EMAll.cpp revision 5c3d982212ddaafd84ed52f0e59f23257c2f0a30
/* $Id$ */
/** @file
* EM - Execution Monitor(/Manager) - All contexts
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_EM
#include <VBox/em.h>
#include <VBox/mm.h>
#include <VBox/selm.h>
#include <VBox/patm.h>
#include <VBox/csam.h>
#include <VBox/pgm.h>
#include <VBox/iom.h>
#include <VBox/stam.h>
#include "EMInternal.h"
#include <VBox/vm.h>
#include <VBox/vmm.h>
#include <VBox/hwaccm.h>
#include <VBox/tm.h>
#include <VBox/pdmapi.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @def EM_ASSERT_FAULT_RETURN
* Safety check.
*
* Could in theory misfire on a cross page boundary access...
*
* Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
* turns up an alias page instead of the original faulting one and annoying the
* heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
*/
#if 0
# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
#else
# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
/**
* Get the current execution manager status.
*
* @returns Current status.
*/
VMMDECL(EMSTATE) EMGetState(PVM pVM)
{
return pVM->em.s.enmState;
}
#ifndef IN_RC
/**
* Read callback for disassembly function; supports reading bytes that cross a page boundary
*
* @returns VBox status code.
* @param pSrc GC source pointer
* @param pDest HC destination pointer
* @param cb Number of bytes to read
* @param dwUserdata Callback specific user data (pCpu)
*
*/
DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
{
DISCPUSTATE *pCpu = (DISCPUSTATE *)pvUserdata;
PVM pVM = (PVM)pCpu->apvUserData[0];
# ifdef IN_RING0
int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x\n", pSrc, cb));
# else /* IN_RING3 */
if (!PATMIsPatchGCAddr(pVM, pSrc))
{
int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
AssertRC(rc);
}
else
{
for (uint32_t i = 0; i < cb; i++)
{
uint8_t opcode;
if (RT_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
{
*(pDest+i) = opcode;
}
}
}
# endif /* IN_RING3 */
return VINF_SUCCESS;
}
DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
{
return DISCoreOneEx(InstrGC, pCpu->mode, EMReadBytes, pVM, pCpu, pOpsize);
}
#else /* IN_RC */
DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
{
return DISCoreOne(pCpu, InstrGC, pOpsize);
}
#endif /* IN_RC */
/**
* Disassembles one instruction.
*
* @param pVM The VM handle.
* @param pCtxCore The context core (used for both the mode and instruction).
* @param pCpu Where to return the parsed instruction info.
* @param pcbInstr Where to return the instruction size. (optional)
*/
VMMDECL(int) EMInterpretDisasOne(PVM pVM, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
{
RTGCPTR GCPtrInstr;
int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
if (RT_FAILURE(rc))
{
Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
return rc;
}
return EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pCpu, pcbInstr);
}
/**
* Disassembles one instruction.
*
* This is used by internally by the interpreter and by trap/access handlers.
*
* @param pVM The VM handle.
* @param GCPtrInstr The flat address of the instruction.
* @param pCtxCore The context core (used to determine the cpu mode).
* @param pCpu Where to return the parsed instruction info.
* @param pcbInstr Where to return the instruction size. (optional)
*/
VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
{
int rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
#ifdef IN_RC
NULL, NULL,
#else
EMReadBytes, pVM,
#endif
pCpu, pcbInstr);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
return VERR_INTERNAL_ERROR;
}
/**
* Interprets the current instruction.
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* Updates the EIP if an instruction was executed successfully.
* @param pvFault The fault address (CR2).
* @param pcbSize Size of the write (if applicable).
*
* @remark Invalid opcode exceptions have a higher priority than GP (see Intel
* Architecture System Developers Manual, Vol 3, 5.5) so we don't need
* to worry about e.g. invalid modrm combinations (!)
*/
VMMDECL(int) EMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
RTGCPTR pbCode;
LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
if (RT_SUCCESS(rc))
{
uint32_t cbOp;
DISCPUSTATE Cpu;
Cpu.mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
rc = emDisCoreOne(pVM, &Cpu, (RTGCUINTPTR)pbCode, &cbOp);
if (RT_SUCCESS(rc))
{
Assert(cbOp == Cpu.opsize);
rc = EMInterpretInstructionCPU(pVM, &Cpu, pRegFrame, pvFault, pcbSize);
if (RT_SUCCESS(rc))
{
pRegFrame->rip += cbOp; /* Move on to the next instruction. */
}
return rc;
}
}
return VERR_EM_INTERPRETER;
}
/**
* Interprets the current instruction using the supplied DISCPUSTATE structure.
*
* EIP is *NOT* updated!
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions. When these are returned, it
* starts to get a bit tricky to know whether code was
* executed or not... We'll address this when it becomes a problem.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pCpu The disassembler cpu state for the instruction to be interpreted.
* @param pRegFrame The register frame. EIP is *NOT* changed!
* @param pvFault The fault address (CR2).
* @param pcbSize Size of the write (if applicable).
*
* @remark Invalid opcode exceptions have a higher priority than GP (see Intel
* Architecture System Developers Manual, Vol 3, 5.5) so we don't need
* to worry about e.g. invalid modrm combinations (!)
*
* @todo At this time we do NOT check if the instruction overwrites vital information.
* Make sure this can't happen!! (will add some assertions/checks later)
*/
VMMDECL(int) EMInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
STAM_PROFILE_START(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
int rc = emInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, pcbSize);
STAM_PROFILE_STOP(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
if (RT_SUCCESS(rc))
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
else
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
return rc;
}
/**
* Interpret a port I/O instruction.
*
* @returns VBox status code suitable for scheduling.
* @param pVM The VM handle.
* @param pCtxCore The context core. This will be updated on successful return.
* @param pCpu The instruction to interpret.
* @param cbOp The size of the instruction.
* @remark This may raise exceptions.
*/
VMMDECL(int) EMInterpretPortIO(PVM pVM, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, uint32_t cbOp)
{
/*
* Hand it on to IOM.
*/
#ifdef IN_RC
int rc = IOMGCIOPortHandler(pVM, pCtxCore, pCpu);
if (IOM_SUCCESS(rc))
pCtxCore->rip += cbOp;
return rc;
#else
AssertReleaseMsgFailed(("not implemented\n"));
return VERR_NOT_IMPLEMENTED;
#endif
}
DECLINLINE(int) emRamRead(PVM pVM, void *pDest, RTGCPTR GCSrc, uint32_t cb)
{
#ifdef IN_RC
int rc = MMGCRamRead(pVM, pDest, (void *)GCSrc, cb);
if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
return rc;
/*
* The page pool cache may end up here in some cases because it
* flushed one of the shadow mappings used by the trapping
* instruction and it either flushed the TLB or the CPU reused it.
*/
RTGCPHYS GCPhys;
rc = PGMPhysGCPtr2GCPhys(pVM, GCSrc, &GCPhys);
AssertRCReturn(rc, rc);
PGMPhysRead(pVM, GCPhys, pDest, cb);
return VINF_SUCCESS;
#else
return PGMPhysReadGCPtr(pVM, pDest, GCSrc, cb);
#endif
}
DECLINLINE(int) emRamWrite(PVM pVM, RTGCPTR GCDest, void *pSrc, uint32_t cb)
{
#ifdef IN_RC
int rc = MMGCRamWrite(pVM, (void *)GCDest, pSrc, cb);
if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
return rc;
/*
* The page pool cache may end up here in some cases because it
* flushed one of the shadow mappings used by the trapping
* instruction and it either flushed the TLB or the CPU reused it.
