EMAll.cpp revision 8c0c69900803583540d2baa8766ed91f0c03f873
/* $Id$ */
/** @file
* EM - Execution Monitor(/Manager) - All contexts
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_EM
#include <VBox/em.h>
#include <VBox/mm.h>
#include <VBox/selm.h>
#include <VBox/patm.h>
#include <VBox/csam.h>
#include <VBox/pgm.h>
#include <VBox/iom.h>
#include <VBox/stam.h>
#include "EMInternal.h"
#include <VBox/vm.h>
#include <VBox/hwaccm.h>
#include <VBox/tm.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
typedef DECLCALLBACK(uint32_t) PFN_EMULATE_PARAM2_UINT32(uint32_t *pu32Param1, uint32_t val2);
typedef DECLCALLBACK(uint32_t) PFN_EMULATE_PARAM2(uint32_t *pu32Param1, size_t val2);
typedef DECLCALLBACK(uint32_t) PFN_EMULATE_PARAM3(uint32_t *pu32Param1, uint32_t val2, size_t val3);
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
/**
* Get the current execution manager status.
*
* @returns Current status.
*/
EMDECL(EMSTATE) EMGetState(PVM pVM)
{
return pVM->em.s.enmState;
}
#ifndef IN_GC
/**
* Read callback for disassembly function; supports reading bytes that cross a page boundary
*
* @returns VBox status code.
* @param pSrc GC source pointer
* @param pDest HC destination pointer
* @param size Number of bytes to read
* @param dwUserdata Callback specific user data (pCpu)
*
*/
DECLCALLBACK(int32_t) EMReadBytes(RTHCUINTPTR pSrc, uint8_t *pDest, uint32_t size, RTHCUINTPTR dwUserdata)
{
DISCPUSTATE *pCpu = (DISCPUSTATE *)dwUserdata;
PVM pVM = (PVM)pCpu->dwUserData[0];
#ifdef IN_RING0
int rc = PGMPhysReadGCPtr(pVM, pDest, pSrc, size);
AssertRC(rc);
#else
if (!PATMIsPatchGCAddr(pVM, pSrc))
{
int rc = PGMPhysReadGCPtr(pVM, pDest, pSrc, size);
AssertRC(rc);
}
else
{
for (uint32_t i = 0; i < size; i++)
{
uint8_t opcode;
if (VBOX_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
{
*(pDest+i) = opcode;
}
}
}
#endif /* IN_RING0 */
return VINF_SUCCESS;
}
DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
{
return DISCoreOneEx(InstrGC, pCpu->mode, EMReadBytes, pVM, pCpu, pOpsize);
}
#else
DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
{
return DISCoreOne(pCpu, InstrGC, pOpsize);
}
#endif
/**
* Disassembles one instruction.
*
* @param pVM The VM handle.
* @param pCtxCore The context core (used for both the mode and instruction).
* @param pCpu Where to return the parsed instruction info.
* @param pcbInstr Where to return the instruction size. (optional)
*/
EMDECL(int) EMInterpretDisasOne(PVM pVM, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
{
RTGCPTR GCPtrInstr;
int rc = SELMValidateAndConvertCSAddr(pVM, pCtxCore->eflags, pCtxCore->ss, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid, (RTGCPTR)pCtxCore->eip, &GCPtrInstr);
if (VBOX_FAILURE(rc))
{
Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RX32 (cpl=%d) - rc=%Vrc !!\n",
pCtxCore->cs, pCtxCore->eip, pCtxCore->ss & X86_SEL_RPL, rc));
return rc;
}
return EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pCpu, pcbInstr);
}
/**
* Disassembles one instruction.
*
* This is used by internally by the interpreter and by trap/access handlers.
*
* @param pVM The VM handle.
* @param GCPtrInstr The flat address of the instruction.
* @param pCtxCore The context core (used to determin the cpu mode).
* @param pCpu Where to return the parsed instruction info.
* @param pcbInstr Where to return the instruction size. (optional)
*/
EMDECL(int) EMInterpretDisasOneEx(PVM pVM, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
{
int rc = DISCoreOneEx(GCPtrInstr, SELMIsSelector32Bit(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid) ? CPUMODE_32BIT : CPUMODE_16BIT,
#ifdef IN_GC
NULL, NULL,
#else
EMReadBytes, pVM,
#endif
pCpu, pcbInstr);
if (VBOX_SUCCESS(rc))
return VINF_SUCCESS;
AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%VGv rc=%Vrc\n", GCPtrInstr, rc));
return VERR_INTERNAL_ERROR;
}
/**
* Interprets the current instruction.
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* Updates the EIP if an instruction was executed successfully.
* @param pvFault The fault address (CR2).
* @param pcbSize Size of the write (if applicable).
*
* @remark Invalid opcode exceptions have a higher priority than GP (see Intel
* Architecture System Developers Manual, Vol 3, 5.5) so we don't need
* to worry about e.g. invalid modrm combinations (!)
