking limits etc, as we only read here */
pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
if (pStackVal == 0)
return VERR_EM_INTERPRETER;
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
/* pop [esp+xx] uses esp after the actual pop! */
AssertCompile(USE_REG_ESP == USE_REG_SP);
if ( (pDis->param1.flags & USE_BASE)
&& (pDis->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
&& pDis->param1.base.reg_gen == USE_REG_ESP
)
pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
/* Update ESP as the last step */
pRegFrame->esp += param1.size;
}
else
{
#ifndef DEBUG_bird // annoying assertion.
AssertFailed();
#endif
return VERR_EM_INTERPRETER;
}
/* All done! */
*pcbSize = param1.size;
return VINF_SUCCESS;
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* XOR/OR/AND Emulation.
*/
static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM3 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint64_t valpar1, valpar2;
if (pDis->param1.size != pDis->param2.size)
{
if (pDis->param1.size < pDis->param2.size)
{
AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
return VERR_EM_INTERPRETER;
}
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pDis->param2.size = pDis->param1.size;
param2.size = param1.size;
}
/* The destination is always a virtual address */
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
/* Data read, emulate instruction. */
uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
if (RT_SUCCESS(rc))
{
/* All done! */
*pcbSize = param2.size;
return VINF_SUCCESS;
}
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* LOCK XOR/OR/AND Emulation.
*/
static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
{
void *pvParam1;
OP_PARAMVAL param1, param2;
#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
Assert(pDis->param1.size <= 4);
#endif
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
if (pDis->param1.size != pDis->param2.size)
{
AssertMsgReturn(pDis->param1.size >= pDis->param2.size, /* should never happen! */
("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size),
VERR_EM_INTERPRETER);
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pDis->param2.size = pDis->param1.size;
param2.size = param1.size;
}
#ifdef IN_RC
/* Safety check (in theory it could cross a page boundary and fault there though) */
Assert( TRPMHasTrap(pVCpu)
&& (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
#endif
/* Register and immediate data == PARMTYPE_IMMEDIATE */
AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
RTGCUINTREG ValPar2 = param2.val.val64;
/* The destination is always a virtual address */
AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
RTGCPTR GCPtrPar1 = param1.val.val64;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
/* Try emulate it with a one-shot #PF handler in place. (RC) */
Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
RTGCUINTREG32 eflags = 0;
rc = pfnEmulate(pvParam1, ValPar2, pDis->param2.size, &eflags);
PGMPhysReleasePageMappingLock(pVM, &Lock);
if (RT_FAILURE(rc))
{
Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
return VERR_EM_INTERPRETER;
}
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = param2.size;
return VINF_SUCCESS;
}
/**
* ADD, ADC & SUB Emulation.
*/
static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM3 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint64_t valpar1, valpar2;
if (pDis->param1.size != pDis->param2.size)
{
if (pDis->param1.size < pDis->param2.size)
{
AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
return VERR_EM_INTERPRETER;
}
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pDis->param2.size = pDis->param1.size;
param2.size = param1.size;
}
/* The destination is always a virtual address */
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
#ifndef DEBUG_bird
AssertFailed();
#endif
return VERR_EM_INTERPRETER;
}
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Data read, emulate instruction. */
uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
if (RT_SUCCESS(rc))
{
/* All done! */
*pcbSize = param2.size;
return VINF_SUCCESS;
}
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* ADC Emulation.
*/
static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
if (pRegFrame->eflags.Bits.u1CF)
return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
else
return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
}
/**
* BTR/C/S Emulation.
*/
static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM2UINT32 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint64_t valpar1 = 0, valpar2;
uint32_t eflags;
/* The destination is always a virtual address */
if (param1.type != PARMTYPE_ADDRESS)
return VERR_EM_INTERPRETER;
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
Log2(("emInterpretBtx: val=%x\n", valpar1));
/* Data read, emulate bit test instruction. */
eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
if (RT_SUCCESS(rc))
{
/* All done! */
*pcbSize = 1;
return VINF_SUCCESS;
}
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* LOCK BTR/C/S Emulation.
*/
static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
{
void *pvParam1;
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
/* The destination is always a virtual address */
if (param1.type != PARMTYPE_ADDRESS)
return VERR_EM_INTERPRETER;
/* Register and immediate data == PARMTYPE_IMMEDIATE */
AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
uint64_t ValPar2 = param2.val.val64;
/* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
RTGCPTR GCPtrPar1 = param1.val.val64;
GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
ValPar2 &= 7;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
#ifdef IN_RC
Assert(TRPMHasTrap(pVCpu));
EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
#endif
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
/* Try emulate it with a one-shot #PF handler in place. (RC) */
RTGCUINTREG32 eflags = 0;
rc = pfnEmulate(pvParam1, ValPar2, &eflags);
PGMPhysReleasePageMappingLock(pVM, &Lock);
if (RT_FAILURE(rc))
{
Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
return VERR_EM_INTERPRETER;
}
Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = 1;
return VINF_SUCCESS;
}
/**
* MOV emulation.
