/* $Id$ */
/** @file
* IPRT - Multiple Release Event Semaphore, POSIX.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/semaphore.h>
#include "internal/iprt.h"
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/lockvalidator.h>
#include <iprt/mem.h>
#include <iprt/time.h>
#include "internal/strict.h"
#include <errno.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/time.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @def IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK
* Set if the platform implements pthread_condattr_setclock().
* Enables the use of the monotonic clock for waiting on condition variables. */
#ifndef IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK
/* Linux detection */
# if defined(RT_OS_LINUX) && defined(__USE_XOPEN2K)
# include <features.h>
# if __GLIBC_PREREQ(2,6) /** @todo figure the exact version where this was added */
# define IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK
# endif
# endif
/** @todo check other platforms */
#endif
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** Posix internal representation of a Mutex Multi semaphore.
* The POSIX implementation uses a mutex and a condition variable to implement
* the automatic reset event semaphore semantics. */
struct RTSEMEVENTMULTIINTERNAL
{
/** pthread condition. */
pthread_cond_t Cond;
/** pthread mutex which protects the condition and the event state. */
pthread_mutex_t Mutex;
/** The state of the semaphore.
* This is operated while owning mutex and using atomic updating. */
volatile uint32_t u32State;
/** Number of waiters. */
volatile uint32_t cWaiters;
#ifdef RTSEMEVENTMULTI_STRICT
/** Signallers. */
RTLOCKVALRECSHRD Signallers;
/** Indicates that lock validation should be performed. */
bool volatile fEverHadSignallers;
#endif
/** Set if we're using the monotonic clock. */
bool fMonotonicClock;
};
/** The values of the u32State variable in RTSEMEVENTMULTIINTERNAL.
* @{ */
/** The object isn't initialized. */
#define EVENTMULTI_STATE_UNINITIALIZED 0
/** The semaphore is signaled. */
#define EVENTMULTI_STATE_SIGNALED 0xff00ff00
/** The semaphore is not signaled. */
#define EVENTMULTI_STATE_NOT_SIGNALED 0x00ff00ff
/** @} */
RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem)
{
return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
}
RTDECL(int) RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass,
const char *pszNameFmt, ...)
{
AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
/*
* Allocate semaphore handle.
*/
int rc;
struct RTSEMEVENTMULTIINTERNAL *pThis = (struct RTSEMEVENTMULTIINTERNAL *)RTMemAlloc(sizeof(struct RTSEMEVENTMULTIINTERNAL));
if (pThis)
{
/*
* Create the condition variable.
*/
pthread_condattr_t CondAttr;
rc = pthread_condattr_init(&CondAttr);
if (!rc)
{
#if defined(CLOCK_MONOTONIC) && defined(IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK)
/* ASSUMES RTTimeSystemNanoTS() == RTTimeNanoTS() == clock_gettime(CLOCK_MONOTONIC). */
rc = pthread_condattr_setclock(&CondAttr, CLOCK_MONOTONIC);
pThis->fMonotonicClock = rc == 0;
#else
pThis->fMonotonicClock = false;
#endif
rc = pthread_cond_init(&pThis->Cond, &CondAttr);
if (!rc)
{
/*
* Create the semaphore.