*/
EMDECL(int) EMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
RTGCPTR pbCode;
int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &pbCode);
if (VBOX_SUCCESS(rc))
{
uint32_t cbOp;
DISCPUSTATE Cpu;
Cpu.mode = SELMIsSelector32Bit(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid) ? CPUMODE_32BIT : CPUMODE_16BIT;
rc = emDisCoreOne(pVM, &Cpu, (RTGCUINTPTR)pbCode, &cbOp);
if (VBOX_SUCCESS(rc))
{
Assert(cbOp == Cpu.opsize);
rc = EMInterpretInstructionCPU(pVM, &Cpu, pRegFrame, pvFault, pcbSize);
if (VBOX_SUCCESS(rc))
{
pRegFrame->eip += cbOp; /* Move on to the next instruction. */
}
return rc;
}
}
return VERR_EM_INTERPRETER;
}
/**
* Interprets the current instruction using the supplied DISCPUSTATE structure.
*
* EIP is *NOT* updated!
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions. When these are returned, it
* starts to get a bit tricky to know whether code was
* executed or not... We'll address this when it becomes a problem.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pCpu The disassembler cpu state for the instruction to be interpreted.
* @param pRegFrame The register frame. EIP is *NOT* changed!
* @param pvFault The fault address (CR2).
* @param pcbSize Size of the write (if applicable).
*
* @remark Invalid opcode exceptions have a higher priority than GP (see Intel
* Architecture System Developers Manual, Vol 3, 5.5) so we don't need
* to worry about e.g. invalid modrm combinations (!)
*
* @todo At this time we do NOT check if the instruction overwrites vital information.
* Make sure this can't happen!! (will add some assertions/checks later)
*/
EMDECL(int) EMInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
STAM_PROFILE_START(&CTXMID(pVM->em.s.CTXSUFF(pStats)->Stat,Emulate), a);
int rc = emInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, pcbSize);
STAM_PROFILE_STOP(&CTXMID(pVM->em.s.CTXSUFF(pStats)->Stat,Emulate), a);
if (VBOX_SUCCESS(rc))
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,InterpretSucceeded));
else
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,InterpretFailed));
return rc;
}
/**
* Interpret a port I/O instruction.
*
* @returns VBox status code suitable for scheduling.
* @param pVM The VM handle.
* @param pCtxCore The context core. This will be updated on successful return.
* @param pCpu The instruction to interpret.
* @param cbOp The size of the instruction.
* @remark This may raise exceptions.
*/
EMDECL(int) EMInterpretPortIO(PVM pVM, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, uint32_t cbOp)
{
/*
* Hand it on to IOM.
*/
#ifdef IN_GC
int rc = IOMGCIOPortHandler(pVM, pCtxCore, pCpu);
if (IOM_SUCCESS(rc))
pCtxCore->eip += cbOp;
return rc;
#else
AssertReleaseMsgFailed(("not implemented\n"));
return VERR_NOT_IMPLEMENTED;
#endif
}
DECLINLINE(int) emRamRead(PVM pVM, void *pDest, RTGCPTR GCSrc, uint32_t cb)
{
#ifdef IN_GC
int rc = MMGCRamRead(pVM, pDest, GCSrc, cb);
if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
return rc;
/*
* The page pool cache may end up here in some cases because it
* flushed one of the shadow mappings used by the trapping
* instruction and it either flushed the TLB or the CPU reused it.
*/
RTGCPHYS GCPhys;
RTGCUINTPTR offset;
offset = (RTGCUINTPTR)GCSrc & PAGE_OFFSET_MASK;
rc = PGMPhysGCPtr2GCPhys(pVM, GCSrc, &GCPhys);
AssertRCReturn(rc, rc);
PGMPhysRead(pVM, GCPhys + offset, pDest, cb);
return VINF_SUCCESS;
#else
return PGMPhysReadGCPtrSafe(pVM, pDest, GCSrc, cb);
#endif
}
DECLINLINE(int) emRamWrite(PVM pVM, RTGCPTR GCDest, void *pSrc, uint32_t cb)
{
#ifdef IN_GC
int rc = MMGCRamWrite(pVM, GCDest, pSrc, cb);
if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
return rc;
/*
* The page pool cache may end up here in some cases because it
* flushed one of the shadow mappings used by the trapping
* instruction and it either flushed the TLB or the CPU reused it.
* We want to play safe here, verifying that we've got write
* access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
*/
uint64_t fFlags;
RTGCPHYS GCPhys;
rc = PGMGstGetPage(pVM, GCDest, &fFlags, &GCPhys);
if (RT_FAILURE(rc))
return rc;
if ( !(fFlags & X86_PTE_RW)
&& (CPUMGetGuestCR0(pVM) & X86_CR0_WP))
return VERR_ACCESS_DENIED;
PGMPhysWrite(pVM, GCPhys + ((RTGCUINTPTR)GCDest & PAGE_OFFSET_MASK), pSrc, cb);
return VINF_SUCCESS;
#else
return PGMPhysWriteGCPtrSafe(pVM, GCDest, pSrc, cb);
#endif
}
/* Convert sel:addr to a flat GC address */
static RTGCPTR emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, POP_PARAMETER pParam, RTGCPTR pvAddr)
{
int prefix_seg, rc;
RTSEL sel;
CPUMSELREGHID *pSelHidReg;
prefix_seg = DISDetectSegReg(pCpu, pParam);
rc = DISFetchRegSegEx(pRegFrame, prefix_seg, &sel, &pSelHidReg);
if (VBOX_FAILURE(rc))
return pvAddr;
return SELMToFlat(pVM, pRegFrame->eflags, sel, pSelHidReg, pvAddr);
}
/**
* XCHG instruction emulation.