*/
static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#else
/** @todo Make this the default and don't rely on TRPM information. */
if (param1.type == PARMTYPE_ADDRESS)
{
#endif
RTGCPTR pDest;
uint64_t val64;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
/* fallthru */
case PARMTYPE_ADDRESS:
pDest = (RTGCPTR)param1.val.val64;
pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pDest);
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
val64 = param2.val.val64;
break;
default:
Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
return VERR_EM_INTERPRETER;
}
#ifdef LOG_ENABLED
if (pDis->mode == CPUMODE_64BIT)
LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
else
LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
#endif
Assert(param2.size <= 8 && param2.size > 0);
EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
*pcbSize = param2.size;
}
else
{ /* read fault */
RTGCPTR pSrc;
uint64_t val64;
/* Source */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE:
if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
/* fallthru */
case PARMTYPE_ADDRESS:
pSrc = (RTGCPTR)param2.val.val64;
pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pSrc);
break;
default:
return VERR_EM_INTERPRETER;
}
Assert(param1.size <= 8 && param1.size > 0);
EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
/* Destination */
switch(param1.type)
{
case PARMTYPE_REGISTER:
switch(param1.size)
{
case 1: rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t) val64); break;
case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)val64); break;
case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)val64); break;
case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, val64); break;
default:
return VERR_EM_INTERPRETER;
}
if (RT_FAILURE(rc))
return rc;
break;
default:
return VERR_EM_INTERPRETER;
}
#ifdef LOG_ENABLED
if (pDis->mode == CPUMODE_64BIT)
LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
else
LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
#endif
}
return VINF_SUCCESS;
#ifdef IN_RC
}
#endif
return VERR_EM_INTERPRETER;
}
#ifndef IN_RC
/**
* [REP] STOSWD emulation
*/
static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc;
RTGCPTR GCDest, GCOffset;
uint32_t cbSize;
uint64_t cTransfers;
int offIncrement;
/* Don't support any but these three prefix bytes. */
if ((pDis->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
return VERR_EM_INTERPRETER;
switch (pDis->addrmode)
{
case CPUMODE_16BIT:
GCOffset = pRegFrame->di;
cTransfers = pRegFrame->cx;
break;
case CPUMODE_32BIT:
GCOffset = pRegFrame->edi;
cTransfers = pRegFrame->ecx;
break;
case CPUMODE_64BIT:
GCOffset = pRegFrame->rdi;
cTransfers = pRegFrame->rcx;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
switch (pDis->opmode)
{
case CPUMODE_16BIT:
cbSize = 2;
break;
case CPUMODE_32BIT:
cbSize = 4;
break;
case CPUMODE_64BIT:
cbSize = 8;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
if (!(pDis->prefix & PREFIX_REP))
{
LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
Assert(rc == VINF_SUCCESS);
/* Update (e/r)di. */
switch (pDis->addrmode)
{
case CPUMODE_16BIT:
pRegFrame->di += offIncrement;
break;
case CPUMODE_32BIT:
pRegFrame->edi += offIncrement;
break;
case CPUMODE_64BIT:
pRegFrame->rdi += offIncrement;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
}
else
{
if (!cTransfers)
return VINF_SUCCESS;
/*
* Do *not* try emulate cross page stuff here because we don't know what might
* be waiting for us on the subsequent pages. The caller has only asked us to
* ignore access handlers fro the current page.
* This also fends off big stores which would quickly kill PGMR0DynMap.
*/
if ( cbSize > PAGE_SIZE
|| cTransfers > PAGE_SIZE
|| (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
{
Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
GCDest, cbSize, offIncrement, cTransfers));
return VERR_EM_INTERPRETER;
}
LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
/* Access verification first; we currently can't recover properly from traps inside this instruction */
rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
cTransfers * cbSize,
X86_PTE_RW | (CPUMGetGuestCPL(pVCpu, pRegFrame) == 3 ? X86_PTE_US : 0));
if (rc != VINF_SUCCESS)
{
Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
return VERR_EM_INTERPRETER;
}
/* REP case */
while (cTransfers)
{
rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
if (RT_FAILURE(rc))
{
rc = VERR_EM_INTERPRETER;
break;
}
Assert(rc == VINF_SUCCESS);
GCOffset += offIncrement;
GCDest += offIncrement;
cTransfers--;
}
/* Update the registers. */
switch (pDis->addrmode)
{
case CPUMODE_16BIT:
pRegFrame->di = GCOffset;
pRegFrame->cx = cTransfers;
break;
case CPUMODE_32BIT:
pRegFrame->edi = GCOffset;
pRegFrame->ecx = cTransfers;
break;
case CPUMODE_64BIT:
pRegFrame->rdi = GCOffset;
pRegFrame->rcx = cTransfers;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
}
*pcbSize = cbSize;
return rc;
}
#endif /* !IN_RC */
/**
* [LOCK] CMPXCHG emulation.
*/
static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
Assert(pDis->param1.size <= 4);
#endif
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
uint64_t valpar;
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register actually */
valpar = param2.val.val64;
break;
default:
return VERR_EM_INTERPRETER;
}
PGMPAGEMAPLOCK Lock;
RTGCPTR GCPtrPar1;
void *pvParam1;
uint64_t eflags;
AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
GCPtrPar1 = param1.val.val64;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
if (pDis->prefix & PREFIX_LOCK)
eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
else
eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = param2.size;
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/**
* [LOCK] CMPXCHG8B emulation.
