/* $Id$ */
/** @file
* IPRT R0 Testcase - Thread Preemption.
*/
/*
* Copyright (C) 2009-2015 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/thread.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/time.h>
#include <iprt/string.h>
#include <VBox/sup.h>
#include "tstRTR0ThreadPreemption.h"
#define TSTRTR0THREADCTXDATA_MAGIC 0xc01a50da
/**
* Thread-context hook data.
*/
typedef struct TSTRTR0THREADCTXDATA
{
uint32_t volatile u32Magic;
RTCPUID uSourceCpuId;
RTNATIVETHREAD hSourceThread;
RTTHREADCTX hThreadCtx;
/* For RTTHREADCTXEVENT_PREEMPTING. */
bool fPreemptingSuccess;
volatile bool fPreemptingInvoked;
/* For RTTHREADCTXEVENT_RESUMED. */
bool fResumedSuccess;
volatile bool fResumedInvoked;
char achResult[512];
} TSTRTR0THREADCTXDATA, *PTSTRTR0THREADCTXDATA;
/**
* Thread-context hook function.
*
* @param enmEvent The thread-context event.
* @param pvUser Pointer to the user argument.
*/
static DECLCALLBACK(void) tstRTR0ThreadCtxHook(RTTHREADCTXEVENT enmEvent, void *pvUser)
{
PTSTRTR0THREADCTXDATA pData = (PTSTRTR0THREADCTXDATA)pvUser;
AssertPtrReturnVoid(pData);
if (pData->u32Magic != TSTRTR0THREADCTXDATA_MAGIC)
{
RTStrPrintf(pData->achResult, sizeof(pData->achResult), "!tstRTR0ThreadCtxHook: Invalid magic.");
return;
}
switch (enmEvent)
{
case RTTHREADCTXEVENT_PREEMPTING:
{
ASMAtomicWriteBool(&pData->fPreemptingInvoked, true);
/* We've already been called once, we now might very well be on another CPU. Nothing to do here. */
if (pData->fPreemptingSuccess)
return;
if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
{
RTStrPrintf(pData->achResult, sizeof(pData->achResult),
"!tstRTR0ThreadCtxHook[RTTHREADCTXEVENT_PREEMPTING]: Called with preemption enabled");
break;
}
RTNATIVETHREAD hCurrentThread = RTThreadNativeSelf();
if (pData->hSourceThread != hCurrentThread)
{
RTStrPrintf(pData->achResult, sizeof(pData->achResult),
"!tstRTR0ThreadCtxHook[RTTHREADCTXEVENT_PREEMPTING]: Thread switched! Source=%RTnthrd Current=%RTnthrd.",
pData->hSourceThread, hCurrentThread);
break;
}
RTCPUID uCurrentCpuId = RTMpCpuId();
if (pData->uSourceCpuId != uCurrentCpuId)
{
RTStrPrintf(pData->achResult, sizeof(pData->achResult),
"!tstRTR0ThreadCtxHook[RTTHREADCTXEVENT_PREEMPTING]: migrated uSourceCpuId=%RU32 uCurrentCpuId=%RU32",
pData->uSourceCpuId, uCurrentCpuId);
break;
}
pData->fPreemptingSuccess = true;
break;
}
case RTTHREADCTXEVENT_RESUMED:
{
ASMAtomicWriteBool(&pData->fResumedInvoked, true);
/* We've already been called once successfully, nothing more to do. */
if (ASMAtomicReadBool(&pData->fResumedSuccess))
return;
if (!pData->fPreemptingSuccess)
{
RTStrPrintf(pData->achResult, sizeof(pData->achResult),
"!tstRTR0ThreadCtxHook[RTTHREADCTXEVENT_RESUMED]: Called before preempting callback was invoked.");
break;
}
RTNATIVETHREAD hCurrentThread = RTThreadNativeSelf();
if (pData->hSourceThread != hCurrentThread)
{
RTStrPrintf(pData->achResult, sizeof(pData->achResult),
"!tstRTR0ThreadCtxHook[RTTHREADCTXEVENT_RESUMED]: Thread switched! Source=%RTnthrd Current=%RTnthrd.",
pData->hSourceThread, hCurrentThread);
break;
}
ASMAtomicWriteBool(&pData->fResumedSuccess, true);
break;
}
default:
AssertMsgFailed(("Invalid event %#x\n", enmEvent));
break;
}
}
/**
* Service request callback function.
*
* @returns VBox status code.
* @param pSession The caller's session.
* @param u64Arg 64-bit integer argument.
* @param pReqHdr The request header. Input / Output. Optional.
