/* $Id$ */
/** @file
* IPRT Testcase - RTLockValidator.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/lockvalidator.h>
#include <iprt/asm.h> /* for return addresses */
#include <iprt/critsect.h>
#include <iprt/err.h>
#include <iprt/semaphore.h>
#include <iprt/test.h>
#include <iprt/thread.h>
#include <iprt/time.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#define SECS_SIMPLE_TEST 1
#define SECS_RACE_TEST 3
#define TEST_SMALL_TIMEOUT ( 10*1000)
#define TEST_LARGE_TIMEOUT ( 60*1000)
#define TEST_DEBUG_TIMEOUT (3600*1000)
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The testcase handle. */
static RTTEST g_hTest;
/** Flip this in the debugger to get some peace to single step wild code. */
bool volatile g_fDoNotSpin = false;
/** Set when the main thread wishes to terminate the test. */
bool volatile g_fShutdown = false;
/** The number of threads. */
static uint32_t g_cThreads;
static uint32_t g_iDeadlockThread;
static RTTHREAD g_ahThreads[32];
static RTLOCKVALCLASS g_ahClasses[32];
static RTCRITSECT g_aCritSects[32];
static RTSEMRW g_ahSemRWs[32];
static RTSEMMUTEX g_ahSemMtxes[32];
static RTSEMEVENT g_hSemEvt;
static RTSEMEVENTMULTI g_hSemEvtMulti;
/** Multiple release event semaphore that is signalled by the main thread after
* it has started all the threads. */
static RTSEMEVENTMULTI g_hThreadsStartedEvt;
/** The number of threads that have called testThreadBlocking */
static uint32_t volatile g_cThreadsBlocking;
/** Multiple release event semaphore that is signalled by the last thread to
* call testThreadBlocking. testWaitForAllOtherThreadsToSleep waits on this. */
static RTSEMEVENTMULTI g_hThreadsBlockingEvt;
/** When to stop testing. */
static uint64_t g_NanoTSStop;
/** The number of deadlocks. */
static uint32_t volatile g_cDeadlocks;
/** The number of loops. */
static uint32_t volatile g_cLoops;
/**
* Spin until the callback stops returning VERR_TRY_AGAIN.
*
* @returns Callback result. VERR_TIMEOUT if too much time elapses.
* @param pfnCallback Callback for checking the state.
* @param pvWhat Callback parameter.
*/
static int testWaitForSomethingToBeOwned(int (*pfnCallback)(void *), void *pvWhat)
{
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiWait(g_hThreadsStartedEvt, TEST_SMALL_TIMEOUT));
uint64_t u64StartMS = RTTimeMilliTS();
for (unsigned iLoop = 0; ; iLoop++)
{
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
int rc = pfnCallback(pvWhat);
if (rc != VERR_TRY_AGAIN/* && !g_fDoNotSpin*/)
{
RTTEST_CHECK_RC_OK(g_hTest, rc);
return rc;
}
uint64_t cMsElapsed = RTTimeMilliTS() - u64StartMS;
if (!g_fDoNotSpin)
RTTEST_CHECK_RET(g_hTest, cMsElapsed <= TEST_SMALL_TIMEOUT, VERR_TIMEOUT);
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
RTThreadSleep(/*g_fDoNotSpin ? TEST_DEBUG_TIMEOUT :*/ iLoop > 256 ? 1 : 0);
}
}
static int testCheckIfCritSectIsOwned(void *pvWhat)
{
PRTCRITSECT pCritSect = (PRTCRITSECT)pvWhat;
if (!RTCritSectIsInitialized(pCritSect))
return VERR_SEM_DESTROYED;
if (RTCritSectIsOwned(pCritSect))
return VINF_SUCCESS;
return VERR_TRY_AGAIN;
}
static int testWaitForCritSectToBeOwned(PRTCRITSECT pCritSect)
{
return testWaitForSomethingToBeOwned(testCheckIfCritSectIsOwned, pCritSect);
}
static int testCheckIfSemRWIsOwned(void *pvWhat)
{
RTSEMRW hSemRW = (RTSEMRW)pvWhat;
if (RTSemRWGetWriteRecursion(hSemRW) > 0)
return VINF_SUCCESS;
if (RTSemRWGetReadCount(hSemRW) > 0)
return VINF_SUCCESS;
return VERR_TRY_AGAIN;
}
static int testWaitForSemRWToBeOwned(RTSEMRW hSemRW)
{
return testWaitForSomethingToBeOwned(testCheckIfSemRWIsOwned, hSemRW);
}
static int testCheckIfSemMutexIsOwned(void *pvWhat)
{
RTSEMMUTEX hSemRW = (RTSEMMUTEX)pvWhat;
if (RTSemMutexIsOwned(hSemRW))
return VINF_SUCCESS;
return VERR_TRY_AGAIN;
}
static int testWaitForSemMutexToBeOwned(RTSEMMUTEX hSemMutex)
{
return testWaitForSomethingToBeOwned(testCheckIfSemMutexIsOwned, hSemMutex);
}
/**
* For reducing spin in testWaitForAllOtherThreadsToSleep.