*/
static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
RTGCPTR GCPtrPar1;
void *pvParam1;
uint64_t eflags;
PGMPAGEMAPLOCK Lock;
AssertReturn(pDis->param1.size == 8, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
GCPtrPar1 = param1.val.val64;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
if (pDis->prefix & PREFIX_LOCK)
eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
else
eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish; note that *only* ZF is affected. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
| (eflags & (X86_EFL_ZF));
*pcbSize = 8;
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
#ifdef IN_RC /** @todo test+enable for HWACCM as well. */
/**
* [LOCK] XADD emulation.
*/
static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
void *pvParamReg2;
size_t cbParamReg2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->param2, &pvParamReg2, &cbParamReg2);
Assert(cbParamReg2 <= 4);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVCpu))
{
if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR GCPtrPar1;
void *pvParam1;
uint32_t eflags;
PGMPAGEMAPLOCK Lock;
AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, (RTRCUINTPTR)param1.val.val64);
#ifdef IN_RC
EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
if (pDis->prefix & PREFIX_LOCK)
eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
else
eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = cbParamReg2;
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
#ifdef IN_RC
}
}
return VERR_EM_INTERPRETER;
#endif
}
#endif /* IN_RC */
#ifdef IN_RC
/**
* Interpret IRET (currently only to V86 code)
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretIret(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
int rc;
Assert(!CPUMIsGuestIn64BitCode(pVCpu, pRegFrame));
rc = emRamRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
rc |= emRamRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
pRegFrame->eip = eip & 0xffff;
pRegFrame->cs = cs;
/* Mask away all reserved bits */
uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
eflags &= uMask;
#ifndef IN_RING0
CPUMRawSetEFlags(pVCpu, pRegFrame, eflags);
#endif
Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
pRegFrame->esp = esp;
pRegFrame->ss = ss;
pRegFrame->ds = ds;
pRegFrame->es = es;
pRegFrame->fs = fs;
pRegFrame->gs = gs;
return VINF_SUCCESS;
}
#endif /* IN_RC */
/**
* IRET Emulation.
*/
static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* only allow direct calls to EMInterpretIret for now */
return VERR_EM_INTERPRETER;
}
/**
* WBINVD Emulation.
*/
static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* Nothing to do. */
return VINF_SUCCESS;
}
/**
* Interpret INVLPG
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param pAddrGC Operand address
*
*/
VMMDECL(int) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
{
int rc;
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
#ifdef IN_RC
LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
#endif
rc = PGMInvalidatePage(pVCpu, pAddrGC);
if ( rc == VINF_SUCCESS
|| rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
return VINF_SUCCESS;
AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
("%Rrc addr=%RGv\n", rc, pAddrGC),
VERR_EM_INTERPRETER);
return rc;
}
/**
* INVLPG Emulation.
*/
static int emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTGCPTR addr;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
case PARMTYPE_ADDRESS:
if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
addr = (RTGCPTR)param1.val.val64;
break;
default:
return VERR_EM_INTERPRETER;
}
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
#ifdef IN_RC
LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
#endif
rc = PGMInvalidatePage(pVCpu, addr);
if ( rc == VINF_SUCCESS
|| rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
return VINF_SUCCESS;
AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
("%Rrc addr=%RGv\n", rc, addr),
VERR_EM_INTERPRETER);
return rc;
}
/**
* Interpret CPUID given the parameters in the CPU context
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
uint32_t iLeaf = pRegFrame->eax;
/* cpuid clears the high dwords of the affected 64 bits registers. */
pRegFrame->rax = 0;
pRegFrame->rbx = 0;
pRegFrame->rcx &= UINT64_C(0x00000000ffffffff);
pRegFrame->rdx = 0;
/* Note: operates the same in 64 and non-64 bits mode. */
CPUMGetGuestCpuId(pVCpu, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
return VINF_SUCCESS;
}
/**
* CPUID Emulation.
*/
static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
return rc;
}
/**
* Interpret CRx read
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param DestRegGen General purpose register index (USE_REG_E**))
* @param SrcRegCRx CRx register index (USE_REG_CR*)
*
*/
VMMDECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
{
uint64_t val64;
int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
else
rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
if (RT_SUCCESS(rc))
{
LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
return VINF_SUCCESS;
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret CLTS
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
*
*/
VMMDECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
{
uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
if (!(cr0 & X86_CR0_TS))
return VINF_SUCCESS;
return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
}
/**
* CLTS Emulation.