*/
DECLEXPORT(int) TSTRTR0ThreadPreemptionSrvReqHandler(PSUPDRVSESSION pSession, uint32_t uOperation,
uint64_t u64Arg, PSUPR0SERVICEREQHDR pReqHdr)
{
NOREF(pSession);
if (u64Arg)
return VERR_INVALID_PARAMETER;
if (!VALID_PTR(pReqHdr))
return VERR_INVALID_PARAMETER;
char *pszErr = (char *)(pReqHdr + 1);
size_t cchErr = pReqHdr->cbReq - sizeof(*pReqHdr);
if (cchErr < 32 || cchErr >= 0x10000)
return VERR_INVALID_PARAMETER;
*pszErr = '\0';
/*
* The big switch.
*/
switch (uOperation)
{
case TSTRTR0THREADPREEMPTION_SANITY_OK:
break;
case TSTRTR0THREADPREEMPTION_SANITY_FAILURE:
RTStrPrintf(pszErr, cchErr, "!42failure42%1024s", "");
break;
case TSTRTR0THREADPREEMPTION_BASIC:
{
if (!ASMIntAreEnabled())
RTStrPrintf(pszErr, cchErr, "!Interrupts disabled");
else if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns false by default");
else
{
RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State);
if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after RTThreadPreemptDisable");
else if (!ASMIntAreEnabled())
RTStrPrintf(pszErr, cchErr, "!Interrupts disabled");
RTThreadPreemptRestore(&State);
}
break;
}
case TSTRTR0THREADPREEMPTION_IS_TRUSTY:
if (!RTThreadPreemptIsPendingTrusty())
RTStrPrintf(pszErr, cchErr, "!Untrusty");
break;
case TSTRTR0THREADPREEMPTION_IS_PENDING:
{
RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State);
if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
{
#ifdef RT_OS_DARWIN
uint64_t const cNsMax = UINT64_C(8)*1000U*1000U*1000U;
#else
uint64_t const cNsMax = UINT64_C(2)*1000U*1000U*1000U;
#endif
if (ASMIntAreEnabled())
{
uint64_t u64StartTS = RTTimeNanoTS();
uint64_t u64StartSysTS = RTTimeSystemNanoTS();
uint64_t cLoops = 0;
uint64_t cNanosSysElapsed;
uint64_t cNanosElapsed;
bool fPending;
do
{
fPending = RTThreadPreemptIsPending(NIL_RTTHREAD);
cNanosElapsed = RTTimeNanoTS() - u64StartTS;
cNanosSysElapsed = RTTimeSystemNanoTS() - u64StartSysTS;
cLoops++;
} while ( !fPending
&& cNanosElapsed < cNsMax
&& cNanosSysElapsed < cNsMax
&& cLoops < 100U*_1M);
if (!fPending)
RTStrPrintf(pszErr, cchErr, "!Preempt not pending after %'llu loops / %'llu ns / %'llu ns (sys)",
cLoops, cNanosElapsed, cNanosSysElapsed);
else if (cLoops == 1)
RTStrPrintf(pszErr, cchErr, "!cLoops=1\n");
else
RTStrPrintf(pszErr, cchErr, "RTThreadPreemptIsPending returned true after %'llu loops / %'llu ns / %'llu ns (sys)",
cLoops, cNanosElapsed, cNanosSysElapsed);
}
else
RTStrPrintf(pszErr, cchErr, "!Interrupts disabled");
}
else
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after RTThreadPreemptDisable");
RTThreadPreemptRestore(&State);
break;
}
case TSTRTR0THREADPREEMPTION_NESTED:
{
bool const fDefault = RTThreadPreemptIsEnabled(NIL_RTTHREAD);
RTTHREADPREEMPTSTATE State1 = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State1);
if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
{
RTTHREADPREEMPTSTATE State2 = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State2);
if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
{
RTTHREADPREEMPTSTATE State3 = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State3);
if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 3rd RTThreadPreemptDisable");
RTThreadPreemptRestore(&State3);
if (RTThreadPreemptIsEnabled(NIL_RTTHREAD) && !*pszErr)
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 1st RTThreadPreemptRestore");
}
else
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 2nd RTThreadPreemptDisable");
RTThreadPreemptRestore(&State2);
if (RTThreadPreemptIsEnabled(NIL_RTTHREAD) && !*pszErr)
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 2nd RTThreadPreemptRestore");
}
else
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 1st RTThreadPreemptDisable");
RTThreadPreemptRestore(&State1);
if (RTThreadPreemptIsEnabled(NIL_RTTHREAD) != fDefault && !*pszErr)
RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns false after 3rd RTThreadPreemptRestore");
break;
}
case TSTRTR0THREADPREEMPTION_CTXHOOKS:
{
if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
{
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksCreate must be called with preemption enabled");