*/
pthread_mutexattr_t MutexAttr;
rc = pthread_mutexattr_init(&MutexAttr);
if (!rc)
{
rc = pthread_mutex_init(&pThis->Mutex, &MutexAttr);
if (!rc)
{
pthread_mutexattr_destroy(&MutexAttr);
pthread_condattr_destroy(&CondAttr);
ASMAtomicXchgU32(&pThis->u32State, EVENTMULTI_STATE_NOT_SIGNALED);
ASMAtomicXchgU32(&pThis->cWaiters, 0);
#ifdef RTSEMEVENTMULTI_STRICT
if (!pszNameFmt)
{
static uint32_t volatile s_iSemEventMultiAnon = 0;
RTLockValidatorRecSharedInit(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis,
true /*fSignaller*/, !(fFlags & RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL),
"RTSemEventMulti-%u", ASMAtomicIncU32(&s_iSemEventMultiAnon) - 1);
}
else
{
va_list va;
va_start(va, pszNameFmt);
RTLockValidatorRecSharedInitV(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis,
true /*fSignaller*/, !(fFlags & RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL),
pszNameFmt, va);
va_end(va);
}
pThis->fEverHadSignallers = false;
#endif
*phEventMultiSem = pThis;
return VINF_SUCCESS;
}
pthread_mutexattr_destroy(&MutexAttr);
}
pthread_cond_destroy(&pThis->Cond);
}
pthread_condattr_destroy(&CondAttr);
}
rc = RTErrConvertFromErrno(rc);
RTMemFree(pThis);
}
else
rc = VERR_NO_MEMORY;
return rc;
}
RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem)
{
/*
* Validate handle.
*/
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
if (pThis == NIL_RTSEMEVENTMULTI)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
uint32_t u32 = pThis->u32State;
AssertReturn(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED, VERR_INVALID_HANDLE);
/*
* Abort all waiters forcing them to return failure.
*/
int rc;
for (int i = 30; i > 0; i--)
{
ASMAtomicXchgU32(&pThis->u32State, EVENTMULTI_STATE_UNINITIALIZED);
rc = pthread_cond_destroy(&pThis->Cond);
if (rc != EBUSY)
break;
pthread_cond_broadcast(&pThis->Cond);
usleep(1000);
}
if (rc)
{
AssertMsgFailed(("Failed to destroy event sem %p, rc=%d.\n", hEventMultiSem, rc));
return RTErrConvertFromErrno(rc);
}
/*
* Destroy the semaphore
* If it's busy we'll wait a bit to give the threads a chance to be scheduled.
*/
for (int i = 30; i > 0; i--)
{
rc = pthread_mutex_destroy(&pThis->Mutex);
if (rc != EBUSY)
break;
usleep(1000);
}
if (rc)
{
AssertMsgFailed(("Failed to destroy event sem %p, rc=%d. (mutex)\n", hEventMultiSem, rc));
return RTErrConvertFromErrno(rc);
}
/*
* Free the semaphore memory and be gone.
*/
#ifdef RTSEMEVENTMULTI_STRICT
RTLockValidatorRecSharedDelete(&pThis->Signallers);
#endif
RTMemFree(pThis);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem)
{
/*
* Validate input.
*/
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
uint32_t u32 = pThis->u32State;
AssertReturn(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED, VERR_INVALID_HANDLE);
#ifdef RTSEMEVENTMULTI_STRICT
if (pThis->fEverHadSignallers)
{
int rc9 = RTLockValidatorRecSharedCheckSignaller(&pThis->Signallers, NIL_RTTHREAD);
if (RT_FAILURE(rc9))
return rc9;
}
#endif
/*
* Lock the mutex semaphore.
*/
int rc = pthread_mutex_lock(&pThis->Mutex);
if (rc)
{
AssertMsgFailed(("Failed to lock event sem %p, rc=%d.\n", hEventMultiSem, rc));
return RTErrConvertFromErrno(rc);
}
/*
* Check the state.
*/
if (pThis->u32State == EVENTMULTI_STATE_NOT_SIGNALED)
{
ASMAtomicXchgU32(&pThis->u32State, EVENTMULTI_STATE_SIGNALED);
rc = pthread_cond_broadcast(&pThis->Cond);
AssertMsg(!rc, ("Failed to signal event sem %p, rc=%d.\n", hEventMultiSem, rc));
}
else if (pThis->u32State == EVENTMULTI_STATE_SIGNALED)
{
rc = pthread_cond_broadcast(&pThis->Cond); /* give'm another kick... */
AssertMsg(!rc, ("Failed to signal event sem %p, rc=%d. (2)\n", hEventMultiSem, rc));
}
else
rc = VERR_SEM_DESTROYED;
/*
* Release the mutex and return.
