/* $Id$ */
/** @file
* IPRT Testcase - Low Resolution Timers.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/timer.h>
#include <iprt/time.h>
#include <iprt/thread.h>
#include <iprt/initterm.h>
#include <iprt/message.h>
#include <iprt/stream.h>
#include <iprt/err.h>
/*******************************************************************************
* Global Variables *
*******************************************************************************/
static volatile unsigned gcTicks;
static volatile uint64_t gu64Min;
static volatile uint64_t gu64Max;
static volatile uint64_t gu64Prev;
static DECLCALLBACK(void) TimerLRCallback(RTTIMERLR hTimerLR, void *pvUser, uint64_t iTick)
{
gcTicks++;
const uint64_t u64Now = RTTimeNanoTS();
if (gu64Prev)
{
const uint64_t u64Delta = u64Now - gu64Prev;
if (u64Delta < gu64Min)
gu64Min = u64Delta;
if (u64Delta > gu64Max)
gu64Max = u64Delta;
}
gu64Prev = u64Now;
}
int main()
{
/*
* Init runtime
*/
unsigned cErrors = 0;
int rc = RTR3InitExeNoArguments(0);
if (RT_FAILURE(rc))
return RTMsgInitFailure(rc);
/*
* Check that the clock is reliable.
*/
RTPrintf("tstTimer: TESTING - RTTimeNanoTS() for 2sec\n");
uint64_t uTSMillies = RTTimeMilliTS();
uint64_t uTSBegin = RTTimeNanoTS();
uint64_t uTSLast = uTSBegin;
uint64_t uTSDiff;
uint64_t cIterations = 0;
do
{
uint64_t uTS = RTTimeNanoTS();
if (uTS < uTSLast)
{
RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. uTS=%RU64 uTSLast=%RU64\n", uTS, uTSLast);
cErrors++;
}
if (++cIterations > (2*1000*1000*1000))
{
RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. cIterations=%RU64 uTS=%RU64 uTSBegin=%RU64\n", cIterations, uTS, uTSBegin);
return 1;
}
uTSLast = uTS;
uTSDiff = uTSLast - uTSBegin;
} while (uTSDiff < (2*1000*1000*1000));
uTSMillies = RTTimeMilliTS() - uTSMillies;
if (uTSMillies >= 2500 || uTSMillies <= 1500)
{
RTPrintf("tstTimer: FAILURE - uTSMillies=%RI64 uTSBegin=%RU64 uTSLast=%RU64 uTSDiff=%RU64\n",
uTSMillies, uTSBegin, uTSLast, uTSDiff);
cErrors++;
}
if (!cErrors)
RTPrintf("tstTimer: OK - RTTimeNanoTS()\n");
/*
* Tests.
*/
static struct
{
unsigned uMilliesInterval;
unsigned uMilliesWait;
unsigned cLower;
unsigned cUpper;
} aTests[] =
{
{ 1000, 2500, 3, 3 }, /* (keep in mind the immediate first tick) */
{ 250, 2000, 6, 10 },
{ 100, 2000, 17, 23 },
};
unsigned i = 0;
for (i = 0; i < RT_ELEMENTS(aTests); i++)
{
//aTests[i].cLower = (aTests[i].uMilliesWait - aTests[i].uMilliesWait / 10) / aTests[i].uMilliesInterval;
//aTests[i].cUpper = (aTests[i].uMilliesWait + aTests[i].uMilliesWait / 10) / aTests[i].uMilliesInterval;
RTPrintf("\n"
"tstTimer: TESTING - %d ms interval, %d ms wait, expects %d-%d ticks.\n",
aTests[i].uMilliesInterval, aTests[i].uMilliesWait, aTests[i].cLower, aTests[i].cUpper);
/*
* Start timer which ticks every 10ms.
*/
gcTicks = 0;
RTTIMERLR hTimerLR;
gu64Max = 0;
gu64Min = UINT64_MAX;
gu64Prev = 0;
rc = RTTimerLRCreateEx(&hTimerLR, aTests[i].uMilliesInterval * (uint64_t)1000000, 0, TimerLRCallback, NULL);
if (RT_FAILURE(rc))
{
RTPrintf("RTTimerLRCreateEX(,%u*1M,,,) -> %d\n", aTests[i].uMilliesInterval, rc);
cErrors++;
continue;
}
/*
* Start the timer an actively wait for it for the period requested.