*/
static int emInterpretXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0, pParam2 = 0;
uint32_t valpar1, valpar2;
AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
valpar1 = param1.val.val32;
break;
case PARMTYPE_ADDRESS:
pParam1 = (RTGCPTR)param1.val.val32;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("MMGCRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_ADDRESS:
pParam2 = (RTGCPTR)param2.val.val32;
pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pParam2);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pParam2 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar2, pParam2, param2.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("MMGCRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
}
break;
case PARMTYPE_IMMEDIATE:
valpar2 = param2.val.val32;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Write value of parameter 2 to parameter 1 (reg or memory address) */
if (pParam1 == 0)
{
Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
switch(param1.size)
{
case 1: //special case for AH etc
rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen8, (uint8_t)valpar2); break;
case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen32, (uint16_t)valpar2); break;
case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen32, valpar2); break;
default: AssertFailedReturn(VERR_EM_INTERPRETER);
}
if (VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
}
else
{
rc = emRamWrite(pVM, pParam1, &valpar2, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
/* Write value of parameter 1 to parameter 2 (reg or memory address) */
if (pParam2 == 0)
{
Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
switch(param2.size)
{
case 1: //special case for AH etc
rc = DISWriteReg8(pRegFrame, pCpu->param2.base.reg_gen8, (uint8_t)valpar1); break;
case 2: rc = DISWriteReg16(pRegFrame, pCpu->param2.base.reg_gen32, (uint16_t)valpar1); break;
case 4: rc = DISWriteReg32(pRegFrame, pCpu->param2.base.reg_gen32, valpar1); break;
default: AssertFailedReturn(VERR_EM_INTERPRETER);
}
if (VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
}
else
{
rc = emRamWrite(pVM, pParam2, &valpar1, param2.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
*pcbSize = param2.size;
return VINF_SUCCESS;
#ifdef IN_GC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* INC and DEC emulation.
*/
static int emInterpretIncDec(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFN_EMULATE_PARAM2 pfnEmulate)
{
OP_PARAMVAL param1;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0;
uint32_t valpar1;
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val32;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
AssertFailed();
return VERR_EM_INTERPRETER;
}
uint32_t eflags;
eflags = pfnEmulate(&valpar1, param1.size);
/* Write result back */
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* All done! */
*pcbSize = param1.size;
return VINF_SUCCESS;
#ifdef IN_GC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* POP Emulation.
*/
static int emInterpretPop(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0;
uint32_t valpar1;
RTGCPTR pStackVal;
/* Read stack value first */
if (SELMIsSelector32Bit(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == false)
return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
/* Convert address; don't bother checking limits etc, as we only read here */
pStackVal = SELMToFlat(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid, (RTGCPTR)pRegFrame->esp);
if (pStackVal == 0)
return VERR_EM_INTERPRETER;
rc = emRamRead(pVM, &valpar1, pStackVal, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val32;
/* pop [esp+xx] uses esp after the actual pop! */
AssertCompile(USE_REG_ESP == USE_REG_SP);
if ( (pCpu->param1.flags & USE_BASE)
&& (pCpu->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
&& pCpu->param1.base.reg_gen32 == USE_REG_ESP
)
pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertMsgReturn(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, ("%VGv != %VGv ss:esp=%04X:%VGv\n", pParam1, pvFault, pRegFrame->ss, pRegFrame->esp), VERR_EM_INTERPRETER);
#endif
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
/* Update ESP as the last step */
pRegFrame->esp += param1.size;
}
else
{
#ifndef DEBUG_bird // annoying assertion.
AssertFailed();
#endif
return VERR_EM_INTERPRETER;
}
/* All done! */
*pcbSize = param1.size;
return VINF_SUCCESS;
#ifdef IN_GC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* XOR/OR/AND Emulation.
*/
static int emInterpretOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFN_EMULATE_PARAM3 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef DEBUG
const char *pszInstr;
if (pCpu->pCurInstr->opcode == OP_XOR)
pszInstr = "Xor";
else
if (pCpu->pCurInstr->opcode == OP_OR)
pszInstr = "Or";
else
if (pCpu->pCurInstr->opcode == OP_AND)
pszInstr = "And";
#endif
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint32_t valpar1, valpar2;
if (pCpu->param1.size != pCpu->param2.size)
{
if (pCpu->param1.size < pCpu->param2.size)
{
AssertMsgFailed(("%s at %VGv parameter mismatch %d vs %d!!\n", pszInstr, pRegFrame->eip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
return VERR_EM_INTERPRETER;
}
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pCpu->param2.size = pCpu->param1.size;
param2.size = param1.size;
}
/* The destination is always a virtual address */
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val32;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertMsgReturn(pParam1 == pvFault, ("eip=%VGv, pParam1=%VGv pvFault=%VGv\n", pRegFrame->eip, pParam1, pvFault), VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val32;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Data read, emulate instruction. */
uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (VBOX_SUCCESS(rc))
{
/* All done! */
*pcbSize = param2.size;
return VINF_SUCCESS;
}
#ifdef IN_GC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* ADD, ADC & SUB Emulation.