*/
static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretCLTS(pVM, pVCpu);
}
/**
* Update CRx
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param DestRegCRx CRx register index (USE_REG_CR*)
* @param val New CRx value
*
*/
static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
{
uint64_t oldval;
uint64_t msrEFER;
int rc, rc2;
/** @todo Clean up this mess. */
LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
switch (DestRegCrx)
{
case USE_REG_CR0:
oldval = CPUMGetGuestCR0(pVCpu);
#ifdef IN_RC
/* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
if ( (val & (X86_CR0_WP | X86_CR0_AM))
!= (oldval & (X86_CR0_WP | X86_CR0_AM)))
return VERR_EM_INTERPRETER;
#endif
rc = VINF_SUCCESS;
CPUMSetGuestCR0(pVCpu, val);
val = CPUMGetGuestCR0(pVCpu);
if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
!= (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
{
/* global flush */
rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
AssertRCReturn(rc, rc);
}
/* Deal with long mode enabling/disabling. */
msrEFER = CPUMGetGuestEFER(pVCpu);
if (msrEFER & MSR_K6_EFER_LME)
{
if ( !(oldval & X86_CR0_PG)
&& (val & X86_CR0_PG))
{
/* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
if (pRegFrame->csHid.Attr.n.u1Long)
{
AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
}
/* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
{
AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
}
msrEFER |= MSR_K6_EFER_LMA;
}
else
if ( (oldval & X86_CR0_PG)
&& !(val & X86_CR0_PG))
{
msrEFER &= ~MSR_K6_EFER_LMA;
/* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
}
CPUMSetGuestEFER(pVCpu, msrEFER);
}
rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
return rc2 == VINF_SUCCESS ? rc : rc2;
case USE_REG_CR2:
rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
return VINF_SUCCESS;
case USE_REG_CR3:
/* Reloading the current CR3 means the guest just wants to flush the TLBs */
rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
{
/* flush */
rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
AssertRC(rc);
}
return rc;
case USE_REG_CR4:
oldval = CPUMGetGuestCR4(pVCpu);
rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
val = CPUMGetGuestCR4(pVCpu);
/* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
msrEFER = CPUMGetGuestEFER(pVCpu);
if ( (msrEFER & MSR_K6_EFER_LMA)
&& (oldval & X86_CR4_PAE)
&& !(val & X86_CR4_PAE))
{
return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
}
rc = VINF_SUCCESS;
if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
!= (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
{
/* global flush */
rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
AssertRCReturn(rc, rc);
}
/* Feeling extremely lazy. */
# ifdef IN_RC
if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
!= (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
{
Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
}
# endif
if ((val ^ oldval) & X86_CR4_VME)
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
return rc2 == VINF_SUCCESS ? rc : rc2;
case USE_REG_CR8:
return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
default:
AssertFailed();
case USE_REG_CR1: /* illegal op */
break;
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret CRx write
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param DestRegCRx CRx register index (USE_REG_CR*)
* @param SrcRegGen General purpose register index (USE_REG_E**))
*
*/
VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
{
uint64_t val;
int rc;
if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
{
rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
}
else
{
uint32_t val32;
rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
val = val32;
}
if (RT_SUCCESS(rc))
return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
return VERR_EM_INTERPRETER;
}
/**
* Interpret LMSW
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param u16Data LMSW source data.
*
*/
VMMDECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
{
uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
/* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
| (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
return emUpdateCRx(pVM, pVCpu, pRegFrame, USE_REG_CR0, NewCr0);
}
/**
* LMSW Emulation.
*/
static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
uint32_t val;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
case PARMTYPE_ADDRESS:
if(!(param1.flags & PARAM_VAL16))
return VERR_EM_INTERPRETER;
val = param1.val.val32;
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("emInterpretLmsw %x\n", val));
return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
}
#ifdef EM_EMULATE_SMSW
/**
* SMSW Emulation.
*/
static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
if(param1.size != sizeof(uint16_t))
return VERR_EM_INTERPRETER;
LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->param1.base.reg_gen, cr0));
rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, cr0);
break;
case PARMTYPE_ADDRESS:
{
RTGCPTR pParam1;
/* Actually forced to 16 bits regardless of the operand size. */
if(param1.size != sizeof(uint16_t))
return VERR_EM_INTERPRETER;
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
break;
}
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("emInterpretSmsw %x\n", cr0));
return rc;
}
#endif
/**
* MOV CRx
*/
static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
if ((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_CR)
return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_ctrl);
if (pDis->param1.flags == USE_REG_CR && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_ctrl, pDis->param2.base.reg_gen);
AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
return VERR_EM_INTERPRETER;
}
/**
* Interpret DRx write
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param DestRegDRx DRx register index (USE_REG_DR*)
* @param SrcRegGen General purpose register index (USE_REG_E**))
*
*/
VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
{
uint64_t val;
int rc;
if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
{
rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
}
else
{
uint32_t val32;
rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
val = val32;
}
if (RT_SUCCESS(rc))
{
/** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
if (RT_SUCCESS(rc))
return rc;
AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret DRx read
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
* @param DestRegGen General purpose register index (USE_REG_E**))
* @param SrcRegDRx DRx register index (USE_REG_DR*)
*
*/
VMMDECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
{
uint64_t val64;
int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
{
rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
}
else
rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
return VERR_EM_INTERPRETER;
}
/**
* MOV DRx
*/
static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc = VERR_EM_INTERPRETER;
if((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_DBG)
{
rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_dbg);
}
else
if(pDis->param1.flags == USE_REG_DBG && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
{
rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_dbg, pDis->param2.base.reg_gen);
}
else
AssertMsgFailed(("Unexpected debug register move\n"));
return rc;
}
/**
* LLDT Emulation.