* We want to play safe here, verifying that we've got write
* access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
*/
uint64_t fFlags;
RTGCPHYS GCPhys;
rc = PGMGstGetPage(pVM, GCDest, &fFlags, &GCPhys);
if (RT_FAILURE(rc))
return rc;
if ( !(fFlags & X86_PTE_RW)
&& (CPUMGetGuestCR0(pVM) & X86_CR0_WP))
return VERR_ACCESS_DENIED;
PGMPhysWrite(pVM, GCPhys + ((RTGCUINTPTR)GCDest & PAGE_OFFSET_MASK), pSrc, cb);
return VINF_SUCCESS;
#else
return PGMPhysWriteGCPtr(pVM, GCDest, pSrc, cb);
#endif
}
/** Convert sel:addr to a flat GC address. */
DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, POP_PARAMETER pParam, RTGCPTR pvAddr)
{
DIS_SELREG enmPrefixSeg = DISDetectSegReg(pCpu, pParam);
return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
}
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
/**
* Get the mnemonic for the disassembled instruction.
*
* GC/R0 doesn't include the strings in the DIS tables because
* of limited space.
*/
static const char *emGetMnemonic(PDISCPUSTATE pCpu)
{
switch (pCpu->pCurInstr->opcode)
{
case OP_XCHG: return "Xchg";
case OP_DEC: return "Dec";
case OP_INC: return "Inc";
case OP_POP: return "Pop";
case OP_OR: return "Or";
case OP_AND: return "And";
case OP_MOV: return "Mov";
case OP_INVLPG: return "InvlPg";
case OP_CPUID: return "CpuId";
case OP_MOV_CR: return "MovCRx";
case OP_MOV_DR: return "MovDRx";
case OP_LLDT: return "LLdt";
case OP_LGDT: return "LGdt";
case OP_LIDT: return "LGdt";
case OP_CLTS: return "Clts";
case OP_MONITOR: return "Monitor";
case OP_MWAIT: return "MWait";
case OP_RDMSR: return "Rdmsr";
case OP_WRMSR: return "Wrmsr";
case OP_ADD: return "Add";
case OP_ADC: return "Adc";
case OP_SUB: return "Sub";
case OP_SBB: return "Sbb";
case OP_RDTSC: return "Rdtsc";
case OP_STI: return "Sti";
case OP_XADD: return "XAdd";
case OP_HLT: return "Hlt";
case OP_IRET: return "Iret";
case OP_MOVNTPS: return "MovNTPS";
case OP_STOSWD: return "StosWD";
case OP_WBINVD: return "WbInvd";
case OP_XOR: return "Xor";
case OP_BTR: return "Btr";
case OP_BTS: return "Bts";
case OP_BTC: return "Btc";
case OP_LMSW: return "Lmsw";
case OP_CMPXCHG: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
case OP_CMPXCHG8B: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
default:
Log(("Unknown opcode %d\n", pCpu->pCurInstr->opcode));
return "???";
}
}
#endif /* VBOX_STRICT || LOG_ENABLED */
/**
* XCHG instruction emulation.
*/
static int emInterpretXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0, pParam2 = 0;
uint64_t valpar1, valpar2;
AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
valpar1 = param1.val.val64;
break;
case PARMTYPE_ADDRESS:
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_ADDRESS:
pParam2 = (RTGCPTR)param2.val.val64;
pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pParam2);
EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, &valpar2, pParam2, param2.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
}
break;
case PARMTYPE_IMMEDIATE:
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Write value of parameter 2 to parameter 1 (reg or memory address) */
if (pParam1 == 0)
{
Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
switch(param1.size)
{
case 1: //special case for AH etc
rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t )valpar2); break;
case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)valpar2); break;
case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)valpar2); break;
case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, valpar2); break;
default: AssertFailedReturn(VERR_EM_INTERPRETER);
}
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
}
else
{
rc = emRamWrite(pVM, pParam1, &valpar2, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
/* Write value of parameter 1 to parameter 2 (reg or memory address) */
if (pParam2 == 0)
{
Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
switch(param2.size)
{
case 1: //special case for AH etc
rc = DISWriteReg8(pRegFrame, pCpu->param2.base.reg_gen, (uint8_t )valpar1); break;
case 2: rc = DISWriteReg16(pRegFrame, pCpu->param2.base.reg_gen, (uint16_t)valpar1); break;
case 4: rc = DISWriteReg32(pRegFrame, pCpu->param2.base.reg_gen, (uint32_t)valpar1); break;
case 8: rc = DISWriteReg64(pRegFrame, pCpu->param2.base.reg_gen, valpar1); break;
default: AssertFailedReturn(VERR_EM_INTERPRETER);
}
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
}
else
{
rc = emRamWrite(pVM, pParam2, &valpar1, param2.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
*pcbSize = param2.size;
return VINF_SUCCESS;
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* INC and DEC emulation.
*/
static int emInterpretIncDec(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM2 pfnEmulate)
{
OP_PARAMVAL param1;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0;
uint64_t valpar1;
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
#ifdef IN_RC
/* Safety check (in theory it could cross a page boundary and fault there though) */
AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
#endif
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
AssertFailed();
return VERR_EM_INTERPRETER;
}
uint32_t eflags;
eflags = pfnEmulate(&valpar1, param1.size);
/* Write result back */
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* All done! */
*pcbSize = param1.size;
return VINF_SUCCESS;
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* POP Emulation.
*/
static int emInterpretPop(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1 = 0;
uint32_t valpar1;
RTGCPTR pStackVal;
/* Read stack value first */
if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
/* Convert address; don't bother checking limits etc, as we only read here */
pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
if (pStackVal == 0)
return VERR_EM_INTERPRETER;
rc = emRamRead(pVM, &valpar1, pStackVal, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
/* pop [esp+xx] uses esp after the actual pop! */
AssertCompile(USE_REG_ESP == USE_REG_SP);
if ( (pCpu->param1.flags & USE_BASE)
&& (pCpu->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
&& pCpu->param1.base.reg_gen == USE_REG_ESP
)
pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
/* Update ESP as the last step */
pRegFrame->esp += param1.size;
}
else
{
#ifndef DEBUG_bird // annoying assertion.
AssertFailed();
#endif
return VERR_EM_INTERPRETER;
}
/* All done! */
*pcbSize = param1.size;
return VINF_SUCCESS;
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* XOR/OR/AND Emulation.
*/
static int emInterpretOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM3 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint64_t valpar1, valpar2;
if (pCpu->param1.size != pCpu->param2.size)
{
if (pCpu->param1.size < pCpu->param2.size)
{
AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
return VERR_EM_INTERPRETER;
}
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pCpu->param2.size = pCpu->param1.size;
param2.size = param1.size;
}
/* The destination is always a virtual address */
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pCpu), pParam1, valpar1, valpar2, param2.size, param1.size));
/* Data read, emulate instruction. */
uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pCpu), valpar1));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (RT_SUCCESS(rc))
{
/* All done! */
*pcbSize = param2.size;
return VINF_SUCCESS;
}
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* LOCK XOR/OR/AND Emulation.