*/
static int emInterpretAddSub(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFN_EMULATE_PARAM3 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef DEBUG
const char *pszInstr;
if (pCpu->pCurInstr->opcode == OP_SUB)
pszInstr = "Sub";
else
if (pCpu->pCurInstr->opcode == OP_ADD)
pszInstr = "Add";
else
if (pCpu->pCurInstr->opcode == OP_ADC)
pszInstr = "Adc";
#endif
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint32_t valpar1, valpar2;
if (pCpu->param1.size != pCpu->param2.size)
{
if (pCpu->param1.size < pCpu->param2.size)
{
AssertMsgFailed(("%s at %VGv parameter mismatch %d vs %d!!\n", pszInstr, pRegFrame->eip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
return VERR_EM_INTERPRETER;
}
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pCpu->param2.size = pCpu->param1.size;
param2.size = param1.size;
}
/* The destination is always a virtual address */
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val32;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
#ifndef DEBUG_bird
AssertFailed();
#endif
return VERR_EM_INTERPRETER;
}
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val32;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Data read, emulate instruction. */
uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (VBOX_SUCCESS(rc))
{
/* All done! */
*pcbSize = param2.size;
return VINF_SUCCESS;
}
#ifdef IN_GC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* ADC Emulation.
*/
static int emInterpretAdc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
if (pRegFrame->eflags.Bits.u1CF)
return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
else
return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
}
/**
* BTR/C/S Emulation.
*/
static int emInterpretBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFN_EMULATE_PARAM2_UINT32 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef DEBUG
const char *pszInstr;
if (pCpu->pCurInstr->opcode == OP_BTR)
pszInstr = "Btr";
else
if (pCpu->pCurInstr->opcode == OP_BTS)
pszInstr = "Bts";
else
if (pCpu->pCurInstr->opcode == OP_BTC)
pszInstr = "Btc";
#endif
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint32_t valpar1 = 0, valpar2;
uint32_t eflags;
/* The destination is always a virtual address */
if (param1.type != PARMTYPE_ADDRESS)
return VERR_EM_INTERPRETER;
pParam1 = (RTGCPTR)param1.val.val32;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val32;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
Log2(("emInterpret%s: pvFault=%VGv pParam1=%VGv val2=%x\n", pszInstr, pvFault, pParam1, valpar2));
pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
#ifdef IN_GC
/* Safety check. */
AssertMsgReturn((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, ("pParam1=%VGv pvFault=%VGv\n", pParam1, pvFault), VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar1, pParam1, 1);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %VGv size=%d failed with %Vrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
Log2(("emInterpretBtx: val=%x\n", valpar1));
/* Data read, emulate bit test instruction. */
eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pParam1, &valpar1, 1);
if (VBOX_SUCCESS(rc))
{
/* All done! */
*pcbSize = 1;
return VINF_SUCCESS;
}
#ifdef IN_GC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* MOV emulation.
*/
static int emInterpretMov(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_GC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#else
/** @todo Make this the default and don't rely on TRPM information. */
if (param1.type == PARMTYPE_ADDRESS)
{
#endif
RTGCPTR pDest;
uint32_t val32;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
if(!(param1.flags & PARAM_VAL32))
return VERR_EM_INTERPRETER;
/* fallthru */
case PARMTYPE_ADDRESS:
pDest = (RTGCPTR)param1.val.val32;
pDest = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pDest);
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
val32 = param2.val.val32;
break;
default:
Log(("emInterpretMov: unexpected type=%d eip=%VGv\n", param2.type, pRegFrame->eip));
return VERR_EM_INTERPRETER;
}
LogFlow(("EMInterpretInstruction at %08x: OP_MOV %08X <- %08X (%d) &val32=%08x\n", pRegFrame->eip, pDest, val32, param2.size, &val32));
Assert(param2.size <= 4 && param2.size > 0);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertMsgReturn(pDest == pvFault, ("eip=%VGv pDest=%VGv pvFault=%VGv\n", pRegFrame->eip, pDest, pvFault), VERR_EM_INTERPRETER);
#endif
rc = emRamWrite(pVM, pDest, &val32, param2.size);
if (VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
*pcbSize = param2.size;
}
else
{ /* read fault */
RTGCPTR pSrc;
uint32_t val32;
/* Source */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE:
if(!(param2.flags & PARAM_VAL32))
return VERR_EM_INTERPRETER;
/* fallthru */
case PARMTYPE_ADDRESS:
pSrc = (RTGCPTR)param2.val.val32;
pSrc = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pSrc);
break;
default:
return VERR_EM_INTERPRETER;
}
Assert(param1.size <= 4 && param1.size > 0);
#ifdef IN_GC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pSrc == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &val32, pSrc, param1.size);