*/
static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTSEL sel;
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_ADDRESS:
return VERR_EM_INTERPRETER; //feeling lazy right now
case PARMTYPE_IMMEDIATE:
if(!(param1.flags & PARAM_VAL16))
return VERR_EM_INTERPRETER;
sel = (RTSEL)param1.val.val16;
break;
default:
return VERR_EM_INTERPRETER;
}
#ifdef IN_RING0
/* Only for the VT-x real-mode emulation case. */
AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
CPUMSetGuestLDTR(pVCpu, sel);
return VINF_SUCCESS;
#else
if (sel == 0)
{
if (CPUMGetHyperLDTR(pVCpu) == 0)
{
// this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
return VINF_SUCCESS;
}
}
//still feeling lazy
return VERR_EM_INTERPRETER;
#endif
}
#ifdef IN_RING0
/**
* LIDT/LGDT Emulation.
*/
static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTGCPTR pParam1;
X86XDTR32 dtr32;
Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
/* Only for the VT-x real-mode emulation case. */
AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_ADDRESS:
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, param1.val.val16);
break;
default:
return VERR_EM_INTERPRETER;
}
rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
AssertRCReturn(rc, VERR_EM_INTERPRETER);
if (!(pDis->prefix & PREFIX_OPSIZE))
dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
if (pDis->pCurInstr->opcode == OP_LIDT)
CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
else
CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
return VINF_SUCCESS;
}
#endif
#ifdef IN_RC
/**
* STI Emulation.
*
* @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
*/
static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
if(!pGCState)
{
Assert(pGCState);
return VERR_EM_INTERPRETER;
}
pGCState->uVMFlags |= X86_EFL_IF;
Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->opsize;
VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
return VINF_SUCCESS;
}
#endif /* IN_RC */
/**
* HLT Emulation.
*/
static int emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return VINF_EM_HALT;
}
/**
* Interpret RDTSC
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
if (uCR4 & X86_CR4_TSD)
return VERR_EM_INTERPRETER; /* genuine #GP */
uint64_t uTicks = TMCpuTickGet(pVCpu);
/* Same behaviour in 32 & 64 bits mode */
pRegFrame->rax = (uint32_t)uTicks;
pRegFrame->rdx = (uTicks >> 32ULL);
return VINF_SUCCESS;
}
/**
* Interpret RDTSCP
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pCtx The CPU context.
*
*/
VMMDECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
{
AssertFailed();
return VERR_EM_INTERPRETER; /* genuine #UD */
}
if (uCR4 & X86_CR4_TSD)
return VERR_EM_INTERPRETER; /* genuine #GP */
uint64_t uTicks = TMCpuTickGet(pVCpu);
/* Same behaviour in 32 & 64 bits mode */
pCtx->rax = (uint32_t)uTicks;
pCtx->rdx = (uTicks >> 32ULL);
/* Low dword of the TSC_AUX msr only. */
CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx);
pCtx->rcx &= UINT32_C(0xffffffff);
return VINF_SUCCESS;
}
/**
* RDTSC Emulation.
*/
static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
}
/**
* Interpret RDPMC
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
/* If X86_CR4_PCE is not set, then CPL must be zero. */
if ( !(uCR4 & X86_CR4_PCE)
&& CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
{
Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
return VERR_EM_INTERPRETER; /* genuine #GP */
}
/* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
pRegFrame->rax = 0;
pRegFrame->rdx = 0;
/* @todo We should trigger a #GP here if the cpu doesn't support the index in ecx. */
return VINF_SUCCESS;
}
/**
* RDPMC Emulation
*/
static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
}
/**
* MONITOR Emulation.
*/
VMMDECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
uint32_t u32Dummy, u32ExtFeatures, cpl;
if (pRegFrame->ecx != 0)
{
Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
return VERR_EM_INTERPRETER; /* illegal value. */
}
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
return VERR_EM_INTERPRETER; /* not supported */
pVCpu->em.s.mwait.uMonitorEAX = pRegFrame->rax;
pVCpu->em.s.mwait.uMonitorECX = pRegFrame->rcx;
pVCpu->em.s.mwait.uMonitorEDX = pRegFrame->rdx;
pVCpu->em.s.mwait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
return VINF_SUCCESS;
}
static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
}
/**
* MWAIT Emulation.
