tstRTLockValidator.cpp revision c364b6c44a252ab65b514fa8f9a665cc5e33a1ce
/* $Id$ */
/** @file
* IPRT Testcase - RTLockValidator.
*/
/*
* Copyright (C) 2006-2009 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/lockvalidator.h>
#include <iprt/asm.h> /* for return addresses */
#include <iprt/critsect.h>
#include <iprt/err.h>
#include <iprt/semaphore.h>
#include <iprt/test.h>
#include <iprt/thread.h>
#include <iprt/time.h>
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The testcase handle. */
static RTTEST g_hTest;
/** Flip this in the debugger to get some peace to single step wild code. */
bool volatile g_fDoNotSpin = false;
static uint32_t g_cThreads;
static uint32_t volatile g_iDeadlockThread;
static RTTHREAD g_ahThreads[32];
static RTCRITSECT g_aCritSects[32];
static RTSEMRW g_ahSemRWs[32];
/** When to stop testing. */
static uint64_t g_NanoTSStop;
/** The number of deadlocks. */
static uint32_t volatile g_cDeadlocks;
/** The number of loops. */
static uint32_t volatile g_cLoops;
/**
* Spin until someone else has taken ownership of the critical section.
*
* @returns true on success, false on abort.
* @param pCritSect The critical section.
*/
static bool testWaitForCritSectToBeOwned(PRTCRITSECT pCritSect)
{
unsigned iLoop = 0;
while (!RTCritSectIsOwned(pCritSect))
{
if (!RTCritSectIsInitialized(pCritSect))
return false;
RTThreadSleep(g_fDoNotSpin ? 3600*1000 : iLoop > 256 ? 1 : 0);
iLoop++;
}
return true;
}
/**
* Spin until someone else has taken ownership (any kind) of the read-write
* semaphore.
*
* @returns true on success, false on abort.
* @param hSemRW The read-write semaphore.
*/
static bool testWaitForSemRWToBeOwned(RTSEMRW hSemRW)
{
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
unsigned iLoop = 0;
for (;;)
{
if (RTSemRWGetWriteRecursion(hSemRW) > 0)
return true;
if (RTSemRWGetReadCount(hSemRW) > 0)
return true;
RTThreadSleep(g_fDoNotSpin ? 3600*1000 : iLoop > 256 ? 1 : 0);
iLoop++;
}
return true;
}
/**
* Waits for a thread to enter a sleeping state.
*
* @returns true on success, false on abort.
* @param hThread The thread.
* @param enmDesiredState The desired thread sleep state.
* @param pvLock The lock it should be sleeping on.
*/
static bool testWaitForThreadToSleep(RTTHREAD hThread, RTTHREADSTATE enmDesiredState, void *pvLock)
{
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
for (unsigned iLoop = 0; ; iLoop++)
{
RTTHREADSTATE enmState = RTThreadGetState(hThread);
if (RTTHREAD_IS_SLEEPING(enmState))
{
if ( enmState == enmDesiredState
&& ( !pvLock
|| pvLock == RTLockValidatorQueryBlocking(hThread)))
return true;
}
else if (enmState != RTTHREADSTATE_RUNNING)
return false;
RTThreadSleep(g_fDoNotSpin ? 3600*1000 : iLoop > 256 ? 1 : 0);
}
}
/**
* Waits for all the other threads to enter sleeping states.
*
* @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure.
* @param enmDesiredState The desired thread sleep state.
* @param cWaitOn The distance to the lock they'll be waiting on,
* the lock type is derived from the desired state.
* UINT32_MAX means no special lock.
*/
static int testWaitForAllOtherThreadsToSleep(RTTHREADSTATE enmDesiredState, uint32_t cWaitOn)
{
RTTHREAD hThreadSelf = RTThreadSelf();
for (uint32_t i = 0; i < g_cThreads; i++)
{
RTTHREAD hThread = g_ahThreads[i];
if ( hThread != NIL_RTTHREAD
&& hThread != hThreadSelf)
{
void *pvLock = NULL;
if (cWaitOn != UINT32_MAX)
{
uint32_t j = (i + cWaitOn) % g_cThreads;
switch (enmDesiredState)
{
case RTTHREADSTATE_CRITSECT: pvLock = &g_aCritSects[j]; break;
case RTTHREADSTATE_RW_WRITE:
case RTTHREADSTATE_RW_READ: pvLock = g_ahSemRWs[j]; break;
default: break;
}
}
bool fRet = testWaitForThreadToSleep(hThread, enmDesiredState, pvLock);
if (!fRet)
return VERR_INTERNAL_ERROR;
}
}
return VINF_SUCCESS;
}
/**
* Worker that starts the threads.