if (VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
/* Destination */
switch(param1.type)
{
case PARMTYPE_REGISTER:
switch(param1.size)
{
case 1: rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen8, (uint8_t)val32); break;
case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen16, (uint16_t)val32); break;
case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen32, val32); break;
default:
return VERR_EM_INTERPRETER;
}
if (VBOX_FAILURE(rc))
return rc;
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("EMInterpretInstruction: OP_MOV %08X -> %08X (%d)\n", pSrc, val32, param1.size));
}
return VINF_SUCCESS;
#ifdef IN_GC
}
#endif
return VERR_EM_INTERPRETER;
}
#ifdef IN_GC
static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
RTGCPTR pParam1;
uint32_t valpar, eflags;
#ifdef VBOX_STRICT
uint32_t valpar1;
#endif
AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
pParam1 = (RTGCPTR)param1.val.val32;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertMsgReturn(pParam1 == pvFault, ("eip=%VGv pParam1=%VGv pvFault=%VGv\n", pRegFrame->eip, pParam1, pvFault), VERR_EM_INTERPRETER);
#ifdef VBOX_STRICT
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
#endif
break;
default:
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register actually */
valpar = param2.val.val32;
break;
default:
return VERR_EM_INTERPRETER;
}
#ifdef VBOX_STRICT
LogFlow(("CmpXchg %VGv=%08x eax=%08x %08x\n", pParam1, valpar1, pRegFrame->eax, valpar));
#endif
if (pCpu->prefix & PREFIX_LOCK)
eflags = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size);
else
eflags = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size);
#ifdef VBOX_STRICT
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
LogFlow(("CmpXchg %VGv=%08x eax=%08x %08x ZF=%d\n", pParam1, valpar1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
#endif
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = param2.size;
return VINF_SUCCESS;
}
}
return VERR_EM_INTERPRETER;
}
#endif
/**
* Interpret IRET (currently only to V86 code)
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
EMDECL(int) EMInterpretIret(PVM pVM, PCPUMCTXCORE pRegFrame)
{
RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
int rc;
rc = emRamRead(pVM, &eip, (RTGCPTR)pIretStack , 4);
rc |= emRamRead(pVM, &cs, (RTGCPTR)(pIretStack + 4), 4);
rc |= emRamRead(pVM, &eflags, (RTGCPTR)(pIretStack + 8), 4);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
rc |= emRamRead(pVM, &esp, (RTGCPTR)(pIretStack + 12), 4);
rc |= emRamRead(pVM, &ss, (RTGCPTR)(pIretStack + 16), 4);
rc |= emRamRead(pVM, &es, (RTGCPTR)(pIretStack + 20), 4);
rc |= emRamRead(pVM, &ds, (RTGCPTR)(pIretStack + 24), 4);
rc |= emRamRead(pVM, &fs, (RTGCPTR)(pIretStack + 28), 4);
rc |= emRamRead(pVM, &gs, (RTGCPTR)(pIretStack + 32), 4);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
pRegFrame->eip = eip & 0xffff;
pRegFrame->cs = cs;
/* Mask away all reserved bits */
uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
eflags &= uMask;
#ifndef IN_RING0
CPUMRawSetEFlags(pVM, pRegFrame, eflags);
#endif
Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
pRegFrame->esp = esp;
pRegFrame->ss = ss;
pRegFrame->ds = ds;
pRegFrame->es = es;
pRegFrame->fs = fs;
pRegFrame->gs = gs;
return VINF_SUCCESS;
}
/**
* IRET Emulation.
*/
static int emInterpretIret(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* only allow direct calls to EMInterpretIret for now */
return VERR_EM_INTERPRETER;
}
/**
* INVLPG Emulation.
*/
/**
* Interpret INVLPG
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param pAddrGC Operand address
*
*/
EMDECL(int) EMInterpretInvlpg(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
{
int rc;
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
#ifdef IN_GC
// Note: we could also use PGMFlushPage here, but it currently doesn't always use invlpg!!!!!!!!!!
LogFlow(("GC: EMULATE: invlpg %08X\n", pAddrGC));
rc = PGMGCInvalidatePage(pVM, pAddrGC);
#else
rc = PGMInvalidatePage(pVM, pAddrGC);
#endif
if (VBOX_SUCCESS(rc))
return VINF_SUCCESS;
Log(("PGMInvalidatePage %VGv returned %VGv (%d)\n", pAddrGC, rc, rc));
Assert(rc == VERR_REM_FLUSHED_PAGES_OVERFLOW);
/** @todo r=bird: we shouldn't ignore returns codes like this... I'm 99% sure the error is fatal. */
return VERR_EM_INTERPRETER;
}
static int emInterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTGCPTR addr;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
case PARMTYPE_ADDRESS:
if(!(param1.flags & PARAM_VAL32))
return VERR_EM_INTERPRETER;
addr = (RTGCPTR)param1.val.val32;
break;
default:
return VERR_EM_INTERPRETER;
}
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
#ifdef IN_GC
// Note: we could also use PGMFlushPage here, but it currently doesn't always use invlpg!!!!!!!!!!
LogFlow(("GC: EMULATE: invlpg %08X\n", addr));
rc = PGMGCInvalidatePage(pVM, addr);
#else
rc = PGMInvalidatePage(pVM, addr);
#endif
if (VBOX_SUCCESS(rc))
return VINF_SUCCESS;
/** @todo r=bird: we shouldn't ignore returns codes like this... I'm 99% sure the error is fatal. */
return VERR_EM_INTERPRETER;
}
/**
* CPUID Emulation.