*/
static void testThreadBlocking(void)
{
if (ASMAtomicIncU32(&g_cThreadsBlocking) == g_cThreads)
RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiSignal(g_hThreadsBlockingEvt));
}
/**
* Waits for all the other threads to enter sleeping states.
*
* @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure.
* @param enmDesiredState The desired thread sleep state.
* @param cWaitOn The distance to the lock they'll be waiting on,
* the lock type is derived from the desired state.
* UINT32_MAX means no special lock.
*/
static int testWaitForAllOtherThreadsToSleep(RTTHREADSTATE enmDesiredState, uint32_t cWaitOn)
{
testThreadBlocking();
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiWait(g_hThreadsBlockingEvt, TEST_SMALL_TIMEOUT));
RTTHREAD hThreadSelf = RTThreadSelf();
for (uint32_t iOuterLoop = 0; ; iOuterLoop++)
{
uint32_t cMissing = 0;
uint32_t cWaitedOn = 0;
for (uint32_t i = 0; i < g_cThreads; i++)
{
RTTHREAD hThread = g_ahThreads[i];
if (hThread == NIL_RTTHREAD)
cMissing++;
else if (hThread != hThreadSelf)
{
/*
* Figure out which lock to wait for.
*/
void *pvLock = NULL;
if (cWaitOn != UINT32_MAX)
{
uint32_t j = (i + cWaitOn) % g_cThreads;
switch (enmDesiredState)
{
case RTTHREADSTATE_CRITSECT: pvLock = &g_aCritSects[j]; break;
case RTTHREADSTATE_RW_WRITE:
case RTTHREADSTATE_RW_READ: pvLock = g_ahSemRWs[j]; break;
case RTTHREADSTATE_MUTEX: pvLock = g_ahSemMtxes[j]; break;
default: break;
}
}
/*
* Wait for this thread.
*/
for (unsigned iLoop = 0; ; iLoop++)
{
RTTHREADSTATE enmState = RTThreadGetReallySleeping(hThread);
if (RTTHREAD_IS_SLEEPING(enmState))
{
if ( enmState == enmDesiredState
&& ( !pvLock
|| ( pvLock == RTLockValidatorQueryBlocking(hThread)
&& !RTLockValidatorIsBlockedThreadInValidator(hThread) )
)
&& RTThreadGetNativeState(hThread) != RTTHREADNATIVESTATE_RUNNING
)
break;
}
else if ( enmState != RTTHREADSTATE_RUNNING
&& enmState != RTTHREADSTATE_INITIALIZING)
return VERR_INTERNAL_ERROR;
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
RTThreadSleep(g_fDoNotSpin ? TEST_DEBUG_TIMEOUT : iOuterLoop + iLoop > 256 ? 1 : 0);
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
cWaitedOn++;
}
}
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
}
if (!cMissing && !cWaitedOn)
break;
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
RTThreadSleep(g_fDoNotSpin ? TEST_DEBUG_TIMEOUT : iOuterLoop > 256 ? 1 : 0);
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
}
RTThreadSleep(0); /* fudge factor */
RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR);
return VINF_SUCCESS;
}
/**
* Worker that starts the threads.
*
* @returns Same as RTThreadCreate.
* @param cThreads The number of threads to start.
* @param pfnThread Thread function.
*/
static int testStartThreads(uint32_t cThreads, PFNRTTHREAD pfnThread)
{
RTSemEventMultiReset(g_hThreadsStartedEvt);
for (uint32_t i = 0; i < RT_ELEMENTS(g_ahThreads); i++)
g_ahThreads[i] = NIL_RTTHREAD;
int rc = VINF_SUCCESS;
for (uint32_t i = 0; i < cThreads; i++)
{
rc = RTThreadCreateF(&g_ahThreads[i], pfnThread, (void *)(uintptr_t)i, 0,
RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "thread-%02u", i);
RTTEST_CHECK_RC_OK(g_hTest, rc);
if (RT_FAILURE(rc))
break;
}
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiSignal(g_hThreadsStartedEvt), rcCheck);
return rc;
}
/**
* Worker that waits for the threads to complete.