*/
static int emInterpretLockOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
{
void *pvParam1;
OP_PARAMVAL param1, param2;
#if HC_ARCH_BITS == 32
Assert(pCpu->param1.size <= 4);
#endif
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
if (pCpu->param1.size != pCpu->param2.size)
{
AssertMsgReturn(pCpu->param1.size >= pCpu->param2.size, /* should never happen! */
("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size),
VERR_EM_INTERPRETER);
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pCpu->param2.size = pCpu->param1.size;
param2.size = param1.size;
}
#ifdef IN_RC
/* Safety check (in theory it could cross a page boundary and fault there though) */
Assert( TRPMHasTrap(pVM)
&& (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW));
EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
#endif
/* Register and immediate data == PARMTYPE_IMMEDIATE */
AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
RTGCUINTREG ValPar2 = param2.val.val64;
/* The destination is always a virtual address */
AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
RTGCPTR GCPtrPar1 = param1.val.val64;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
#ifdef IN_RC
pvParam1 = (void *)GCPtrPar1;
#else
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
#endif
/* Try emulate it with a one-shot #PF handler in place. (RC) */
Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
RTGCUINTREG32 eflags = 0;
#ifdef IN_RC
MMGCRamRegisterTrapHandler(pVM);
#endif
rc = pfnEmulate(pvParam1, ValPar2, pCpu->param2.size, &eflags);
#ifdef IN_RC
MMGCRamDeregisterTrapHandler(pVM);
#else
PGMPhysReleasePageMappingLock(pVM, &Lock);
#endif
if (RT_FAILURE(rc))
{
Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
return VERR_EM_INTERPRETER;
}
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = param2.size;
return VINF_SUCCESS;
}
/**
* ADD, ADC & SUB Emulation.
*/
static int emInterpretAddSub(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM3 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint64_t valpar1, valpar2;
if (pCpu->param1.size != pCpu->param2.size)
{
if (pCpu->param1.size < pCpu->param2.size)
{
AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
return VERR_EM_INTERPRETER;
}
/* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
pCpu->param2.size = pCpu->param1.size;
param2.size = param1.size;
}
/* The destination is always a virtual address */
if (param1.type == PARMTYPE_ADDRESS)
{
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
}
else
{
#ifndef DEBUG_bird
AssertFailed();
#endif
return VERR_EM_INTERPRETER;
}
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
/* Data read, emulate instruction. */
uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
if (RT_SUCCESS(rc))
{
/* All done! */
*pcbSize = param2.size;
return VINF_SUCCESS;
}
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* ADC Emulation.
*/
static int emInterpretAdc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
if (pRegFrame->eflags.Bits.u1CF)
return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
else
return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
}
/**
* BTR/C/S Emulation.
*/
static int emInterpretBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
PFNEMULATEPARAM2UINT32 pfnEmulate)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#endif
RTGCPTR pParam1;
uint64_t valpar1 = 0, valpar2;
uint32_t eflags;
/* The destination is always a virtual address */
if (param1.type != PARMTYPE_ADDRESS)
return VERR_EM_INTERPRETER;
pParam1 = (RTGCPTR)param1.val.val64;
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
/* Register or immediate data */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
valpar2 = param2.val.val64;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pCpu), pvFault, pParam1, valpar2));
pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, &valpar1, pParam1, 1);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
return VERR_EM_INTERPRETER;
}
Log2(("emInterpretBtx: val=%x\n", valpar1));
/* Data read, emulate bit test instruction. */
eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
/* And write it back */
rc = emRamWrite(pVM, pParam1, &valpar1, 1);
if (RT_SUCCESS(rc))
{
/* All done! */
*pcbSize = 1;
return VINF_SUCCESS;
}
#ifdef IN_RC
}
}
#endif
return VERR_EM_INTERPRETER;
}
/**
* LOCK BTR/C/S Emulation.
*/
static int emInterpretLockBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
{
void *pvParam1;
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
/* The destination is always a virtual address */
if (param1.type != PARMTYPE_ADDRESS)
return VERR_EM_INTERPRETER;
/* Register and immediate data == PARMTYPE_IMMEDIATE */
AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
uint64_t ValPar2 = param2.val.val64;
/* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
RTGCPTR GCPtrPar1 = param1.val.val64;
GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
ValPar2 &= 7;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
#ifdef IN_RC
Assert(TRPMHasTrap(pVM));
EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
#endif
#ifdef IN_RC
pvParam1 = (void *)GCPtrPar1;
#else
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
#endif
Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pCpu), pvFault, GCPtrPar1, ValPar2));
/* Try emulate it with a one-shot #PF handler in place. (RC) */
RTGCUINTREG32 eflags = 0;
#ifdef IN_RC
MMGCRamRegisterTrapHandler(pVM);
#endif
rc = pfnEmulate(pvParam1, ValPar2, &eflags);
#ifdef IN_RC
MMGCRamDeregisterTrapHandler(pVM);
#else
PGMPhysReleasePageMappingLock(pVM, &Lock);
#endif
if (RT_FAILURE(rc))
{
Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
return VERR_EM_INTERPRETER;
}
Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = 1;
return VINF_SUCCESS;
}
/**
* MOV emulation.
*/
static int emInterpretMov(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
#ifdef IN_RC
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
#else
/** @todo Make this the default and don't rely on TRPM information. */
if (param1.type == PARMTYPE_ADDRESS)
{
#endif
RTGCPTR pDest;
uint64_t val64;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
/* fallthru */
case PARMTYPE_ADDRESS:
pDest = (RTGCPTR)param1.val.val64;
pDest = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pDest);
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
val64 = param2.val.val64;
break;
default:
Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
return VERR_EM_INTERPRETER;
}
#ifdef LOG_ENABLED
if (pCpu->mode == CPUMODE_64BIT)
LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
else
LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
#endif
Assert(param2.size <= 8 && param2.size > 0);
EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
rc = emRamWrite(pVM, pDest, &val64, param2.size);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
*pcbSize = param2.size;
}
else
{ /* read fault */
RTGCPTR pSrc;
uint64_t val64;
/* Source */
switch(param2.type)
{
case PARMTYPE_IMMEDIATE:
if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
/* fallthru */
case PARMTYPE_ADDRESS:
pSrc = (RTGCPTR)param2.val.val64;
pSrc = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pSrc);
break;
default:
return VERR_EM_INTERPRETER;
}
Assert(param1.size <= 8 && param1.size > 0);
EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
rc = emRamRead(pVM, &val64, pSrc, param1.size);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
/* Destination */
switch(param1.type)
{
case PARMTYPE_REGISTER:
switch(param1.size)
{
case 1: rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t) val64); break;
case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)val64); break;
case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)val64); break;
case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, val64); break;
default:
return VERR_EM_INTERPRETER;
}
if (RT_FAILURE(rc))
return rc;
break;
default:
return VERR_EM_INTERPRETER;
}
#ifdef LOG_ENABLED
if (pCpu->mode == CPUMODE_64BIT)
LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
else
LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
#endif
}
return VINF_SUCCESS;
#ifdef IN_RC
}
#endif
return VERR_EM_INTERPRETER;
}
#ifndef IN_RC
/**
* [REP] STOSWD emulation
*/
static int emInterpretStosWD(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc;
RTGCPTR GCDest, GCOffset;
uint32_t cbSize;
uint64_t cTransfers;
int offIncrement;
/* Don't support any but these three prefix bytes. */
if ((pCpu->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
return VERR_EM_INTERPRETER;
switch (pCpu->addrmode)
{
case CPUMODE_16BIT:
GCOffset = pRegFrame->di;
cTransfers = pRegFrame->cx;
break;
case CPUMODE_32BIT:
GCOffset = pRegFrame->edi;
cTransfers = pRegFrame->ecx;
break;
case CPUMODE_64BIT:
GCOffset = pRegFrame->rdi;
cTransfers = pRegFrame->rcx;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
switch (pCpu->opmode)
{
case CPUMODE_16BIT:
cbSize = 2;
break;
case CPUMODE_32BIT:
cbSize = 4;
break;
case CPUMODE_64BIT:
cbSize = 8;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
if (!(pCpu->prefix & PREFIX_REP))
{
LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
Assert(rc == VINF_SUCCESS);
/* Update (e/r)di. */
switch (pCpu->addrmode)
{
case CPUMODE_16BIT:
pRegFrame->di += offIncrement;
break;
case CPUMODE_32BIT:
pRegFrame->edi += offIncrement;
break;
case CPUMODE_64BIT:
pRegFrame->rdi += offIncrement;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
}
else
{
if (!cTransfers)
return VINF_SUCCESS;
LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
/* Access verification first; we currently can't recover properly from traps inside this instruction */
rc = PGMVerifyAccess(pVM, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)), cTransfers * cbSize, X86_PTE_RW | X86_PTE_US);
if (rc != VINF_SUCCESS)
{
Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
return VERR_EM_INTERPRETER;
}
/* REP case */
while (cTransfers)
{
rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
if (RT_FAILURE(rc))
{
rc = VERR_EM_INTERPRETER;
break;
}
Assert(rc == VINF_SUCCESS);
GCOffset += offIncrement;
GCDest += offIncrement;
cTransfers--;
}
/* Update the registers. */
switch (pCpu->addrmode)
{
case CPUMODE_16BIT:
pRegFrame->di = GCOffset;
pRegFrame->cx = cTransfers;
break;
case CPUMODE_32BIT:
pRegFrame->edi = GCOffset;
pRegFrame->ecx = cTransfers;
break;
case CPUMODE_64BIT:
pRegFrame->rdi = GCOffset;
pRegFrame->rcx = cTransfers;
break;
default:
AssertFailed();
return VERR_EM_INTERPRETER;
}
}
*pcbSize = cbSize;
return rc;
}
#endif /* !IN_RC */
#ifndef IN_RC
/**
* [LOCK] CMPXCHG emulation.