*/
/**
* Interpret CPUID given the parameters in the CPU context
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
EMDECL(int) EMInterpretCpuId(PVM pVM, PCPUMCTXCORE pRegFrame)
{
CPUMGetGuestCpuId(pVM, pRegFrame->eax, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
return VINF_SUCCESS;
}
static int emInterpretCpuId(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
uint32_t iLeaf = pRegFrame->eax; NOREF(iLeaf);
int rc = EMInterpretCpuId(pVM, pRegFrame);
Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
return rc;
}
/**
* MOV CRx Emulation.
*/
/**
* Interpret CRx read
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegGen General purpose register index (USE_REG_E**))
* @param SrcRegCRx CRx register index (USE_REG_CR*)
*
*/
EMDECL(int) EMInterpretCRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
{
uint32_t val32;
int rc = CPUMGetGuestCRx(pVM, SrcRegCrx, &val32);
AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
rc = DISWriteReg32(pRegFrame, DestRegGen, val32);
if(VBOX_SUCCESS(rc))
{
LogFlow(("MOV_CR: gen32=%d CR=%d val=%08x\n", DestRegGen, SrcRegCrx, val32));
return VINF_SUCCESS;
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret LMSW
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param u16Data LMSW source data.
*
*/
EMDECL(int) EMInterpretLMSW(PVM pVM, uint16_t u16Data)
{
uint32_t OldCr0 = CPUMGetGuestCR0(pVM);
/* don't use this path to go into protected mode! */
Assert(OldCr0 & X86_CR0_PE);
if (!(OldCr0 & X86_CR0_PE))
return VERR_EM_INTERPRETER;
/* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
uint32_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
| (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
#ifdef IN_GC
/* Need to change the hyper CR0? Doing it the lazy way then. */
if ( (OldCr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP | X86_CR0_AM | X86_CR0_WP))
!= (NewCr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP | X86_CR0_AM | X86_CR0_WP)))
{
Log(("EMInterpretLMSW: CR0: %#x->%#x => R3\n", OldCr0, NewCr0));
VM_FF_SET(pVM, VM_FF_TO_R3);
}
#endif
return CPUMSetGuestCR0(pVM, NewCr0);
}
/**
* Interpret CLTS
*
* @returns VBox status code.
* @param pVM The VM handle.
*
*/
EMDECL(int) EMInterpretCLTS(PVM pVM)
{
uint32_t Cr0 = CPUMGetGuestCR0(pVM);
if (!(Cr0 & X86_CR0_TS))
return VINF_SUCCESS;
#ifdef IN_GC
/* Need to change the hyper CR0? Doing it the lazy way then. */
Log(("EMInterpretCLTS: CR0: %#x->%#x => R3\n", Cr0, Cr0 & ~X86_CR0_TS));
VM_FF_SET(pVM, VM_FF_TO_R3);
#endif
return CPUMSetGuestCR0(pVM, Cr0 & ~X86_CR0_TS);
}
static int emInterpretClts(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretCLTS(pVM);
}
/**
* Interpret CRx write
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegCRx CRx register index (USE_REG_CR*)
* @param SrcRegGen General purpose register index (USE_REG_E**))
*
*/
EMDECL(int) EMInterpretCRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
{
uint32_t val32;
uint32_t oldval;
/** @todo Clean up this mess. */
int rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
if (VBOX_SUCCESS(rc))
{
switch (DestRegCrx)
{
case USE_REG_CR0:
oldval = CPUMGetGuestCR0(pVM);
#ifndef IN_RING3
/* CR0.WP changes require a reschedule run in ring 3. */
if ((val32 & X86_CR0_WP) != (oldval & X86_CR0_WP))
return VERR_EM_INTERPRETER;
#endif
rc = CPUMSetGuestCR0(pVM, val32); AssertRC(rc); /** @todo CPUSetGuestCR0 stuff should be void, this is silly. */
val32 = CPUMGetGuestCR0(pVM);
if ( (oldval & (X86_CR0_PG|X86_CR0_WP|X86_CR0_PE))
!= (val32 & (X86_CR0_PG|X86_CR0_WP|X86_CR0_PE)))
{
/* global flush */
rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
AssertRCReturn(rc, rc);
}
# ifdef IN_GC
/* Feeling extremely lazy. */
if ( (oldval & (X86_CR0_TS|X86_CR0_EM|X86_CR0_MP|X86_CR0_AM))
!= (val32 & (X86_CR0_TS|X86_CR0_EM|X86_CR0_MP|X86_CR0_AM)))
{
Log(("emInterpretMovCRx: CR0: %#x->%#x => R3\n", oldval, val32));
VM_FF_SET(pVM, VM_FF_TO_R3);
}
# endif
return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), 0);
case USE_REG_CR2:
rc = CPUMSetGuestCR2(pVM, val32); AssertRC(rc);
return VINF_SUCCESS;
case USE_REG_CR3:
/* Reloading the current CR3 means the guest just wants to flush the TLBs */
rc = CPUMSetGuestCR3(pVM, val32); AssertRC(rc);
if (CPUMGetGuestCR0(pVM) & X86_CR0_PG)
{
/* flush */
rc = PGMFlushTLB(pVM, val32, !(CPUMGetGuestCR4(pVM) & X86_CR4_PGE));
AssertRCReturn(rc, rc);
}
return VINF_SUCCESS;
case USE_REG_CR4:
oldval = CPUMGetGuestCR4(pVM);
#ifndef IN_RING3
/** @todo is flipping of the X86_CR4_PAE bit handled correctly here? */
#endif
rc = CPUMSetGuestCR4(pVM, val32); AssertRC(rc);
val32 = CPUMGetGuestCR4(pVM);
if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