*/
VMMDECL(int) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
return VERR_EM_INTERPRETER; /* not supported */
/*
* CPUID.05H.ECX[0] defines support for power management extensions (eax)
* CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
*/
CPUMGetGuestCpuId(pVCpu, 5, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
if (pRegFrame->ecx > 1)
{
Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
return VERR_EM_INTERPRETER; /* illegal value. */
}
if (pRegFrame->ecx)
{
if (!(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
{
Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
return VERR_EM_INTERPRETER; /* illegal value. */
}
pVCpu->em.s.mwait.fWait = EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0;
}
else
pVCpu->em.s.mwait.fWait = EMMWAIT_FLAG_ACTIVE;
pVCpu->em.s.mwait.uMWaitEAX = pRegFrame->rax;
pVCpu->em.s.mwait.uMWaitECX = pRegFrame->rcx;
/** @todo not completely correct */
return VINF_EM_HALT;
}
static int emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretMWait(pVM, pVCpu, pRegFrame);
}
#ifdef LOG_ENABLED
static const char *emMSRtoString(uint32_t uMsr)
{
switch (uMsr)
{
case MSR_IA32_APICBASE:
return "MSR_IA32_APICBASE";
case MSR_IA32_CR_PAT:
return "MSR_IA32_CR_PAT";
case MSR_IA32_SYSENTER_CS:
return "MSR_IA32_SYSENTER_CS";
case MSR_IA32_SYSENTER_EIP:
return "MSR_IA32_SYSENTER_EIP";
case MSR_IA32_SYSENTER_ESP:
return "MSR_IA32_SYSENTER_ESP";
case MSR_K6_EFER:
return "MSR_K6_EFER";
case MSR_K8_SF_MASK:
return "MSR_K8_SF_MASK";
case MSR_K6_STAR:
return "MSR_K6_STAR";
case MSR_K8_LSTAR:
return "MSR_K8_LSTAR";
case MSR_K8_CSTAR:
return "MSR_K8_CSTAR";
case MSR_K8_FS_BASE:
return "MSR_K8_FS_BASE";
case MSR_K8_GS_BASE:
return "MSR_K8_GS_BASE";
case MSR_K8_KERNEL_GS_BASE:
return "MSR_K8_KERNEL_GS_BASE";
case MSR_K8_TSC_AUX:
return "MSR_K8_TSC_AUX";
case MSR_IA32_BIOS_SIGN_ID:
return "Unsupported MSR_IA32_BIOS_SIGN_ID";
case MSR_IA32_PLATFORM_ID:
return "Unsupported MSR_IA32_PLATFORM_ID";
case MSR_IA32_BIOS_UPDT_TRIG:
return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
case MSR_IA32_TSC:
return "MSR_IA32_TSC";
case MSR_IA32_MISC_ENABLE:
return "Unsupported MSR_IA32_MISC_ENABLE";
case MSR_IA32_MTRR_CAP:
return "Unsupported MSR_IA32_MTRR_CAP";
case MSR_IA32_MCP_CAP:
return "Unsupported MSR_IA32_MCP_CAP";
case MSR_IA32_MCP_STATUS:
return "Unsupported MSR_IA32_MCP_STATUS";
case MSR_IA32_MCP_CTRL:
return "Unsupported MSR_IA32_MCP_CTRL";
case MSR_IA32_MTRR_DEF_TYPE:
return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
case MSR_K7_EVNTSEL0:
return "Unsupported MSR_K7_EVNTSEL0";
case MSR_K7_EVNTSEL1:
return "Unsupported MSR_K7_EVNTSEL1";
case MSR_K7_EVNTSEL2:
return "Unsupported MSR_K7_EVNTSEL2";
case MSR_K7_EVNTSEL3:
return "Unsupported MSR_K7_EVNTSEL3";
case MSR_IA32_MC0_CTL:
return "Unsupported MSR_IA32_MC0_CTL";
case MSR_IA32_MC0_STATUS:
return "Unsupported MSR_IA32_MC0_STATUS";
case MSR_IA32_PERFEVTSEL0:
return "Unsupported MSR_IA32_PERFEVTSEL0";
case MSR_IA32_PERFEVTSEL1:
return "Unsupported MSR_IA32_PERFEVTSEL1";
case MSR_IA32_PERF_STATUS:
return "MSR_IA32_PERF_STATUS";
case MSR_IA32_PLATFORM_INFO:
return "MSR_IA32_PLATFORM_INFO";
case MSR_IA32_PERF_CTL:
return "Unsupported MSR_IA32_PERF_CTL";
case MSR_K7_PERFCTR0:
return "Unsupported MSR_K7_PERFCTR0";
case MSR_K7_PERFCTR1:
return "Unsupported MSR_K7_PERFCTR1";
case MSR_K7_PERFCTR2:
return "Unsupported MSR_K7_PERFCTR2";
case MSR_K7_PERFCTR3:
return "Unsupported MSR_K7_PERFCTR3";
case MSR_IA32_PMC0:
return "Unsupported MSR_IA32_PMC0";
case MSR_IA32_PMC1:
return "Unsupported MSR_IA32_PMC1";
case MSR_IA32_PMC2:
return "Unsupported MSR_IA32_PMC2";
case MSR_IA32_PMC3:
return "Unsupported MSR_IA32_PMC3";
}
return "Unknown MSR";
}
#endif /* LOG_ENABLED */
/**
* Interpret RDMSR
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
*/
VMMDECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
/** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
* That version clears the high dwords of both RDX & RAX */
/* Get the current privilege level. */
if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
uint64_t uValue;
int rc = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
Assert(rc == VERR_CPUM_RAISE_GP_0);
return VERR_EM_INTERPRETER;
}
pRegFrame->rax = (uint32_t) uValue;
pRegFrame->rdx = (uint32_t)(uValue >> 32);
LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
return rc;
}
/**
* RDMSR Emulation.