*
* @param cMillies How long to wait for each.
* @param fStopOnError Whether to stop on error and heed the thread
* return status.
*/
static void testWaitForThreads(uint32_t cMillies, bool fStopOnError)
{
uint32_t i = RT_ELEMENTS(g_ahThreads);
while (i-- > 0)
if (g_ahThreads[i] != NIL_RTTHREAD)
{
int rcThread;
int rc2;
RTTEST_CHECK_RC_OK(g_hTest, rc2 = RTThreadWait(g_ahThreads[i], cMillies, &rcThread));
if (RT_SUCCESS(rc2))
g_ahThreads[i] = NIL_RTTHREAD;
if (fStopOnError && (RT_FAILURE(rc2) || RT_FAILURE(rcThread)))
return;
}
}
static void testIt(uint32_t cThreads, uint32_t cSecs, bool fLoops, PFNRTTHREAD pfnThread, const char *pszName)
{
/*
* Init test.
*/
if (cSecs > 0)
RTTestSubF(g_hTest, "%s, %u threads, %u secs", pszName, cThreads, cSecs);
else
RTTestSubF(g_hTest, "%s, %u threads, single pass", pszName, cThreads);
RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_ahThreads) >= cThreads);
RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_aCritSects) >= cThreads);
g_cThreads = cThreads;
g_fShutdown = false;
for (uint32_t i = 0; i < cThreads; i++)
{
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS,
RTLOCKVAL_SUB_CLASS_ANY, "RTCritSect"), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreateEx(&g_ahSemRWs[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS,
RTLOCKVAL_SUB_CLASS_ANY, "RTSemRW"), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexCreateEx(&g_ahSemMtxes[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS,
RTLOCKVAL_SUB_CLASS_ANY, "RTSemMutex"), VINF_SUCCESS);
}
RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventCreate(&g_hSemEvt), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hSemEvtMulti), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hThreadsStartedEvt), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hThreadsBlockingEvt), VINF_SUCCESS);
/*
* The test loop.
*/
uint32_t cPasses = 0;
uint32_t cLoops = 0;
uint32_t cDeadlocks = 0;
uint32_t cErrors = RTTestErrorCount(g_hTest);
uint64_t uStartNS = RTTimeNanoTS();
g_NanoTSStop = uStartNS + cSecs * UINT64_C(1000000000);
do
{
g_iDeadlockThread = (cThreads - 1 + cPasses) % cThreads;
g_cLoops = 0;
g_cDeadlocks = 0;
g_cThreadsBlocking = 0;
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiReset(g_hThreadsBlockingEvt), VINF_SUCCESS);
int rc = testStartThreads(cThreads, pfnThread);
if (RT_SUCCESS(rc))
{
testWaitForThreads(TEST_LARGE_TIMEOUT + cSecs*1000, true);
if (g_fDoNotSpin && RTTestErrorCount(g_hTest) != cErrors)
testWaitForThreads(TEST_DEBUG_TIMEOUT, true);
}
RTTEST_CHECK(g_hTest, !fLoops || g_cLoops > 0);
cLoops += g_cLoops;
RTTEST_CHECK(g_hTest, !fLoops || g_cDeadlocks > 0);
cDeadlocks += g_cDeadlocks;
cPasses++;
} while ( RTTestErrorCount(g_hTest) == cErrors
&& !fLoops
&& RTTimeNanoTS() < g_NanoTSStop);
/*
* Cleanup.
*/
ASMAtomicWriteBool(&g_fShutdown, true);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hThreadsBlockingEvt), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hThreadsStartedEvt), VINF_SUCCESS);
RTThreadSleep(RTTestErrorCount(g_hTest) == cErrors ? 0 : 50);
for (uint32_t i = 0; i < cThreads; i++)
{
RTTEST_CHECK_RC(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexDestroy(g_ahSemMtxes[i]), VINF_SUCCESS);
}
RTTEST_CHECK_RC(g_hTest, RTSemEventDestroy(g_hSemEvt), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hSemEvtMulti), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hThreadsStartedEvt), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hThreadsBlockingEvt), VINF_SUCCESS);
testWaitForThreads(TEST_SMALL_TIMEOUT, false);
/*
* Print results if applicable.