!= (val32 & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
{
/* global flush */
rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
AssertRCReturn(rc, rc);
}
# ifndef IN_RING3 /** @todo check this out IN_RING0! */
/* Feeling extremely lazy. */
if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
!= (val32 & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
{
Log(("emInterpretMovCRx: CR4: %#x->%#x => R3\n", oldval, val32));
VM_FF_SET(pVM, VM_FF_TO_R3);
}
# endif
return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), 0);
default:
AssertFailed();
case USE_REG_CR1: /* illegal op */
break;
}
}
return VERR_EM_INTERPRETER;
}
static int emInterpretMovCRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
if (pCpu->param1.flags == USE_REG_GEN32 && pCpu->param2.flags == USE_REG_CR)
return EMInterpretCRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen32, pCpu->param2.base.reg_ctrl);
if (pCpu->param1.flags == USE_REG_CR && pCpu->param2.flags == USE_REG_GEN32)
return EMInterpretCRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_ctrl, pCpu->param2.base.reg_gen32);
AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
return VERR_EM_INTERPRETER;
}
/**
* MOV DRx
*/
/**
* Interpret DRx write
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegDRx DRx register index (USE_REG_DR*)
* @param SrcRegGen General purpose register index (USE_REG_E**))
*
*/
EMDECL(int) EMInterpretDRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
{
uint32_t val32;
int rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
if (VBOX_SUCCESS(rc))
{
rc = CPUMSetGuestDRx(pVM, DestRegDrx, val32);
if (VBOX_SUCCESS(rc))
return rc;
AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret DRx read
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegGen General purpose register index (USE_REG_E**))
* @param SrcRegDRx DRx register index (USE_REG_DR*)
*
*/
EMDECL(int) EMInterpretDRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
{
uint32_t val32;
int rc = CPUMGetGuestDRx(pVM, SrcRegDrx, &val32);
AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
rc = DISWriteReg32(pRegFrame, DestRegGen, val32);
if (VBOX_SUCCESS(rc))
return VINF_SUCCESS;
return VERR_EM_INTERPRETER;
}
static int emInterpretMovDRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc = VERR_EM_INTERPRETER;
if(pCpu->param1.flags == USE_REG_GEN32 && pCpu->param2.flags == USE_REG_DBG)
{
rc = EMInterpretDRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen32, pCpu->param2.base.reg_dbg);
}
else
if(pCpu->param1.flags == USE_REG_DBG && pCpu->param2.flags == USE_REG_GEN32)
{
rc = EMInterpretDRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_dbg, pCpu->param2.base.reg_gen32);
}
else
AssertMsgFailed(("Unexpected debug register move\n"));
return rc;
}
/**
* LLDT Emulation.
*/
static int emInterpretLLdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTSEL sel;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(VBOX_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_ADDRESS:
return VERR_EM_INTERPRETER; //feeling lazy right now
case PARMTYPE_IMMEDIATE:
if(!(param1.flags & PARAM_VAL16))
return VERR_EM_INTERPRETER;
sel = (RTSEL)param1.val.val16;
break;
default:
return VERR_EM_INTERPRETER;
}
if (sel == 0)
{
if (CPUMGetHyperLDTR(pVM) == 0)
{
// this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
return VINF_SUCCESS;
}
}
//still feeling lazy
return VERR_EM_INTERPRETER;
}
#ifdef IN_GC
/**
* STI Emulation.
*
* @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
*/
static int emInterpretSti(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
if(!pGCState)
{
Assert(pGCState);
return VERR_EM_INTERPRETER;
}
pGCState->uVMFlags |= X86_EFL_IF;
Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
Assert(pvFault == SELMToFlat(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip));
pVM->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pCpu->opsize;
VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
return VINF_SUCCESS;
}
#endif /* IN_GC */
/**
* HLT Emulation.
*/
static int emInterpretHlt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return VINF_EM_HALT;
}
/**
* RDTSC Emulation.
*/
/**
* Interpret RDTSC
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
EMDECL(int) EMInterpretRdtsc(PVM pVM, PCPUMCTXCORE pRegFrame)
{
unsigned uCR4 = CPUMGetGuestCR4(pVM);
if (uCR4 & X86_CR4_TSD)
return VERR_EM_INTERPRETER; /* genuine #GP */
uint64_t uTicks = TMCpuTickGet(pVM);
pRegFrame->eax = uTicks;
pRegFrame->edx = (uTicks >> 32ULL);
return VINF_SUCCESS;
}
static int emInterpretRdtsc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretRdtsc(pVM, pRegFrame);
}
/**
* MONITOR Emulation.