*/
uTSBegin = RTTimeNanoTS();
rc = RTTimerLRStart(hTimerLR, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerLRStart() -> %Rrc\n", rc);
cErrors++;
}
while (RTTimeNanoTS() - uTSBegin < (uint64_t)aTests[i].uMilliesWait * 1000000)
/* nothing */;
/* don't stop it, destroy it because there are potential races in destroying an active timer. */
rc = RTTimerLRDestroy(hTimerLR);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerLRDestroy() -> %d gcTicks=%d\n", rc, gcTicks);
cErrors++;
}
uint64_t uTSEnd = RTTimeNanoTS();
uTSDiff = uTSEnd - uTSBegin;
RTPrintf("uTS=%RI64 (%RU64 - %RU64)\n", uTSDiff, uTSBegin, uTSEnd);
/* Check that it really stopped. */
unsigned cTicks = gcTicks;
RTThreadSleep(aTests[i].uMilliesInterval * 2);
if (gcTicks != cTicks)
{
RTPrintf("tstTimer: FAILURE - RTTimerLRDestroy() didn't really stop the timer! gcTicks=%d cTicks=%d\n", gcTicks, cTicks);
cErrors++;
continue;
}
/*
* Check the number of ticks.
*/
if (gcTicks < aTests[i].cLower)
{
RTPrintf("tstTimer: FAILURE - Too few ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower);
cErrors++;
}
else if (gcTicks > aTests[i].cUpper)
{
RTPrintf("tstTimer: FAILURE - Too many ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower);
cErrors++;
}
else
RTPrintf("tstTimer: OK - gcTicks=%d", gcTicks);
RTPrintf(" min=%RU64 max=%RU64\n", gu64Min, gu64Max);
}
/*
* Test changing the interval dynamically
*/
RTPrintf("\n"
"tstTimer: Testing dynamic changes of timer interval...\n");
do
{
RTTIMERLR hTimerLR;
rc = RTTimerLRCreateEx(&hTimerLR, aTests[0].uMilliesInterval * (uint64_t)1000000, 0, TimerLRCallback, NULL);
if (RT_FAILURE(rc))
{
RTPrintf("RTTimerLRCreateEX(,%u*1M,,,) -> %d\n", aTests[0].uMilliesInterval, rc);
cErrors++;
continue;
}
for (i = 0; i < RT_ELEMENTS(aTests); i++)
{
RTPrintf("\n"
"tstTimer: TESTING - %d ms interval, %d ms wait, expects %d-%d ticks.\n",
aTests[i].uMilliesInterval, aTests[i].uMilliesWait, aTests[i].cLower, aTests[i].cUpper);
gcTicks = 0;
gu64Max = 0;
gu64Min = UINT64_MAX;
gu64Prev = 0;
/*
* Start the timer an actively wait for it for the period requested.
*/
uTSBegin = RTTimeNanoTS();
if (i == 0)
{
rc = RTTimerLRStart(hTimerLR, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerLRStart() -> %Rrc\n", rc);
cErrors++;
}
}
else
{
rc = RTTimerLRChangeInterval(hTimerLR, aTests[i].uMilliesInterval * (uint64_t)1000000);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerLRChangeInterval() -> %d gcTicks=%d\n", rc, gcTicks);
cErrors++;
}
}
while (RTTimeNanoTS() - uTSBegin < (uint64_t)aTests[i].uMilliesWait * 1000000)
/* nothing */;
uint64_t uTSEnd = RTTimeNanoTS();
uTSDiff = uTSEnd - uTSBegin;
RTPrintf("uTS=%RI64 (%RU64 - %RU64)\n", uTSDiff, uTSBegin, uTSEnd);
/*
* Check the number of ticks.
*/
if (gcTicks < aTests[i].cLower)
{
RTPrintf("tstTimer: FAILURE - Too few ticks gcTicks=%d (expected %d-%d)\n", gcTicks, aTests[i].cUpper, aTests[i].cLower);
cErrors++;
}
else if (gcTicks > aTests[i].cUpper)
{
RTPrintf("tstTimer: FAILURE - Too many ticks gcTicks=%d (expected %d-%d)\n", gcTicks, aTests[i].cUpper, aTests[i].cLower);
cErrors++;
}
else
RTPrintf("tstTimer: OK - gcTicks=%d\n", gcTicks);
// RTPrintf(" min=%RU64 max=%RU64\n", gu64Min, gu64Max);
}
/* don't stop it, destroy it because there are potential races in destroying an active timer. */
rc = RTTimerLRDestroy(hTimerLR);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerLRDestroy() -> %d gcTicks=%d\n", rc, gcTicks);
cErrors++;
}
} while (0);
/*
* Test multiple timers running at once.
*/
/** @todo multiple LR timer testcase. */
/*
* Summary.
*/
if (!cErrors)
RTPrintf("tstTimer: SUCCESS\n");
else
RTPrintf("tstTimer: FAILURE %d errors\n", cErrors);
return !!cErrors;
}