*/
if (cSecs)
{
if (fLoops)
RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cLoops=%u cDeadlocks=%u (%u%%)\n",
cLoops, cDeadlocks, cLoops ? cDeadlocks * 100 / cLoops : 0);
else
RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cPasses=%u\n", cPasses);
}
}
static DECLCALLBACK(int) testDd1Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
PRTCRITSECT pMine = &g_aCritSects[i];
PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads];
RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck);
if (!(i & 1))
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS);
if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext)))
{
int rc;
if (i != g_iDeadlockThread)
{
testThreadBlocking();
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS);
}
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1));
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VERR_SEM_LV_DEADLOCK);
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS);
}
if (!(i & 1))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
return VINF_SUCCESS;
}
static void testDd1(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, false, testDd1Thread, "deadlock, critsect");
}
static DECLCALLBACK(int) testDd2Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
RTSEMRW hMine = g_ahSemRWs[i];
RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads];
int rc;
if (i & 1)
{
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
if ((i & 3) == 3)
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS);
}
else
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
if (RT_SUCCESS(testWaitForSemRWToBeOwned(hNext)))
{
if (i != g_iDeadlockThread)
{
testThreadBlocking();
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS);
}
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_RW_WRITE, 1));
if (RT_SUCCESS(rc))
{
if (g_cThreads > 1)
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK);
else
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_ILLEGAL_UPGRADE);
}
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hNext), VINF_SUCCESS);
}
if (i & 1)
{
if ((i & 3) == 3)
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS);
}
else
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
return VINF_SUCCESS;
}
static void testDd2(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, false, testDd2Thread, "deadlock, read-write");
}
static DECLCALLBACK(int) testDd3Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
RTSEMRW hMine = g_ahSemRWs[i];
RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads];
int rc;
if (i & 1)
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
else
RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
if (RT_SUCCESS(testWaitForSemRWToBeOwned(hNext)))
{
do
{
rc = RTSemRWRequestWrite(hNext, TEST_SMALL_TIMEOUT);
if (rc != VINF_SUCCESS && rc != VERR_SEM_LV_DEADLOCK && rc != VERR_SEM_LV_ILLEGAL_UPGRADE)
{
RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc);
break;
}
if (RT_SUCCESS(rc))
{
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWReleaseWrite(hNext), VINF_SUCCESS);
if (RT_FAILURE(rc))
break;
}
else
ASMAtomicIncU32(&g_cDeadlocks);
ASMAtomicIncU32(&g_cLoops);
} while (RTTimeNanoTS() < g_NanoTSStop);
}
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS);
else
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
return VINF_SUCCESS;
}
static void testDd3(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, true, testDd3Thread, "deadlock, read-write race");
}
static DECLCALLBACK(int) testDd4Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
RTSEMRW hMine = g_ahSemRWs[i];
RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads];
do
{
int rc1 = (i & 1 ? RTSemRWRequestWrite : RTSemRWRequestRead)(hMine, TEST_SMALL_TIMEOUT); /* ugly ;-) */
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (rc1 != VINF_SUCCESS && rc1 != VERR_SEM_LV_DEADLOCK && rc1 != VERR_SEM_LV_ILLEGAL_UPGRADE)
{
RTTestFailed(g_hTest, "#%u: RTSemRWRequest%s(hMine,) -> %Rrc\n", i, i & 1 ? "Write" : "read", rc1);
break;
}
if (RT_SUCCESS(rc1))
{
for (unsigned iInner = 0; iInner < 4; iInner++)
{
int rc2 = RTSemRWRequestWrite(hNext, TEST_SMALL_TIMEOUT);
if (rc2 != VINF_SUCCESS && rc2 != VERR_SEM_LV_DEADLOCK && rc2 != VERR_SEM_LV_ILLEGAL_UPGRADE)
{
RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc2);
break;
}
if (RT_SUCCESS(rc2))
{
RTTEST_CHECK_RC(g_hTest, rc2 = RTSemRWReleaseWrite(hNext), VINF_SUCCESS);
if (RT_FAILURE(rc2))
break;
}
else
ASMAtomicIncU32(&g_cDeadlocks);
ASMAtomicIncU32(&g_cLoops);
}
RTTEST_CHECK_RC(g_hTest, rc1 = (i & 1 ? RTSemRWReleaseWrite : RTSemRWReleaseRead)(hMine), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_FAILURE(rc1))
break;
}
else
ASMAtomicIncU32(&g_cDeadlocks);
ASMAtomicIncU32(&g_cLoops);
} while (RTTimeNanoTS() < g_NanoTSStop);
return VINF_SUCCESS;
}
static void testDd4(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, true, testDd4Thread, "deadlock, read-write race v2");
}
static DECLCALLBACK(int) testDd5Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
RTSEMMUTEX hMine = g_ahSemMtxes[i];
RTSEMMUTEX hNext = g_ahSemMtxes[(i + 1) % g_cThreads];
RTTEST_CHECK_RC_RET(g_hTest, RTSemMutexRequest(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck);
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS);
if (RT_SUCCESS(testWaitForSemMutexToBeOwned(hNext)))
{
int rc;
if (i != g_iDeadlockThread)
{
testThreadBlocking();
RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS);
}
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_MUTEX, 1));
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK);
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRelease(hNext), VINF_SUCCESS);
}
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(hMine), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(hMine), VINF_SUCCESS);
return VINF_SUCCESS;
}
static void testDd5(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, false, testDd5Thread, "deadlock, mutex");
}
static DECLCALLBACK(int) testDd6Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
PRTCRITSECT pMine = &g_aCritSects[i];
PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads];
RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck);
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS);
if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext)))