*/
static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
different, so we play safe by completely disassembling the instruction. */
Assert(!(pDis->prefix & PREFIX_REX));
return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
}
/**
* Interpret WRMSR
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pRegFrame The register frame.
*/
VMMDECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
/* Check the current privilege level, this instruction is supervisor only. */
if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
int rc = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
if (rc != VINF_SUCCESS)
{
Assert(rc == VERR_CPUM_RAISE_GP_0);
return VERR_EM_INTERPRETER;
}
LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
return rc;
}
/**
* WRMSR Emulation.
*/
static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
}
/**
* Internal worker.
* @copydoc EMInterpretInstructionCPU
*/
DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
uint32_t *pcbSize, EMCODETYPE enmCodeType)
{
Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
Assert(pcbSize);
*pcbSize = 0;
if (enmCodeType == EMCODETYPE_SUPERVISOR)
{
/*
* Only supervisor guest code!!
* And no complicated prefixes.
*/
/* Get the current privilege level. */
uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
if ( cpl != 0
&& pDis->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
{
Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
return VERR_EM_INTERPRETER;
}
}
else
Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
#ifdef IN_RC
if ( (pDis->prefix & (PREFIX_REPNE | PREFIX_REP))
|| ( (pDis->prefix & PREFIX_LOCK)
&& pDis->pCurInstr->opcode != OP_CMPXCHG
&& pDis->pCurInstr->opcode != OP_CMPXCHG8B
&& pDis->pCurInstr->opcode != OP_XADD
&& pDis->pCurInstr->opcode != OP_OR
&& pDis->pCurInstr->opcode != OP_AND
&& pDis->pCurInstr->opcode != OP_XOR
&& pDis->pCurInstr->opcode != OP_BTR
)
)
#else
if ( (pDis->prefix & PREFIX_REPNE)
|| ( (pDis->prefix & PREFIX_REP)
&& pDis->pCurInstr->opcode != OP_STOSWD
)
|| ( (pDis->prefix & PREFIX_LOCK)
&& pDis->pCurInstr->opcode != OP_OR
&& pDis->pCurInstr->opcode != OP_AND
&& pDis->pCurInstr->opcode != OP_XOR
&& pDis->pCurInstr->opcode != OP_BTR
&& pDis->pCurInstr->opcode != OP_CMPXCHG
&& pDis->pCurInstr->opcode != OP_CMPXCHG8B
)
)
#endif
{
//Log(("EMInterpretInstruction: wrong prefix!!\n"));
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
return VERR_EM_INTERPRETER;
}
#if HC_ARCH_BITS == 32
/*
* Unable to emulate most >4 bytes accesses in 32 bits mode.
* Whitelisted instructions are safe.
*/
if ( pDis->param1.size > 4
&& CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
{
uint32_t uOpCode = pDis->pCurInstr->opcode;
if ( uOpCode != OP_STOSWD
&& uOpCode != OP_MOV
&& uOpCode != OP_CMPXCHG8B
&& uOpCode != OP_XCHG
&& uOpCode != OP_BTS
&& uOpCode != OP_BTR
&& uOpCode != OP_BTC
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
&& uOpCode != OP_CMPXCHG /* solaris */
&& uOpCode != OP_AND /* windows */
&& uOpCode != OP_OR /* windows */
&& uOpCode != OP_XOR /* because we can */
&& uOpCode != OP_ADD /* windows (dripple) */
&& uOpCode != OP_ADC /* because we can */
&& uOpCode != OP_SUB /* because we can */
/** @todo OP_BTS or is that a different kind of failure? */
# endif
)
{
# ifdef VBOX_WITH_STATISTICS
switch (pDis->pCurInstr->opcode)
{
# define INTERPRET_FAILED_CASE(opcode, Instr) \
case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
INTERPRET_FAILED_CASE(OP_DEC,Dec);
INTERPRET_FAILED_CASE(OP_INC,Inc);
INTERPRET_FAILED_CASE(OP_POP,Pop);
INTERPRET_FAILED_CASE(OP_OR, Or);
INTERPRET_FAILED_CASE(OP_XOR,Xor);
INTERPRET_FAILED_CASE(OP_AND,And);
INTERPRET_FAILED_CASE(OP_MOV,Mov);
INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
INTERPRET_FAILED_CASE(OP_CLTS,Clts);
INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
INTERPRET_FAILED_CASE(OP_ADD,Add);
INTERPRET_FAILED_CASE(OP_SUB,Sub);
INTERPRET_FAILED_CASE(OP_ADC,Adc);
INTERPRET_FAILED_CASE(OP_BTR,Btr);
INTERPRET_FAILED_CASE(OP_BTS,Bts);
INTERPRET_FAILED_CASE(OP_BTC,Btc);
INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
INTERPRET_FAILED_CASE(OP_STI, Sti);
INTERPRET_FAILED_CASE(OP_XADD,XAdd);
INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
INTERPRET_FAILED_CASE(OP_HLT, Hlt);
INTERPRET_FAILED_CASE(OP_IRET,Iret);
INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
# undef INTERPRET_FAILED_CASE
default:
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
break;
}
# endif /* VBOX_WITH_STATISTICS */
return VERR_EM_INTERPRETER;
}
}
#endif
int rc;
#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
#endif
switch (pDis->pCurInstr->opcode)
{
/*
* Macros for generating the right case statements.