break;
}
bool fRegistered = RTThreadCtxHooksAreRegistered(NIL_RTTHREADCTX);
if (fRegistered)
{
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksAreRegistered returns true before creating any hooks");
break;
}
RTTHREADCTX hThreadCtx;
int rc = RTThreadCtxHooksCreate(&hThreadCtx);
if (RT_FAILURE(rc))
{
if (rc == VERR_NOT_SUPPORTED)
RTStrPrintf(pszErr, cchErr, "RTThreadCtxHooksCreate returns VERR_NOT_SUPPORTED");
else
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksCreate returns %Rrc", rc);
break;
}
fRegistered = RTThreadCtxHooksAreRegistered(hThreadCtx);
if (fRegistered)
{
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksAreRegistered returns true before registering any hooks");
RTThreadCtxHooksRelease(hThreadCtx);
break;
}
PTSTRTR0THREADCTXDATA pCtxData = (PTSTRTR0THREADCTXDATA)RTMemAllocZ(sizeof(*pCtxData));
AssertReturn(pCtxData, VERR_NO_MEMORY);
pCtxData->u32Magic = TSTRTR0THREADCTXDATA_MAGIC;
pCtxData->hThreadCtx = hThreadCtx;
pCtxData->fPreemptingSuccess = false;
pCtxData->fPreemptingInvoked = false;
pCtxData->fResumedInvoked = false;
pCtxData->fResumedSuccess = false;
pCtxData->hSourceThread = RTThreadNativeSelf();
RT_ZERO(pCtxData->achResult);
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&PreemptState);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
pCtxData->uSourceCpuId = RTMpCpuId();
rc = RTThreadCtxHooksRegister(hThreadCtx, &tstRTR0ThreadCtxHook, pCtxData);
if (RT_FAILURE(rc))
{
RTThreadPreemptRestore(&PreemptState);
RTMemFree(pCtxData);
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksRegister returns %Rrc", rc);
break;
}
fRegistered = RTThreadCtxHooksAreRegistered(hThreadCtx);
if (!fRegistered)
{
RTThreadPreemptRestore(&PreemptState);
RTMemFree(pCtxData);
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksAreRegistered return false when hooks are supposedly registered");
break;
}
RTThreadPreemptRestore(&PreemptState);
/* Check if the preempting callback has/will been invoked. */
const uint32_t cMsTimeout = 10000;
const uint32_t cMsSleepGranularity = 50;
uint32_t cMsSlept = 0;
RTCPUID uCurrentCpuId = NIL_RTCPUID;
for (;;)
{
RTThreadYield();
RTThreadPreemptDisable(&PreemptState);
uCurrentCpuId = RTMpCpuId();
RTThreadPreemptRestore(&PreemptState);
if ( pCtxData->uSourceCpuId != uCurrentCpuId
|| cMsSlept >= cMsTimeout)
{
break;
}
RTThreadSleep(cMsSleepGranularity);
cMsSlept += cMsSleepGranularity;
}
if (!ASMAtomicReadBool(&pCtxData->fPreemptingInvoked))
{
if (pCtxData->uSourceCpuId != uCurrentCpuId)
{
RTStrPrintf(pszErr, cchErr,
"!tstRTR0ThreadCtxHooks[RTTHREADCTXEVENT_PREEMPTING] not invoked before migrating from CPU %RU32 to %RU32",
pCtxData->uSourceCpuId, uCurrentCpuId);
}
else
{
RTStrPrintf(pszErr, cchErr, "!tstRTR0ThreadCtxHooks[RTTHREADCTXEVENT_PREEMPTING] not invoked after ca. %u ms",
cMsSlept);
}
}
else if (!pCtxData->fPreemptingSuccess)
RTStrCopy(pszErr, cchErr, pCtxData->achResult);
else
{
/* Preempting callback succeeded, now check if the resumed callback has/will been invoked. */
cMsSlept = 0;
for (;;)
{
if ( ASMAtomicReadBool(&pCtxData->fResumedInvoked)
|| cMsSlept >= cMsTimeout)
{
break;
}
RTThreadSleep(cMsSleepGranularity);
cMsSlept += cMsSleepGranularity;
}
if (!ASMAtomicReadBool(&pCtxData->fResumedInvoked))
{
RTStrPrintf(pszErr, cchErr, "!tstRTR0ThreadCtxHooks[RTTHREADCTXEVENT_RESUMED] not invoked after ca. %u ms",
cMsSlept);
}
else if (!pCtxData->fResumedSuccess)
RTStrCopy(pszErr, cchErr, pCtxData->achResult);
}
RTThreadCtxHooksDeregister(hThreadCtx);
fRegistered = RTThreadCtxHooksAreRegistered(hThreadCtx);
if (fRegistered)
{
RTMemFree(pCtxData);
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksAreRegistered return true when hooks are deregistered");
break;
}
Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
uint32_t cRefs = RTThreadCtxHooksRelease(hThreadCtx);
if (cRefs == UINT32_MAX)
RTStrPrintf(pszErr, cchErr, "!RTThreadCtxHooksRelease returns invalid cRefs!");
RTMemFree(pCtxData);
break;
}
default:
RTStrPrintf(pszErr, cchErr, "!Unknown test #%d", uOperation);
break;
}
/* The error indicator is the '!' in the message buffer. */
return VINF_SUCCESS;
}