*/
static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1, param2;
#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
Assert(pCpu->param1.size <= 4);
#endif
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
uint64_t valpar;
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register actually */
valpar = param2.val.val64;
break;
default:
return VERR_EM_INTERPRETER;
}
PGMPAGEMAPLOCK Lock;
RTGCPTR GCPtrPar1;
void *pvParam1;
uint64_t eflags;
AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
GCPtrPar1 = param1.val.val64;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar));
if (pCpu->prefix & PREFIX_LOCK)
eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
else
eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = param2.size;
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/**
* [LOCK] CMPXCHG8B emulation.
*/
static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
RTGCPTR GCPtrPar1;
void *pvParam1;
uint64_t eflags;
PGMPAGEMAPLOCK Lock;
AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
GCPtrPar1 = param1.val.val64;
GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax));
if (pCpu->prefix & PREFIX_LOCK)
eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
else
eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish; note that *only* ZF is affected. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
| (eflags & (X86_EFL_ZF));
*pcbSize = 8;
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
#else /* IN_RC */
/**
* [LOCK] CMPXCHG emulation.
*/
static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1, param2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
RTRCPTR pParam1;
uint32_t valpar, eflags;
AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
pParam1 = (RTRCPTR)param1.val.val64;
pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
switch(param2.type)
{
case PARMTYPE_IMMEDIATE: /* register actually */
valpar = param2.val.val32;
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RRv eax=%08x %08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
MMGCRamRegisterTrapHandler(pVM);
if (pCpu->prefix & PREFIX_LOCK)
rc = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
else
rc = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
MMGCRamDeregisterTrapHandler(pVM);
if (RT_FAILURE(rc))
{
Log(("%s %RGv eax=%08x %08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RRv eax=%08x %08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = param2.size;
return VINF_SUCCESS;
}
}
return VERR_EM_INTERPRETER;
}
/**
* [LOCK] CMPXCHG8B emulation.
*/
static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
RTRCPTR pParam1;
uint32_t eflags;
AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
pParam1 = (RTRCPTR)param1.val.val64;
pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RRv=%08x eax=%08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
MMGCRamRegisterTrapHandler(pVM);
if (pCpu->prefix & PREFIX_LOCK)
rc = EMGCEmulateLockCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
else
rc = EMGCEmulateCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
MMGCRamDeregisterTrapHandler(pVM);
if (RT_FAILURE(rc))
{
Log(("%s %RGv=%08x eax=%08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
return VERR_EM_INTERPRETER;
}
LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish; note that *only* ZF is affected. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
| (eflags & (X86_EFL_ZF));
*pcbSize = 8;
return VINF_SUCCESS;
}
}
return VERR_EM_INTERPRETER;
}
#endif /* IN_RC */
#ifdef IN_RC
/**
* [LOCK] XADD emulation.
*/
static int emInterpretXAdd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
OP_PARAMVAL param1;
uint32_t *pParamReg2;
size_t cbSizeParamReg2;
/* Source to make DISQueryParamVal read the register value - ugly hack */
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
rc = DISQueryParamRegPtr(pRegFrame, pCpu, &pCpu->param2, (void **)&pParamReg2, &cbSizeParamReg2);
Assert(cbSizeParamReg2 <= 4);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
if (TRPMHasTrap(pVM))
{
if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
{
RTRCPTR pParam1;
uint32_t eflags;
AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
switch(param1.type)
{
case PARMTYPE_ADDRESS:
pParam1 = (RTRCPTR)param1.val.val64;
pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("XAdd %RRv=%08x reg=%08x\n", pParam1, *pParamReg2));
MMGCRamRegisterTrapHandler(pVM);
if (pCpu->prefix & PREFIX_LOCK)
rc = EMGCEmulateLockXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
else
rc = EMGCEmulateXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
MMGCRamDeregisterTrapHandler(pVM);
if (RT_FAILURE(rc))
{
Log(("XAdd %RGv reg=%08x -> emulation failed due to page fault!\n", pParam1, *pParamReg2));
return VERR_EM_INTERPRETER;
}
LogFlow(("XAdd %RGv reg=%08x ZF=%d\n", pParam1, *pParamReg2, !!(eflags & X86_EFL_ZF)));
/* Update guest's eflags and finish. */
pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
| (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
*pcbSize = cbSizeParamReg2;
return VINF_SUCCESS;
}
}
return VERR_EM_INTERPRETER;
}
#endif /* IN_RC */
#ifdef IN_RC
/**
* Interpret IRET (currently only to V86 code)
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretIret(PVM pVM, PCPUMCTXCORE pRegFrame)
{
RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
int rc;
Assert(!CPUMIsGuestIn64BitCode(pVM, pRegFrame));
rc = emRamRead(pVM, &eip, (RTGCPTR)pIretStack , 4);
rc |= emRamRead(pVM, &cs, (RTGCPTR)(pIretStack + 4), 4);
rc |= emRamRead(pVM, &eflags, (RTGCPTR)(pIretStack + 8), 4);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
rc |= emRamRead(pVM, &esp, (RTGCPTR)(pIretStack + 12), 4);
rc |= emRamRead(pVM, &ss, (RTGCPTR)(pIretStack + 16), 4);
rc |= emRamRead(pVM, &es, (RTGCPTR)(pIretStack + 20), 4);
rc |= emRamRead(pVM, &ds, (RTGCPTR)(pIretStack + 24), 4);
rc |= emRamRead(pVM, &fs, (RTGCPTR)(pIretStack + 28), 4);
rc |= emRamRead(pVM, &gs, (RTGCPTR)(pIretStack + 32), 4);
AssertRCReturn(rc, VERR_EM_INTERPRETER);
pRegFrame->eip = eip & 0xffff;
pRegFrame->cs = cs;
/* Mask away all reserved bits */
uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
eflags &= uMask;
#ifndef IN_RING0
CPUMRawSetEFlags(pVM, pRegFrame, eflags);
#endif
Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
pRegFrame->esp = esp;
pRegFrame->ss = ss;
pRegFrame->ds = ds;
pRegFrame->es = es;
pRegFrame->fs = fs;
pRegFrame->gs = gs;
return VINF_SUCCESS;
}
#endif /* IN_RC */
/**
* IRET Emulation.