*
* @returns Same as RTThreadCreate.
* @param cThreads The number of threads to start.
* @param pfnThread Thread function.
*/
static int testStartThreads(uint32_t cThreads, PFNRTTHREAD pfnThread)
{
uint32_t i;
for (i = 0; i < RT_ELEMENTS(g_ahThreads); i++)
g_ahThreads[i] = NIL_RTTHREAD;
for (i = 0; i < cThreads; i++)
RTTEST_CHECK_RC_OK_RET(g_hTest,
RTThreadCreateF(&g_ahThreads[i], pfnThread, (void *)(uintptr_t)i, 0,
RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "thread-%02u", i),
rcCheck);
return VINF_SUCCESS;
}
/**
* Worker that waits for the threads to complete.
*
* @param cMillies How long to wait for each.
* @param fStopOnError Whether to stop on error and heed the thread
* return status.
*/
static void testWaitForThreads(uint32_t cMillies, bool fStopOnError)
{
uint32_t i = RT_ELEMENTS(g_ahThreads);
while (i-- > 0)
if (g_ahThreads[i] != NIL_RTTHREAD)
{
int rcThread;
int rc2;
RTTEST_CHECK_RC_OK(g_hTest, rc2 = RTThreadWait(g_ahThreads[i], cMillies, &rcThread));
if (RT_SUCCESS(rc2))
g_ahThreads[i] = NIL_RTTHREAD;
if (fStopOnError && (RT_FAILURE(rc2) || RT_FAILURE(rcThread)))
return;
}
}
static DECLCALLBACK(int) test1Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
PRTCRITSECT pMine = &g_aCritSects[i];
PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads];
RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck);
if (testWaitForCritSectToBeOwned(pNext))
{
int rc;
if (i != g_iDeadlockThread)
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS);
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1));
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VERR_SEM_LV_DEADLOCK);
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
}
return VINF_SUCCESS;
}
static DECLCALLBACK(int) test2Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
RTSEMRW hMine = g_ahSemRWs[i];
RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads];
int rc;
if (i & 1)
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
else
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
if (testWaitForSemRWToBeOwned(hNext))
{
if (i != g_iDeadlockThread)
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS);
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_RW_WRITE, 1));
if (RT_SUCCESS(rc))
{
if (g_cThreads > 1)
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK);
else
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_ILLEGAL_UPGRADE);
}
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hNext), VINF_SUCCESS);
}
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS);
else
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) test3Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
RTSEMRW hMine = g_ahSemRWs[i];
RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads];
int rc;
if (i & 1)
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
else
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
if (testWaitForSemRWToBeOwned(hNext))
{
do
{
rc = RTSemRWRequestWrite(hNext, 60*1000);
if (rc != VINF_SUCCESS && rc != VERR_SEM_LV_DEADLOCK && rc != VERR_SEM_LV_ILLEGAL_UPGRADE)
{
RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc);
break;
}
if (RT_SUCCESS(rc))
{
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWReleaseWrite(hNext), VINF_SUCCESS);
if (RT_FAILURE(rc))
break;
}
else
ASMAtomicIncU32(&g_cDeadlocks);
ASMAtomicIncU32(&g_cLoops);
} while (RTTimeNanoTS() < g_NanoTSStop);
}
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS);
else
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
return VINF_SUCCESS;
}
static void testIt(uint32_t cThreads, uint32_t cPasses, uint64_t cNanoSecs, PFNRTTHREAD pfnThread, const char *pszName)
{
RTTestSubF(g_hTest, "%s, %u threads, %u passes", pszName, cThreads, cPasses);
RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_ahThreads) >= cThreads);
RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_aCritSects) >= cThreads);
g_cThreads = cThreads;
g_iDeadlockThread = cThreads - 1;
for (uint32_t i = 0; i < cThreads; i++)
{
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInit(&g_aCritSects[i]), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&g_ahSemRWs[i]), VINF_SUCCESS);
}
uint32_t cLoops = 0;
uint32_t cDeadlocks = 0;
uint32_t cErrors = RTTestErrorCount(g_hTest);
for (uint32_t iPass = 0; iPass < cPasses && RTTestErrorCount(g_hTest) == cErrors; iPass++)
{
#if 0 /** @todo figure why this ain't working for either of the two tests! */
g_iDeadlockThread = (cThreads - 1 + iPass) % cThreads;
#endif
g_cLoops = 0;
g_cDeadlocks = 0;
g_NanoTSStop = cNanoSecs ? RTTimeNanoTS() + cNanoSecs : 0;
int rc = testStartThreads(cThreads, pfnThread);
if (RT_SUCCESS(rc))
testWaitForThreads(30*1000 + cNanoSecs / 1000000, true);
RTTEST_CHECK(g_hTest, !cNanoSecs || g_cLoops > 0);
cLoops += g_cLoops;
RTTEST_CHECK(g_hTest, !cNanoSecs || g_cDeadlocks > 0);
cDeadlocks += g_cDeadlocks;
}
for (uint32_t i = 0; i < cThreads; i++)
{
RTTEST_CHECK_RC(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS);
}
testWaitForThreads(10*1000, false);
if (cNanoSecs)
RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cLoops=%u cDeadlocks=%u (%u%%)\n",
cLoops, cDeadlocks, cLoops ? cDeadlocks * 100 / cLoops : 0);
}
static void test1(uint32_t cThreads, uint32_t cPasses)
{
testIt(cThreads, cPasses, 0, test1Thread, "critsect");
}
static void test2(uint32_t cThreads, uint32_t cPasses)
{
testIt(cThreads, cPasses, 0, test2Thread, "read-write");
}
static void test3(uint32_t cThreads, uint32_t cPasses, uint64_t cNanoSecs)
{
testIt(cThreads, cPasses, cNanoSecs, test3Thread, "read-write race");
}
static bool testIsLockValidationCompiledIn(void)
{
RTCRITSECT CritSect;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectInit(&CritSect), false);
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectEnter(&CritSect), false);
bool fRet = CritSect.pValidatorRec
&& CritSect.pValidatorRec->hThread == RTThreadSelf();
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectLeave(&CritSect), false);
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectDelete(&CritSect), false);
RTSEMRW hSemRW;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreate(&hSemRW), false);
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), false);
int rc = RTSemRWRequestWrite(hSemRW, 1);
if (rc != VERR_SEM_LV_ILLEGAL_UPGRADE)
fRet = false;
RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), false);
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), false);
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), false);
return fRet;
}
int main()
{
/*
* Init.
*/
int rc = RTTestInitAndCreate("tstRTLockValidator", &g_hTest);
if (rc)
return rc;
RTTestBanner(g_hTest);
RTLockValidatorSetEnabled(true);
RTLockValidatorSetMayPanic(false);
RTLockValidatorSetQuiet(true);
if (!testIsLockValidationCompiledIn())
return RTTestErrorCount(g_hTest) > 0
? RTTestSummaryAndDestroy(g_hTest)
: RTTestSkipAndDestroy(g_hTest, "deadlock detection is not compiled in");
RTLockValidatorSetQuiet(false);
/*
* Some initial tests with verbose output.
*/
test1(3, 1);
test2(1, 1);
test2(3, 1);
/*
* More thorough testing without noisy output.
*/
RTLockValidatorSetQuiet(true);
#if 0
test1( 2, 1024);
test1( 3, 1024);
test1( 7, 896);
test1(10, 768);
test1(15, 512);
test1(30, 384);
test2( 1, 100);
test2( 2, 1024);
test2( 3, 1024);
test2( 7, 896);
test2(10, 768);
test2(15, 512);
test2(30, 384);
#endif
test3( 2, 2, 5*UINT64_C(1000000000));
test3(10, 1, 5*UINT64_C(1000000000));
return RTTestSummaryAndDestroy(g_hTest);
}