*/
int rc2 = pthread_mutex_unlock(&pThis->Mutex);
AssertMsg(!rc2, ("Failed to unlock event sem %p, rc=%d.\n", hEventMultiSem, rc));
if (rc)
return RTErrConvertFromErrno(rc);
if (rc2)
return RTErrConvertFromErrno(rc2);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem)
{
/*
* Validate input.
*/
int rc = VINF_SUCCESS;
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
uint32_t u32 = pThis->u32State;
AssertReturn(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED, VERR_INVALID_HANDLE);
/*
* Lock the mutex semaphore.
*/
int rcPosix = pthread_mutex_lock(&pThis->Mutex);
if (RT_UNLIKELY(rcPosix))
{
AssertMsgFailed(("Failed to lock event multi sem %p, rc=%d.\n", hEventMultiSem, rcPosix));
return RTErrConvertFromErrno(rcPosix);
}
/*
* Check the state.
*/
if (pThis->u32State == EVENTMULTI_STATE_SIGNALED)
ASMAtomicXchgU32(&pThis->u32State, EVENTMULTI_STATE_NOT_SIGNALED);
else if (pThis->u32State != EVENTMULTI_STATE_NOT_SIGNALED)
rc = VERR_SEM_DESTROYED;
/*
* Release the mutex and return.
*/
rcPosix = pthread_mutex_unlock(&pThis->Mutex);
if (RT_UNLIKELY(rcPosix))
{
AssertMsgFailed(("Failed to unlock event multi sem %p, rc=%d.\n", hEventMultiSem, rcPosix));
return RTErrConvertFromErrno(rcPosix);
}
return rc;
}
/**
* Handle polling (timeout already expired at the time of the call).
*
* @returns VINF_SUCCESS, VERR_TIMEOUT, VERR_SEM_DESTROYED.
* @param pThis The semaphore.
*/
DECLINLINE(int) rtSemEventMultiPosixWaitPoll(struct RTSEMEVENTMULTIINTERNAL *pThis)
{
int rc = pthread_mutex_lock(&pThis->Mutex);
AssertMsgReturn(!rc, ("Failed to lock event multi sem %p, rc=%d.\n", pThis, rc), RTErrConvertFromErrno(rc));
uint32_t const u32State = pThis->u32State;
rc = pthread_mutex_unlock(&pThis->Mutex);
AssertMsg(!rc, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc)); NOREF(rc);
return u32State == EVENTMULTI_STATE_SIGNALED
? VINF_SUCCESS
: u32State != EVENTMULTI_STATE_UNINITIALIZED
? VERR_TIMEOUT
: VERR_SEM_DESTROYED;
}
/**
* Implements the indefinite wait.
*
* @returns See RTSemEventMultiWaitEx.
* @param pThis The semaphore.
* @param fFlags See RTSemEventMultiWaitEx.
* @param pSrcPos The source position, can be NULL.
*/
static int rtSemEventMultiPosixWaitIndefinite(struct RTSEMEVENTMULTIINTERNAL *pThis, uint32_t fFlags, PCRTLOCKVALSRCPOS pSrcPos)
{
/* take mutex */
int rc = pthread_mutex_lock(&pThis->Mutex);
AssertMsgReturn(!rc, ("Failed to lock event multi sem %p, rc=%d.\n", pThis, rc), RTErrConvertFromErrno(rc));
ASMAtomicIncU32(&pThis->cWaiters);
for (;;)
{
/* check state. */
uint32_t const u32State = pThis->u32State;
if (u32State != EVENTMULTI_STATE_NOT_SIGNALED)
{
ASMAtomicDecU32(&pThis->cWaiters);
rc = pthread_mutex_unlock(&pThis->Mutex);
AssertMsg(!rc, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc));
return u32State == EVENTMULTI_STATE_SIGNALED
? VINF_SUCCESS
: VERR_SEM_DESTROYED;
}
/* wait */
#ifdef RTSEMEVENTMULTI_STRICT
RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt();
if (pThis->fEverHadSignallers)
{
rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false,
RT_INDEFINITE_WAIT, RTTHREADSTATE_EVENT_MULTI, true);
if (RT_FAILURE(rc))
{
ASMAtomicDecU32(&pThis->cWaiters);
pthread_mutex_unlock(&pThis->Mutex);
return rc;
}
}
#else
RTTHREAD hThreadSelf = RTThreadSelf();
#endif
RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT_MULTI, true);
/** @todo interruptible wait is not implementable... */ NOREF(fFlags);
rc = pthread_cond_wait(&pThis->Cond, &pThis->Mutex);
RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT_MULTI);
if (RT_UNLIKELY(rc))
{
AssertMsgFailed(("Failed to wait on event multi sem %p, rc=%d.\n", pThis, rc));
ASMAtomicDecU32(&pThis->cWaiters);
int rc2 = pthread_mutex_unlock(&pThis->Mutex);
AssertMsg(!rc2, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc2)); NOREF(rc2);
return RTErrConvertFromErrno(rc);
}
}
}
/**
* Implements the timed wait.