*/
static int emInterpretIret(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* only allow direct calls to EMInterpretIret for now */
return VERR_EM_INTERPRETER;
}
/**
* WBINVD Emulation.
*/
static int emInterpretWbInvd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* Nothing to do. */
return VINF_SUCCESS;
}
/**
* Interpret INVLPG
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param pAddrGC Operand address
*
*/
VMMDECL(int) EMInterpretInvlpg(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
{
int rc;
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
#ifdef IN_RC
LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
#endif
rc = PGMInvalidatePage(pVM, pAddrGC);
if ( rc == VINF_SUCCESS
|| rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
return VINF_SUCCESS;
AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
|| rc == VINF_EM_RAW_EMULATE_INSTR,
("%Rrc addr=%RGv\n", rc, pAddrGC),
VERR_EM_INTERPRETER);
return rc;
}
/**
* INVLPG Emulation.
*/
static int emInterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTGCPTR addr;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
case PARMTYPE_ADDRESS:
if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
addr = (RTGCPTR)param1.val.val64;
break;
default:
return VERR_EM_INTERPRETER;
}
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
#ifdef IN_RC
LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
#endif
rc = PGMInvalidatePage(pVM, addr);
if ( rc == VINF_SUCCESS
|| rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
return VINF_SUCCESS;
AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
|| rc == VINF_EM_RAW_EMULATE_INSTR,
("%Rrc addr=%RGv\n", rc, addr),
VERR_EM_INTERPRETER);
return rc;
}
/**
* Interpret CPUID given the parameters in the CPU context
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretCpuId(PVM pVM, PCPUMCTXCORE pRegFrame)
{
uint32_t iLeaf = pRegFrame->eax;
/* cpuid clears the high dwords of the affected 64 bits registers. */
pRegFrame->rax = 0;
pRegFrame->rbx = 0;
pRegFrame->rcx = 0;
pRegFrame->rdx = 0;
/* Note: operates the same in 64 and non-64 bits mode. */
CPUMGetGuestCpuId(pVM, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
return VINF_SUCCESS;
}
/**
* CPUID Emulation.
*/
static int emInterpretCpuId(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc = EMInterpretCpuId(pVM, pRegFrame);
return rc;
}
/**
* Interpret CRx read
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegGen General purpose register index (USE_REG_E**))
* @param SrcRegCRx CRx register index (USE_REG_CR*)
*
*/
VMMDECL(int) EMInterpretCRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
{
int rc;
uint64_t val64;
if (SrcRegCrx == USE_REG_CR8)
{
val64 = 0;
rc = PDMApicGetTPR(pVM, (uint8_t *)&val64, NULL);
AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
}
else
{
rc = CPUMGetGuestCRx(pVM, SrcRegCrx, &val64);
AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
}
if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
else
rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
if(RT_SUCCESS(rc))
{
LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
return VINF_SUCCESS;
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret CLTS
*
* @returns VBox status code.
* @param pVM The VM handle.
*
*/
VMMDECL(int) EMInterpretCLTS(PVM pVM)
{
uint64_t cr0 = CPUMGetGuestCR0(pVM);
if (!(cr0 & X86_CR0_TS))
return VINF_SUCCESS;
return CPUMSetGuestCR0(pVM, cr0 & ~X86_CR0_TS);
}
/**
* CLTS Emulation.
*/
static int emInterpretClts(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretCLTS(pVM);
}
/**
* Update CRx
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegCRx CRx register index (USE_REG_CR*)
* @param val New CRx value
*
*/
static int EMUpdateCRx(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
{
uint64_t oldval;
uint64_t msrEFER;
int rc;
/** @todo Clean up this mess. */
LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
switch (DestRegCrx)
{
case USE_REG_CR0:
oldval = CPUMGetGuestCR0(pVM);
#ifdef IN_RC
/* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
if ( (val & (X86_CR0_WP | X86_CR0_AM))
!= (oldval & (X86_CR0_WP | X86_CR0_AM)))
return VERR_EM_INTERPRETER;
#endif
CPUMSetGuestCR0(pVM, val);
val = CPUMGetGuestCR0(pVM);
if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
!= (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
{
/* global flush */
rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
AssertRCReturn(rc, rc);
}
/* Deal with long mode enabling/disabling. */
msrEFER = CPUMGetGuestEFER(pVM);
if (msrEFER & MSR_K6_EFER_LME)
{
if ( !(oldval & X86_CR0_PG)
&& (val & X86_CR0_PG))
{
/* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
if (pRegFrame->csHid.Attr.n.u1Long)
{
AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
}
/* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
if (!(CPUMGetGuestCR4(pVM) & X86_CR4_PAE))
{
AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
}
msrEFER |= MSR_K6_EFER_LMA;
}
else
if ( (oldval & X86_CR0_PG)
&& !(val & X86_CR0_PG))
{
msrEFER &= ~MSR_K6_EFER_LMA;
/* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
}
CPUMSetGuestEFER(pVM, msrEFER);
}
return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
case USE_REG_CR2:
rc = CPUMSetGuestCR2(pVM, val); AssertRC(rc);
return VINF_SUCCESS;
case USE_REG_CR3:
/* Reloading the current CR3 means the guest just wants to flush the TLBs */
rc = CPUMSetGuestCR3(pVM, val); AssertRC(rc);
if (CPUMGetGuestCR0(pVM) & X86_CR0_PG)
{
/* flush */
rc = PGMFlushTLB(pVM, val, !(CPUMGetGuestCR4(pVM) & X86_CR4_PGE));
AssertRCReturn(rc, rc);
}
return VINF_SUCCESS;
case USE_REG_CR4:
oldval = CPUMGetGuestCR4(pVM);
rc = CPUMSetGuestCR4(pVM, val); AssertRC(rc);
val = CPUMGetGuestCR4(pVM);
msrEFER = CPUMGetGuestEFER(pVM);
/* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
if ( (msrEFER & MSR_K6_EFER_LMA)
&& (oldval & X86_CR4_PAE)
&& !(val & X86_CR4_PAE))
{
return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
}
if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
!= (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
{
/* global flush */
rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
AssertRCReturn(rc, rc);
}
# ifdef IN_RC
/* Feeling extremely lazy. */
if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
!= (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
{
Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
VM_FF_SET(pVM, VM_FF_TO_R3);
}
# endif
return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
case USE_REG_CR8:
return PDMApicSetTPR(pVM, val);
default:
AssertFailed();
case USE_REG_CR1: /* illegal op */
break;
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret CRx write
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegCRx CRx register index (USE_REG_CR*)
* @param SrcRegGen General purpose register index (USE_REG_E**))
*
*/
VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
{
uint64_t val;
int rc;
if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
{
rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
}
else
{
uint32_t val32;
rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
val = val32;
}
if (RT_SUCCESS(rc))
return EMUpdateCRx(pVM, pRegFrame, DestRegCrx, val);
return VERR_EM_INTERPRETER;
}
/**
* Interpret LMSW
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param u16Data LMSW source data.