*/
# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
case opcode:\
if (pDis->prefix & PREFIX_LOCK) \
rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
else \
rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
case opcode:\
rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
#define INTERPRET_CASE(opcode, Instr) \
case opcode:\
rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
case opcode:\
rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_STAT_CASE(opcode, Instr) \
case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
/*
* The actual case statements.
*/
INTERPRET_CASE(OP_XCHG,Xchg);
INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
INTERPRET_CASE(OP_POP,Pop);
INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
INTERPRET_CASE(OP_MOV,Mov);
#ifndef IN_RC
INTERPRET_CASE(OP_STOSWD,StosWD);
#endif
INTERPRET_CASE(OP_INVLPG,InvlPg);
INTERPRET_CASE(OP_CPUID,CpuId);
INTERPRET_CASE(OP_MOV_CR,MovCRx);
INTERPRET_CASE(OP_MOV_DR,MovDRx);
#ifdef IN_RING0
INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
#endif
INTERPRET_CASE(OP_LLDT,LLdt);
INTERPRET_CASE(OP_LMSW,Lmsw);
#ifdef EM_EMULATE_SMSW
INTERPRET_CASE(OP_SMSW,Smsw);
#endif
INTERPRET_CASE(OP_CLTS,Clts);
INTERPRET_CASE(OP_MONITOR, Monitor);
INTERPRET_CASE(OP_MWAIT, MWait);
INTERPRET_CASE(OP_RDMSR, Rdmsr);
INTERPRET_CASE(OP_WRMSR, Wrmsr);
INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
INTERPRET_CASE(OP_ADC,Adc);
INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
INTERPRET_CASE(OP_RDPMC,Rdpmc);
INTERPRET_CASE(OP_RDTSC,Rdtsc);
INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
#ifdef IN_RC
INTERPRET_CASE(OP_STI,Sti);
INTERPRET_CASE(OP_XADD, XAdd);
#endif
INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
INTERPRET_CASE(OP_HLT,Hlt);
INTERPRET_CASE(OP_IRET,Iret);
INTERPRET_CASE(OP_WBINVD,WbInvd);
#ifdef VBOX_WITH_STATISTICS
# ifndef IN_RC
INTERPRET_STAT_CASE(OP_XADD, XAdd);
# endif
INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
#endif
default:
Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->opcode));
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
return VERR_EM_INTERPRETER;
#undef INTERPRET_CASE_EX_PARAM2
#undef INTERPRET_STAT_CASE
#undef INTERPRET_CASE_EX
#undef INTERPRET_CASE
} /* switch (opcode) */
AssertFailed();
return VERR_INTERNAL_ERROR;
}
/**
* Sets the PC for which interrupts should be inhibited.
*
* @param pVCpu The VMCPU handle.
* @param PC The PC.
*/
VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
{
pVCpu->em.s.GCPtrInhibitInterrupts = PC;
VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
}
/**
* Gets the PC for which interrupts should be inhibited.
*
* There are a few instructions which inhibits or delays interrupts
* for the instruction following them. These instructions are:
* - STI
* - MOV SS, r/m16
* - POP SS
*
* @returns The PC for which interrupts should be inhibited.
* @param pVCpu The VMCPU handle.
*
*/
VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
{
return pVCpu->em.s.GCPtrInhibitInterrupts;
}
/**
* Locks REM execution to a single VCpu
*
* @param pVM VM handle.
*/
VMMDECL(void) EMRemLock(PVM pVM)
{
if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
return; /* early init */
Assert(!PGMIsLockOwner(pVM) && !IOMIsLockOwner(pVM));
int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
}
/**
* Unlocks REM execution
*
* @param pVM VM handle.
*/
VMMDECL(void) EMRemUnlock(PVM pVM)
{
if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
return; /* early init */
PDMCritSectLeave(&pVM->em.s.CritSectREM);
}
/**
* Check if this VCPU currently owns the REM lock.
*
* @returns bool owner/not owner
* @param pVM The VM to operate on.
*/
VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
{
return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
}
/**
* Try to acquire the REM lock.
*
* @returns VBox status code
* @param pVM The VM to operate on.
*/
VMMDECL(int) EMTryEnterRemLock(PVM pVM)
{
return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
}
/**
* Determine if we should continue after encountering a hlt or mwait instruction
*
* @returns boolean
* @param pVCpu The VMCPU to operate on.
* @param pCtx Current CPU context
*/
VMMDECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
{
if ( pCtx->eflags.Bits.u1IF
|| ((pVCpu->em.s.mwait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)))
{
pVCpu->em.s.mwait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
return !!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC));
}
return false;
}