{
int rc;
if (i != g_iDeadlockThread)
{
testThreadBlocking();
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS);
}
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1));
if (RT_SUCCESS(rc))
{
RTSemEventSetSignaller(g_hSemEvt, g_ahThreads[0]);
for (uint32_t iThread = 1; iThread < g_cThreads; iThread++)
RTSemEventAddSignaller(g_hSemEvt, g_ahThreads[iThread]);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC(g_hTest, RTSemEventWait(g_hSemEvt, TEST_SMALL_TIMEOUT), VERR_SEM_LV_DEADLOCK);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC(g_hTest, RTSemEventSignal(g_hSemEvt), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC(g_hTest, RTSemEventWait(g_hSemEvt, TEST_SMALL_TIMEOUT), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTSemEventSetSignaller(g_hSemEvt, NIL_RTTHREAD);
}
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
}
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
return VINF_SUCCESS;
}
static void testDd6(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, false, testDd6Thread, "deadlock, event");
}
static DECLCALLBACK(int) testDd7Thread(RTTHREAD ThreadSelf, void *pvUser)
{
uintptr_t i = (uintptr_t)pvUser;
PRTCRITSECT pMine = &g_aCritSects[i];
PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads];
RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck);
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS);
if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext)))
{
int rc;
if (i != g_iDeadlockThread)
{
testThreadBlocking();
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS);
}
else
{
RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1));
if (RT_SUCCESS(rc))
{
RTSemEventMultiSetSignaller(g_hSemEvtMulti, g_ahThreads[0]);
for (uint32_t iThread = 1; iThread < g_cThreads; iThread++)
RTSemEventMultiAddSignaller(g_hSemEvtMulti, g_ahThreads[iThread]);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiReset(g_hSemEvtMulti), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(g_hSemEvtMulti, TEST_SMALL_TIMEOUT), VERR_SEM_LV_DEADLOCK);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hSemEvtMulti), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(g_hSemEvtMulti, TEST_SMALL_TIMEOUT), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
RTSemEventMultiSetSignaller(g_hSemEvtMulti, NIL_RTTHREAD);
}
}
RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING);
}
if (i & 1)
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS);
return VINF_SUCCESS;
}
static void testDd7(uint32_t cThreads, uint32_t cSecs)
{
testIt(cThreads, cSecs, false, testDd7Thread, "deadlock, event multi");
}
static void testLo1(void)
{
RTTestSub(g_hTest, "locking order basics");
/* Initialize the critsections, the first 4 has their own classes, the rest
use the same class and relies on the sub-class mechanism for ordering. */
for (unsigned i = 0; i < RT_ELEMENTS(g_ahClasses); i++)
{
if (i <= 3)
{
RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo1-%u", i), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO-Auto"), VINF_SUCCESS);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2);
}
else
{
g_ahClasses[i] = RTLockValidatorClassForSrcPos(RT_SRC_POS, "testLo1-%u", i);
RTTEST_CHECK_RETV(g_hTest, g_ahClasses[i] != NIL_RTLOCKVALCLASS);
RTTEST_CHECK_RETV(g_hTest, i == 4 || g_ahClasses[i] == g_ahClasses[i - 1]);
if (i == 4)
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO-None"), VINF_SUCCESS);
else if (i == 5)
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_ANY, "RTCritSectLO-Any"), VINF_SUCCESS);
else
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_USER + i, "RTCritSectLO-User"), VINF_SUCCESS);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 1 + (i - 4 + 1) * 2); /* released in cleanup. */
}
}
/* Enter the first 4 critsects in ascending order and thereby defining
this as a valid lock order. */
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
/* Now, leave and re-enter the critsects in a way that should break the
order and check that we get the appropriate response. */
int rc;
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[1]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc= RTCritSectEnter(&g_aCritSects[2]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
/* Check that recursion isn't subject to order checks. */
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
if (RT_SUCCESS(rc))
{
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
}
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
/* Enable strict release order for class 2 and check that violations
are caught. */
RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
if (RT_FAILURE(rc))
{
/* applies to recursions as well */
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
}
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
if (RT_FAILURE(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
/* Test that sub-class order works (4 = NONE, 5 = ANY, 6+ = USER). */
uint32_t cErrorsBefore = RTTestErrorCount(g_hTest);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[7]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[4]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[4]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[8]), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[8]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[6]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[6]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[7]), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[7]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[7]), VINF_SUCCESS);
/* Check that NONE trumps both ANY and USER. */
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[4]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[5]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[6]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[6]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[4]), VINF_SUCCESS);
/* Take all the locks using sub-classes. */
if (cErrorsBefore == RTTestErrorCount(g_hTest))
{
bool fSavedQuiet = RTLockValidatorSetQuiet(true);
for (uint32_t i = 6; i < RT_ELEMENTS(g_aCritSects); i++)
{
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[i]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[4]), VERR_SEM_LV_WRONG_ORDER);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS);