*
*/
VMMDECL(int) EMInterpretLMSW(PVM pVM, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
{
uint64_t OldCr0 = CPUMGetGuestCR0(pVM);
/* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
| (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
return EMUpdateCRx(pVM, pRegFrame, USE_REG_CR0, NewCr0);
}
/**
* LMSW Emulation.
*/
static int emInterpretLmsw(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
uint32_t val;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
case PARMTYPE_ADDRESS:
if(!(param1.flags & PARAM_VAL16))
return VERR_EM_INTERPRETER;
val = param1.val.val32;
break;
default:
return VERR_EM_INTERPRETER;
}
LogFlow(("emInterpretLmsw %x\n", val));
return EMInterpretLMSW(pVM, pRegFrame, val);
}
/**
* MOV CRx
*/
static int emInterpretMovCRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
if ((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_CR)
return EMInterpretCRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_ctrl);
if (pCpu->param1.flags == USE_REG_CR && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
return EMInterpretCRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_ctrl, pCpu->param2.base.reg_gen);
AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
return VERR_EM_INTERPRETER;
}
/**
* Interpret DRx write
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegDRx DRx register index (USE_REG_DR*)
* @param SrcRegGen General purpose register index (USE_REG_E**))
*
*/
VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
{
uint64_t val;
int rc;
if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
{
rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
}
else
{
uint32_t val32;
rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
val = val32;
}
if (RT_SUCCESS(rc))
{
/** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
rc = CPUMSetGuestDRx(pVM, DestRegDrx, val);
if (RT_SUCCESS(rc))
return rc;
AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
}
return VERR_EM_INTERPRETER;
}
/**
* Interpret DRx read
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param DestRegGen General purpose register index (USE_REG_E**))
* @param SrcRegDRx DRx register index (USE_REG_DR*)
*
*/
VMMDECL(int) EMInterpretDRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
{
uint64_t val64;
int rc = CPUMGetGuestDRx(pVM, SrcRegDrx, &val64);
AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
{
rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
}
else
rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
return VERR_EM_INTERPRETER;
}
/**
* MOV DRx
*/
static int emInterpretMovDRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
int rc = VERR_EM_INTERPRETER;
if((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_DBG)
{
rc = EMInterpretDRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_dbg);
}
else
if(pCpu->param1.flags == USE_REG_DBG && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
{
rc = EMInterpretDRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_dbg, pCpu->param2.base.reg_gen);
}
else
AssertMsgFailed(("Unexpected debug register move\n"));
return rc;
}
/**
* LLDT Emulation.
*/
static int emInterpretLLdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTSEL sel;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_ADDRESS:
return VERR_EM_INTERPRETER; //feeling lazy right now
case PARMTYPE_IMMEDIATE:
if(!(param1.flags & PARAM_VAL16))
return VERR_EM_INTERPRETER;
sel = (RTSEL)param1.val.val16;
break;
default:
return VERR_EM_INTERPRETER;
}
if (sel == 0)
{
if (CPUMGetHyperLDTR(pVM) == 0)
{
// this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
return VINF_SUCCESS;
}
}
//still feeling lazy
return VERR_EM_INTERPRETER;
}
#ifdef IN_RING0
/**
* LIDT/LGDT Emulation.
*/
static int emInterpretLIGdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
OP_PARAMVAL param1;
RTGCPTR pParam1;
X86XDTR32 dtr32;
Log(("Emulate %s at %RGv\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip));
/* Only for the VT-x real-mode emulation case. */
if (!CPUMIsGuestInRealMode(pVM))
return VERR_EM_INTERPRETER;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_ADDRESS:
pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, param1.val.val16);
break;
default:
return VERR_EM_INTERPRETER;
}
rc = emRamRead(pVM, &dtr32, pParam1, sizeof(dtr32));
AssertRCReturn(rc, VERR_EM_INTERPRETER);
if (!(pCpu->prefix & PREFIX_OPSIZE))
dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
if (pCpu->pCurInstr->opcode == OP_LIDT)
CPUMSetGuestIDTR(pVM, dtr32.uAddr, dtr32.cb);
else
CPUMSetGuestGDTR(pVM, dtr32.uAddr, dtr32.cb);
return VINF_SUCCESS;
}
#endif
#ifdef IN_RC
/**
* STI Emulation.
*
* @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
*/
static int emInterpretSti(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
if(!pGCState)
{
Assert(pGCState);
return VERR_EM_INTERPRETER;
}
pGCState->uVMFlags |= X86_EFL_IF;
Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
pVM->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pCpu->opsize;
VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
return VINF_SUCCESS;
}
#endif /* IN_RC */
/**
* HLT Emulation.
*/
static int emInterpretHlt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return VINF_EM_HALT;
}
/**
* Interpret RDTSC
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretRdtsc(PVM pVM, PCPUMCTXCORE pRegFrame)
{
unsigned uCR4 = CPUMGetGuestCR4(pVM);
if (uCR4 & X86_CR4_TSD)
return VERR_EM_INTERPRETER; /* genuine #GP */
uint64_t uTicks = TMCpuTickGet(pVM);
/* Same behaviour in 32 & 64 bits mode */
pRegFrame->rax = (uint32_t)uTicks;
pRegFrame->rdx = (uTicks >> 32ULL);
return VINF_SUCCESS;
}
VMMDECL(int) EMInterpretRdtscp(PVM pVM, PCPUMCTX pCtx)
{
unsigned uCR4 = CPUMGetGuestCR4(pVM);
if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
{
AssertFailed();
return VERR_EM_INTERPRETER; /* genuine #UD */
}
if (uCR4 & X86_CR4_TSD)
return VERR_EM_INTERPRETER; /* genuine #GP */
uint64_t uTicks = TMCpuTickGet(pVM);
/* Same behaviour in 32 & 64 bits mode */
pCtx->rax = (uint32_t)uTicks;
pCtx->rdx = (uTicks >> 32ULL);
/* Low dword of the TSC_AUX msr only. */
pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
return VINF_SUCCESS;
}
/**
* RDTSC Emulation.
*/
static int emInterpretRdtsc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretRdtsc(pVM, pRegFrame);
}
/**
* MONITOR Emulation.
*/
static int emInterpretMonitor(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
uint32_t u32Dummy, u32ExtFeatures, cpl;
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
if (pRegFrame->ecx != 0)
return VERR_EM_INTERPRETER; /* illegal value. */
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
return VERR_EM_INTERPRETER; /* not supported */
return VINF_SUCCESS;
}
/**
* MWAIT Emulation.