*/
static int emInterpretMonitor(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
uint32_t u32Dummy, u32ExtFeatures, cpl;
if (pRegFrame->ecx != 0)
return VERR_EM_INTERPRETER; /* illegal value. */
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
return VERR_EM_INTERPRETER; /* not supported */
return VINF_SUCCESS;
}
/**
* MWAIT Emulation.
*/
static int emInterpretMWait(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
uint32_t u32Dummy, u32ExtFeatures, cpl;
if (pRegFrame->ecx != 0)
return VERR_EM_INTERPRETER; /* illegal value. */
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
return VERR_EM_INTERPRETER; /* not supported */
/** @todo not completely correct */
return VINF_EM_HALT;
}
/**
* Internal worker.
* @copydoc EMInterpretInstructionCPU
*/
DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pcbSize);
*pcbSize = 0;
/*
* Only supervisor guest code!!
* And no complicated prefixes.
*/
/* Get the current privilege level. */
uint32_t cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if ( cpl != 0
&& pCpu->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
{
Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,FailedUserMode));
return VERR_EM_INTERPRETER;
}
#ifdef IN_GC
if ( (pCpu->prefix & (PREFIX_REPNE | PREFIX_REP))
|| ( (pCpu->prefix & PREFIX_LOCK)
&& (pCpu->pCurInstr->opcode != OP_CMPXCHG)
)
)
#else
if (pCpu->prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_LOCK))
#endif
{
//Log(("EMInterpretInstruction: wrong prefix!!\n"));
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,FailedPrefix));
return VERR_EM_INTERPRETER;
}
int rc;
switch (pCpu->pCurInstr->opcode)
{
#define INTERPRET_CASE_EX_PARAM3(opcode,Instr,InstrFn, pfnEmulate) \
case opcode:\
rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
if (VBOX_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_PARAM2(opcode,Instr,InstrFn, pfnEmulate) \
case opcode:\
rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
if (VBOX_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE(opcode,Instr) \
case opcode:\
rc = emInterpret##Instr(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
if (VBOX_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Failed##Instr)); \
return rc
#define INTERPRET_STAT_CASE(opcode,Instr) \
case opcode: STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
INTERPRET_CASE(OP_XCHG,Xchg);
INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec,IncDec,EMEmulateDec);
INTERPRET_CASE_EX_PARAM2(OP_INC,Inc,IncDec,EMEmulateInc);
INTERPRET_CASE(OP_POP,Pop);
INTERPRET_CASE_EX_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr);
INTERPRET_CASE_EX_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor);
INTERPRET_CASE_EX_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd);
INTERPRET_CASE(OP_MOV,Mov);
INTERPRET_CASE(OP_INVLPG,InvlPg);
INTERPRET_CASE(OP_CPUID,CpuId);
INTERPRET_CASE(OP_MOV_CR,MovCRx);
INTERPRET_CASE(OP_MOV_DR,MovDRx);
INTERPRET_CASE(OP_LLDT,LLdt);
INTERPRET_CASE(OP_CLTS,Clts);
INTERPRET_CASE(OP_MONITOR, Monitor);
INTERPRET_CASE(OP_MWAIT, MWait);
INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
INTERPRET_CASE(OP_ADC,Adc);
INTERPRET_CASE_EX_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr);
INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
INTERPRET_CASE(OP_RDTSC,Rdtsc);
#ifdef IN_GC
INTERPRET_CASE(OP_STI,Sti);
INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
#endif
INTERPRET_CASE(OP_HLT,Hlt);
INTERPRET_CASE(OP_IRET,Iret);
#ifdef VBOX_WITH_STATISTICS
#ifndef IN_GC
INTERPRET_STAT_CASE(OP_CMPXCHG,CmpXchg);
#endif
INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
INTERPRET_STAT_CASE(OP_STOSWD,StosWD);
INTERPRET_STAT_CASE(OP_WBINVD,WbInvd);
#endif
default:
Log3(("emInterpretInstructionCPU: opcode=%d\n", pCpu->pCurInstr->opcode));
STAM_COUNTER_INC(&pVM->em.s.CTXSUFF(pStats)->CTXMID(Stat,FailedMisc));
return VERR_EM_INTERPRETER;
#undef INTERPRET_CASE_EX_PARAM2
#undef INTERPRET_STAT_CASE
#undef INTERPRET_CASE_EX
#undef INTERPRET_CASE
}
AssertFailed();
return VERR_INTERNAL_ERROR;
}
/**
* Sets the PC for which interrupts should be inhibited.
*
* @param pVM The VM handle.
* @param PC The PC.
*/
EMDECL(void) EMSetInhibitInterruptsPC(PVM pVM, RTGCUINTPTR PC)
{
pVM->em.s.GCPtrInhibitInterrupts = PC;
VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
}
/**
* Gets the PC for which interrupts should be inhibited.
*
* There are a few instructions which inhibits or delays interrupts
* for the instruction following them. These instructions are:
* - STI
* - MOV SS, r/m16
* - POP SS
*
* @returns The PC for which interrupts should be inhibited.
* @param pVM VM handle.
*
*/
EMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVM pVM)
{
return pVM->em.s.GCPtrInhibitInterrupts;
}