}
for (uint32_t i = 6; i < RT_ELEMENTS(g_aCritSects); i++)
{
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[i]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS);
}
RTLockValidatorSetQuiet(fSavedQuiet);
}
/* Work up some hash statistics and trigger a violation to show them. */
for (uint32_t i = 0; i < 10240; i++)
{
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
}
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VERR_SEM_LV_WRONG_ORDER);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS);
/* clean up */
//for (int i = RT_ELEMENTS(g_ahClasses) - 1; i >= 0; i--)
for (unsigned i = 0; i < RT_ELEMENTS(g_ahClasses); i++)
{
uint32_t c;
if (i <= 3)
RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == 5 - i,
(g_hTest, "c=%u i=%u\n", c, i));
else
{
uint32_t cExpect = 1 + (RT_ELEMENTS(g_ahClasses) - i) * 2 - 1;
RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == cExpect,
(g_hTest, "c=%u e=%u i=%u\n", c, cExpect, i));
}
g_ahClasses[i] = NIL_RTLOCKVALCLASS;
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS);
}
}
static void testLo2(void)
{
RTTestSub(g_hTest, "locking order, critsect");
/* Initialize the critsection with all different classes */
for (unsigned i = 0; i < 4; i++)
{
RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo2-%u", i), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO"), VINF_SUCCESS);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2);
}
/* Check the sub-class API.*/
RTTEST_CHECK(g_hTest, RTCritSectSetSubClass(&g_aCritSects[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE);
RTTEST_CHECK(g_hTest, RTCritSectSetSubClass(&g_aCritSects[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY);
/* Enter the first 4 critsects in ascending order and thereby defining
this as a valid lock order. */
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
/* Now, leave and re-enter the critsects in a way that should break the
order and check that we get the appropriate response. */
int rc;
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS);
/* Check that recursion isn't subject to order checks. */
RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
/* Enable strict release order for class 2 and check that violations
are caught - including recursion. */
RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); /* start recursion */
RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); /* end recursion */
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS);
/* clean up */
for (int i = 4 - 1; i >= 0; i--)
{
RTTEST_CHECK(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 1);
g_ahClasses[i] = NIL_RTLOCKVALCLASS;
RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS);
}
}
static void testLo3(void)
{
RTTestSub(g_hTest, "locking order, read-write");
/* Initialize the critsection with all different classes */
for (unsigned i = 0; i < 6; i++)
{
RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo3-%u", i), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreateEx(&g_ahSemRWs[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "hSemRW-Lo3-%u", i), VINF_SUCCESS);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 4);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 3);
}
/* Check the sub-class API.*/
RTTEST_CHECK(g_hTest, RTSemRWSetSubClass(g_ahSemRWs[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE);
RTTEST_CHECK(g_hTest, RTSemRWSetSubClass(g_ahSemRWs[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY);
/* Enter the first 4 critsects in ascending order and thereby defining
this as a valid lock order. */
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[0], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[1], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[4], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[5], RT_INDEFINITE_WAIT), VINF_SUCCESS);
/* Now, leave and re-enter the critsects in a way that should break the
order and check that we get the appropriate response. */
int rc;
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(g_ahSemRWs[0], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestRead(g_ahSemRWs[1], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[1]), VINF_SUCCESS);
/* Check that recursion isn't subject to order checks. */
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestRead(g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[2]), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1);
RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS);
RTTEST_CHECK(g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1);
/* Enable strict release order for class 2 and 3, then check that violations
are caught - including recursion. */
RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[3], true), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* start recursion */
RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 2);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 2);
RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[4], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* (mixed) */
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 2);
RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 2);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[4]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS);
RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VINF_SUCCESS); /* end recursion */
RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK(g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK(g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[5]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[4]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VINF_SUCCESS);
/* clean up */
for (int i = 6 - 1; i >= 0; i--)
{
uint32_t c;
RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == 2, (g_hTest, "c=%u i=%u\n", c, i));
g_ahClasses[i] = NIL_RTLOCKVALCLASS;
RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS);
g_ahSemRWs[i] = NIL_RTSEMRW;
}
}
static void testLo4(void)
{
RTTestSub(g_hTest, "locking order, mutex");
/* Initialize the critsection with all different classes */
for (unsigned i = 0; i < 4; i++)
{
RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo4-%u", i), VINF_SUCCESS);
RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexCreateEx(&g_ahSemMtxes[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTSemMutexLo4-%u", i), VINF_SUCCESS);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3);
RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2);
}
/* Check the sub-class API.*/
RTTEST_CHECK(g_hTest, RTSemMutexSetSubClass(g_ahSemMtxes[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE);
RTTEST_CHECK(g_hTest, RTSemMutexSetSubClass(g_ahSemMtxes[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY);
/* Enter the first 4 critsects in ascending order and thereby defining
this as a valid lock order. */
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[0], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[1], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[2], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[3], RT_INDEFINITE_WAIT), VINF_SUCCESS);
/* Now, leave and re-enter the critsects in a way that should break the
order and check that we get the appropriate response. */
int rc;
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[0]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(g_ahSemMtxes[0], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[0]), VINF_SUCCESS);
/* Check that recursion isn't subject to order checks. */
RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(g_ahSemMtxes[1], RT_INDEFINITE_WAIT), VINF_SUCCESS);
if (RT_SUCCESS(rc))
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[1]), VINF_SUCCESS);
/* Enable strict release order for class 2 and check that violations
are caught - including recursion. */
RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* start recursion */
RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[3], RT_INDEFINITE_WAIT), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VINF_SUCCESS); /* end recursion */
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[1]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[3]), VINF_SUCCESS);
RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VINF_SUCCESS);
/* clean up */
for (int i = 4 - 1; i >= 0; i--)
{
RTTEST_CHECK(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 1);
g_ahClasses[i] = NIL_RTLOCKVALCLASS;
RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexDestroy(g_ahSemMtxes[i]), VINF_SUCCESS);
}
}
static const char *testCheckIfLockValidationIsCompiledIn(void)
{
RTCRITSECT CritSect;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectInit(&CritSect), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectEnter(&CritSect), "");
bool fRet = CritSect.pValidatorRec
&& CritSect.pValidatorRec->hThread == RTThreadSelf();
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectLeave(&CritSect), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectDelete(&CritSect), "");
if (!fRet)
return "Lock validation is not enabled for critical sections";
/* deadlock detection for RTSemRW */
RTSEMRW hSemRW;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreateEx(&hSemRW, 0 /*fFlags*/, NIL_RTLOCKVALCLASS,
RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW-1"), NULL);
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), "");
int rc = RTSemRWRequestWrite(hSemRW, 1);
RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), "");
if (rc != VERR_SEM_LV_ILLEGAL_UPGRADE)
return "Deadlock detection is not enabled for the read/write semaphores";
/* lock order for RTSemRW */
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreateEx(&hSemRW, 0 /*fFlags*/,
RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL),
RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW-2"), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), "");
rc = RTSemRWRequestWrite(hSemRW, 1);
RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), "");
if (rc != VERR_SEM_LV_WRONG_ORDER)
{
RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "%Rrc\n", rc);
return "Lock order validation is not enabled for the read/write semaphores";
}
/* lock order for RTSemMutex */
RTSEMMUTEX hSemMtx1;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexCreateEx(&hSemMtx1, 0 /*fFlags*/,
RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL),
RTLOCKVAL_SUB_CLASS_NONE, "RTSemMtx-1"), "");
RTSEMMUTEX hSemMtx2;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexCreateEx(&hSemMtx2, 0 /*fFlags*/,
RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL),
RTLOCKVAL_SUB_CLASS_NONE, "RTSemMtx-2"), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx1, 50), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx2, 50), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx2), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx1), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx2, 50), "");
rc = RTSemMutexRequest(hSemMtx1, 50);
RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx2), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexDestroy(hSemMtx2), ""); hSemMtx2 = NIL_RTSEMMUTEX;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexDestroy(hSemMtx1), ""); hSemMtx1 = NIL_RTSEMMUTEX;
if (rc != VERR_SEM_LV_WRONG_ORDER)
return "Lock order validation is not enabled for the mutex semaphores";
/* signaller checks on event sems. */
RTSEMEVENT hSemEvt;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventCreate(&hSemEvt), "");
RTSemEventSetSignaller(hSemEvt, RTThreadSelf());
RTSemEventSetSignaller(hSemEvt, NIL_RTTHREAD);
rc = RTSemEventSignal(hSemEvt);
RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventDestroy(hSemEvt), "");
if (rc != VERR_SEM_LV_NOT_SIGNALLER)
return "Signalling checks are not enabled for the event semaphores";
/* signaller checks on multiple release event sems. */
RTSEMEVENTMULTI hSemEvtMulti;
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiCreate(&hSemEvtMulti), "");
RTSemEventMultiSetSignaller(hSemEvtMulti, RTThreadSelf());
RTSemEventMultiSetSignaller(hSemEvtMulti, NIL_RTTHREAD);
rc = RTSemEventMultiSignal(hSemEvtMulti);
RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), "");
RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiDestroy(hSemEvtMulti), "");
if (rc != VERR_SEM_LV_NOT_SIGNALLER)
return "Signalling checks are not enabled for the multiple release event semaphores";
/* we're good */
return NULL;
}
int main()
{
/*
* Init.