*/
static int emInterpretMWait(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
uint32_t u32Dummy, u32ExtFeatures, cpl;
Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
if (pRegFrame->ecx != 0)
return VERR_EM_INTERPRETER; /* illegal value. */
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
return VERR_EM_INTERPRETER; /* not supported */
/** @todo not completely correct */
return VINF_EM_HALT;
}
#ifdef LOG_ENABLED
static const char *emMSRtoString(uint32_t uMsr)
{
switch (uMsr)
{
case MSR_IA32_APICBASE:
return "MSR_IA32_APICBASE";
case MSR_IA32_CR_PAT:
return "MSR_IA32_CR_PAT";
case MSR_IA32_SYSENTER_CS:
return "MSR_IA32_SYSENTER_CS";
case MSR_IA32_SYSENTER_EIP:
return "MSR_IA32_SYSENTER_EIP";
case MSR_IA32_SYSENTER_ESP:
return "MSR_IA32_SYSENTER_ESP";
case MSR_K6_EFER:
return "MSR_K6_EFER";
case MSR_K8_SF_MASK:
return "MSR_K8_SF_MASK";
case MSR_K6_STAR:
return "MSR_K6_STAR";
case MSR_K8_LSTAR:
return "MSR_K8_LSTAR";
case MSR_K8_CSTAR:
return "MSR_K8_CSTAR";
case MSR_K8_FS_BASE:
return "MSR_K8_FS_BASE";
case MSR_K8_GS_BASE:
return "MSR_K8_GS_BASE";
case MSR_K8_KERNEL_GS_BASE:
return "MSR_K8_KERNEL_GS_BASE";
case MSR_K8_TSC_AUX:
return "MSR_K8_TSC_AUX";
case MSR_IA32_BIOS_SIGN_ID:
return "Unsupported MSR_IA32_BIOS_SIGN_ID";
case MSR_IA32_PLATFORM_ID:
return "Unsupported MSR_IA32_PLATFORM_ID";
case MSR_IA32_BIOS_UPDT_TRIG:
return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
case MSR_IA32_TSC:
return "Unsupported MSR_IA32_TSC";
case MSR_IA32_MTRR_CAP:
return "Unsupported MSR_IA32_MTRR_CAP";
case MSR_IA32_MCP_CAP:
return "Unsupported MSR_IA32_MCP_CAP";
case MSR_IA32_MCP_STATUS:
return "Unsupported MSR_IA32_MCP_STATUS";
case MSR_IA32_MCP_CTRL:
return "Unsupported MSR_IA32_MCP_CTRL";
case MSR_IA32_MTRR_DEF_TYPE:
return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
case MSR_K7_EVNTSEL0:
return "Unsupported MSR_K7_EVNTSEL0";
case MSR_K7_EVNTSEL1:
return "Unsupported MSR_K7_EVNTSEL1";
case MSR_K7_EVNTSEL2:
return "Unsupported MSR_K7_EVNTSEL2";
case MSR_K7_EVNTSEL3:
return "Unsupported MSR_K7_EVNTSEL3";
case MSR_IA32_MC0_CTL:
return "Unsupported MSR_IA32_MC0_CTL";
case MSR_IA32_MC0_STATUS:
return "Unsupported MSR_IA32_MC0_STATUS";
}
return "Unknown MSR";
}
#endif /* LOG_ENABLED */
/**
* Interpret RDMSR
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*
*/
VMMDECL(int) EMInterpretRdmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
{
uint32_t u32Dummy, u32Features, cpl;
uint64_t val;
CPUMCTX *pCtx;
int rc = VINF_SUCCESS;
/** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
* That version clears the high dwords of both RDX & RAX */
pCtx = CPUMQueryGuestCtxPtr(pVM);
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
return VERR_EM_INTERPRETER; /* not supported */
switch (pRegFrame->ecx)
{
case MSR_IA32_APICBASE:
rc = PDMApicGetBase(pVM, &val);
AssertRC(rc);
break;
case MSR_IA32_CR_PAT:
val = pCtx->msrPAT;
break;
case MSR_IA32_SYSENTER_CS:
val = pCtx->SysEnter.cs;
break;
case MSR_IA32_SYSENTER_EIP:
val = pCtx->SysEnter.eip;
break;
case MSR_IA32_SYSENTER_ESP:
val = pCtx->SysEnter.esp;
break;
case MSR_K6_EFER:
val = pCtx->msrEFER;
break;
case MSR_K8_SF_MASK:
val = pCtx->msrSFMASK;
break;
case MSR_K6_STAR:
val = pCtx->msrSTAR;
break;
case MSR_K8_LSTAR:
val = pCtx->msrLSTAR;
break;
case MSR_K8_CSTAR:
val = pCtx->msrCSTAR;
break;
case MSR_K8_FS_BASE:
val = pCtx->fsHid.u64Base;
break;
case MSR_K8_GS_BASE:
val = pCtx->gsHid.u64Base;
break;
case MSR_K8_KERNEL_GS_BASE:
val = pCtx->msrKERNELGSBASE;
break;
case MSR_K8_TSC_AUX:
val = CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
break;
#if 0 /*def IN_RING0 */
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_BIOS_SIGN_ID:
if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
{
/* Available since the P6 family. VT-x implies that this feature is present. */
if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
else
if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
break;
}
/* no break */
#endif
default:
/* In X2APIC specification this range is reserved for APIC control. */
if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
rc = PDMApicReadMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, &val);
else
/* We should actually trigger a #GP here, but don't as that might cause more trouble. */
val = 0;
break;
}
LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
if (rc == VINF_SUCCESS)
{
pRegFrame->rax = (uint32_t) val;
pRegFrame->rdx = (uint32_t) (val >> 32ULL);
}
return rc;
}
/**
* RDMSR Emulation.
*/
static int emInterpretRdmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
/* Note: the Intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
Assert(!(pCpu->prefix & PREFIX_REX));
return EMInterpretRdmsr(pVM, pRegFrame);
}
/**
* Interpret WRMSR
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRegFrame The register frame.
*/
VMMDECL(int) EMInterpretWrmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
{
uint32_t u32Dummy, u32Features, cpl;
uint64_t val;
CPUMCTX *pCtx;
/* Note: works the same in 32 and 64 bits modes. */
pCtx = CPUMQueryGuestCtxPtr(pVM);
/* Get the current privilege level. */
cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if (cpl != 0)
return VERR_EM_INTERPRETER; /* supervisor only */
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
return VERR_EM_INTERPRETER; /* not supported */
val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
switch (pRegFrame->ecx)
{
case MSR_IA32_APICBASE:
{
int rc = PDMApicSetBase(pVM, val);
AssertRC(rc);
break;
}
case MSR_IA32_CR_PAT:
pCtx->msrPAT = val;
break;
case MSR_IA32_SYSENTER_CS:
pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
break;
case MSR_IA32_SYSENTER_EIP:
pCtx->SysEnter.eip = val;
break;
case MSR_IA32_SYSENTER_ESP:
pCtx->SysEnter.esp = val;
break;
case MSR_K6_EFER:
{
uint64_t uMask = 0;
uint64_t oldval = pCtx->msrEFER;
/* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
uMask |= MSR_K6_EFER_NXE;
if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
uMask |= MSR_K6_EFER_LME;
if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
uMask |= MSR_K6_EFER_SCE;
if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
uMask |= MSR_K6_EFER_FFXSR;
/* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
&& (pCtx->cr0 & X86_CR0_PG))
{
AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
}
/* There are a few more: e.g. MSR_K6_EFER_LMSLE */
AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
/* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
HWACCMFlushTLB(pVM);
break;
}
case MSR_K8_SF_MASK:
pCtx->msrSFMASK = val;
break;
case MSR_K6_STAR:
pCtx->msrSTAR = val;
break;
case MSR_K8_LSTAR:
pCtx->msrLSTAR = val;
break;
case MSR_K8_CSTAR:
pCtx->msrCSTAR = val;
break;
case MSR_K8_FS_BASE:
pCtx->fsHid.u64Base = val;
break;
case MSR_K8_GS_BASE:
pCtx->gsHid.u64Base = val;
break;
case MSR_K8_KERNEL_GS_BASE:
pCtx->msrKERNELGSBASE = val;
break;
case MSR_K8_TSC_AUX:
CPUMSetGuestMsr(pVM, MSR_K8_TSC_AUX, val);
break;
default:
/* In X2APIC specification this range is reserved for APIC control. */
if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
return PDMApicWriteMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, val);
/* We should actually trigger a #GP here, but don't as that might cause more trouble. */
break;
}
return VINF_SUCCESS;
}
/**
* WRMSR Emulation.