*/
int rc = RTTestInitAndCreate("tstRTLockValidator", &g_hTest);
if (rc)
return rc;
RTTestBanner(g_hTest);
RTLockValidatorSetEnabled(true);
RTLockValidatorSetMayPanic(false);
RTLockValidatorSetQuiet(true);
const char *pszWhyDisabled = testCheckIfLockValidationIsCompiledIn();
if (pszWhyDisabled)
return RTTestErrorCount(g_hTest) > 0
? RTTestSummaryAndDestroy(g_hTest)
: RTTestSkipAndDestroy(g_hTest, pszWhyDisabled);
RTLockValidatorSetQuiet(false);
bool fTestDd = true;
bool fTestLo = true;
/*
* Some initial tests with verbose output (all single pass).
*/
if (fTestDd)
{
testDd1(3, 0);
testDd2(1, 0);
testDd2(3, 0);
testDd5(3, 0);
testDd6(3, 0);
testDd7(3, 0);
}
if (fTestLo)
{
testLo1();
testLo2();
testLo3();
testLo4();
}
/*
* If successful, perform more thorough testing without noisy output.
*/
if (RTTestErrorCount(g_hTest) == 0)
{
RTLockValidatorSetQuiet(true);
if (fTestDd)
{
testDd1( 2, SECS_SIMPLE_TEST);
testDd1( 3, SECS_SIMPLE_TEST);
testDd1( 7, SECS_SIMPLE_TEST);
testDd1(10, SECS_SIMPLE_TEST);
testDd1(15, SECS_SIMPLE_TEST);
testDd1(30, SECS_SIMPLE_TEST);
testDd2( 1, SECS_SIMPLE_TEST);
testDd2( 2, SECS_SIMPLE_TEST);
testDd2( 3, SECS_SIMPLE_TEST);
testDd2( 7, SECS_SIMPLE_TEST);
testDd2(10, SECS_SIMPLE_TEST);
testDd2(15, SECS_SIMPLE_TEST);
testDd2(30, SECS_SIMPLE_TEST);
testDd3( 2, SECS_SIMPLE_TEST);
testDd3(10, SECS_SIMPLE_TEST);
testDd4( 2, SECS_RACE_TEST);
testDd4( 6, SECS_RACE_TEST);
testDd4(10, SECS_RACE_TEST);
testDd4(30, SECS_RACE_TEST);
testDd5( 2, SECS_RACE_TEST);
testDd5( 3, SECS_RACE_TEST);
testDd5( 7, SECS_RACE_TEST);
testDd5(10, SECS_RACE_TEST);
testDd5(15, SECS_RACE_TEST);
testDd5(30, SECS_RACE_TEST);
testDd6( 2, SECS_SIMPLE_TEST);
testDd6( 3, SECS_SIMPLE_TEST);
testDd6( 7, SECS_SIMPLE_TEST);
testDd6(10, SECS_SIMPLE_TEST);
testDd6(15, SECS_SIMPLE_TEST);
testDd6(30, SECS_SIMPLE_TEST);
testDd7( 2, SECS_SIMPLE_TEST);
testDd7( 3, SECS_SIMPLE_TEST);
testDd7( 7, SECS_SIMPLE_TEST);
testDd7(10, SECS_SIMPLE_TEST);
testDd7(15, SECS_SIMPLE_TEST);
testDd7(30, SECS_SIMPLE_TEST);
}
}
return RTTestSummaryAndDestroy(g_hTest);
}