*/
static int emInterpretWrmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
return EMInterpretWrmsr(pVM, pRegFrame);
}
/**
* Internal worker.
* @copydoc EMInterpretInstructionCPU
*/
DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
{
Assert(pcbSize);
*pcbSize = 0;
/*
* Only supervisor guest code!!
* And no complicated prefixes.
*/
/* Get the current privilege level. */
uint32_t cpl = CPUMGetGuestCPL(pVM, pRegFrame);
if ( cpl != 0
&& pCpu->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
{
Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
return VERR_EM_INTERPRETER;
}
#ifdef IN_RC
if ( (pCpu->prefix & (PREFIX_REPNE | PREFIX_REP))
|| ( (pCpu->prefix & PREFIX_LOCK)
&& pCpu->pCurInstr->opcode != OP_CMPXCHG
&& pCpu->pCurInstr->opcode != OP_CMPXCHG8B
&& pCpu->pCurInstr->opcode != OP_XADD
&& pCpu->pCurInstr->opcode != OP_OR
&& pCpu->pCurInstr->opcode != OP_BTR
)
)
#else
if ( (pCpu->prefix & PREFIX_REPNE)
|| ( (pCpu->prefix & PREFIX_REP)
&& pCpu->pCurInstr->opcode != OP_STOSWD
)
|| ( (pCpu->prefix & PREFIX_LOCK)
&& pCpu->pCurInstr->opcode != OP_OR
&& pCpu->pCurInstr->opcode != OP_BTR
&& pCpu->pCurInstr->opcode != OP_CMPXCHG
&& pCpu->pCurInstr->opcode != OP_CMPXCHG8B
)
)
#endif
{
//Log(("EMInterpretInstruction: wrong prefix!!\n"));
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
return VERR_EM_INTERPRETER;
}
#if HC_ARCH_BITS == 32
/*
* Unable to emulate most >4 bytes accesses in 32 bits mode.
* Whitelisted instructions are safe.
*/
if ( pCpu->param1.size > 4
&& CPUMIsGuestIn64BitCode(pVM, pRegFrame))
{
if ( pCpu->pCurInstr->opcode != OP_STOSWD
&& pCpu->pCurInstr->opcode != OP_MOV
&& pCpu->pCurInstr->opcode != OP_CMPXCHG8B
&& pCpu->pCurInstr->opcode != OP_XCHG
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
&& pCpu->pCurInstr->opcode != OP_CMPXCHG
# endif
)
{
# ifdef VBOX_WITH_STATISTICS
switch (pCpu->pCurInstr->opcode)
{
# define INTERPRET_FAILED_CASE(opcode, Instr) \
case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
INTERPRET_FAILED_CASE(OP_DEC,Dec);
INTERPRET_FAILED_CASE(OP_INC,Inc);
INTERPRET_FAILED_CASE(OP_POP,Pop);
INTERPRET_FAILED_CASE(OP_OR, Or);
INTERPRET_FAILED_CASE(OP_XOR,Xor);
INTERPRET_FAILED_CASE(OP_AND,And);
INTERPRET_FAILED_CASE(OP_MOV,Mov);
INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
INTERPRET_FAILED_CASE(OP_CLTS,Clts);
INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
INTERPRET_FAILED_CASE(OP_ADD,Add);
INTERPRET_FAILED_CASE(OP_SUB,Sub);
INTERPRET_FAILED_CASE(OP_ADC,Adc);
INTERPRET_FAILED_CASE(OP_BTR,Btr);
INTERPRET_FAILED_CASE(OP_BTS,Bts);
INTERPRET_FAILED_CASE(OP_BTC,Btc);
INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
INTERPRET_FAILED_CASE(OP_STI, Sti);
INTERPRET_FAILED_CASE(OP_XADD,XAdd);
INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
INTERPRET_FAILED_CASE(OP_HLT, Hlt);
INTERPRET_FAILED_CASE(OP_IRET,Iret);
INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
# undef INTERPRET_FAILED_CASE
default:
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
break;
}
# endif /* VBOX_WITH_STATISTICS */
return VERR_EM_INTERPRETER;
}
}
#endif
int rc;
#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pCpu)));
#endif
switch (pCpu->pCurInstr->opcode)
{
# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
case opcode:\
if (pCpu->prefix & PREFIX_LOCK) \
rc = emInterpretLock##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
else \
rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
case opcode:\
rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
#define INTERPRET_CASE(opcode, Instr) \
case opcode:\
rc = emInterpret##Instr(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
case opcode:\
rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
if (RT_SUCCESS(rc)) \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
else \
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
return rc
#define INTERPRET_STAT_CASE(opcode, Instr) \
case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
INTERPRET_CASE(OP_XCHG,Xchg);
INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
INTERPRET_CASE(OP_POP,Pop);
INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
INTERPRET_CASE_EX_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor);
INTERPRET_CASE_EX_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd);
INTERPRET_CASE(OP_MOV,Mov);
#ifndef IN_RC
INTERPRET_CASE(OP_STOSWD,StosWD);
#endif
INTERPRET_CASE(OP_INVLPG,InvlPg);
INTERPRET_CASE(OP_CPUID,CpuId);
INTERPRET_CASE(OP_MOV_CR,MovCRx);
INTERPRET_CASE(OP_MOV_DR,MovDRx);
INTERPRET_CASE(OP_LLDT,LLdt);
#ifdef IN_RING0
INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
#endif
INTERPRET_CASE(OP_LMSW,Lmsw);
INTERPRET_CASE(OP_CLTS,Clts);
INTERPRET_CASE(OP_MONITOR, Monitor);
INTERPRET_CASE(OP_MWAIT, MWait);
INTERPRET_CASE(OP_RDMSR, Rdmsr);
INTERPRET_CASE(OP_WRMSR, Wrmsr);
INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
INTERPRET_CASE(OP_ADC,Adc);
INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
INTERPRET_CASE(OP_RDTSC,Rdtsc);
INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
#ifdef IN_RC
INTERPRET_CASE(OP_STI,Sti);
INTERPRET_CASE(OP_XADD, XAdd);
#endif
INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
INTERPRET_CASE(OP_HLT,Hlt);
INTERPRET_CASE(OP_IRET,Iret);
INTERPRET_CASE(OP_WBINVD,WbInvd);
#ifdef VBOX_WITH_STATISTICS
#ifndef IN_RC
INTERPRET_STAT_CASE(OP_XADD, XAdd);
#endif
INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
#endif
default:
Log3(("emInterpretInstructionCPU: opcode=%d\n", pCpu->pCurInstr->opcode));
STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
return VERR_EM_INTERPRETER;
#undef INTERPRET_CASE_EX_PARAM2
#undef INTERPRET_STAT_CASE
#undef INTERPRET_CASE_EX
#undef INTERPRET_CASE
}
AssertFailed();
return VERR_INTERNAL_ERROR;
}
/**
* Sets the PC for which interrupts should be inhibited.
*
* @param pVM The VM handle.
* @param PC The PC.
*/
VMMDECL(void) EMSetInhibitInterruptsPC(PVM pVM, RTGCUINTPTR PC)
{
pVM->em.s.GCPtrInhibitInterrupts = PC;
VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
}
/**
* Gets the PC for which interrupts should be inhibited.
*
* There are a few instructions which inhibits or delays interrupts
* for the instruction following them. These instructions are:
* - STI
* - MOV SS, r/m16
* - POP SS
*
* @returns The PC for which interrupts should be inhibited.
* @param pVM VM handle.
*
*/
VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVM pVM)
{
return pVM->em.s.GCPtrInhibitInterrupts;
}