*
* @returns See RTSemEventMultiWaitEx
* @param pThis The semaphore.
* @param fFlags See RTSemEventMultiWaitEx.
* @param uTimeout See RTSemEventMultiWaitEx.
* @param pSrcPos The source position, can be NULL.
*/
static int rtSemEventMultiPosixWaitTimed(struct RTSEMEVENTMULTIINTERNAL *pThis, uint32_t fFlags, uint64_t uTimeout,
PCRTLOCKVALSRCPOS pSrcPos)
{
/*
* Convert uTimeout to a relative value in nano seconds.
*/
if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000)
? uTimeout * UINT32_C(1000000)
: UINT64_MAX;
if (uTimeout == UINT64_MAX) /* unofficial way of indicating an indefinite wait */
return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);
uint64_t uAbsTimeout = uTimeout;
if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE)
{
uint64_t u64Now = RTTimeSystemNanoTS();
uTimeout = uTimeout > u64Now ? uTimeout - u64Now : 0;
}
if (uTimeout == 0)
return rtSemEventMultiPosixWaitPoll(pThis);
/*
* Get current time and calc end of deadline relative to real time.
*/
struct timespec ts = {0,0};
if (!pThis->fMonotonicClock)
{
#if defined(RT_OS_DARWIN) || defined(RT_OS_HAIKU)
struct timeval tv = {0,0};
gettimeofday(&tv, NULL);
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
#else
clock_gettime(CLOCK_REALTIME, &ts);
#endif
struct timespec tsAdd;
tsAdd.tv_nsec = uTimeout % UINT32_C(1000000000);
tsAdd.tv_sec = uTimeout / UINT32_C(1000000000);
if ( sizeof(ts.tv_sec) < sizeof(uint64_t)
&& ( uTimeout > UINT64_C(1000000000) * UINT32_MAX
|| (uint64_t)ts.tv_sec + tsAdd.tv_sec >= UINT32_MAX) )
return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);
ts.tv_sec += tsAdd.tv_sec;
ts.tv_nsec += tsAdd.tv_nsec;
if (ts.tv_nsec >= 1000000000)
{
ts.tv_nsec -= 1000000000;
ts.tv_sec++;
}
/* Note! No need to complete uAbsTimeout for RTSEMWAIT_FLAGS_RELATIVE in this path. */
}
else
{
/* ASSUMES RTTimeSystemNanoTS() == RTTimeNanoTS() == clock_gettime(CLOCK_MONOTONIC). */
if (fFlags & RTSEMWAIT_FLAGS_RELATIVE)
uAbsTimeout += RTTimeSystemNanoTS();
if ( sizeof(ts.tv_sec) < sizeof(uint64_t)
&& uAbsTimeout > UINT64_C(1000000000) * UINT32_MAX)
return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);
ts.tv_nsec = uAbsTimeout % UINT32_C(1000000000);
ts.tv_sec = uAbsTimeout / UINT32_C(1000000000);
}
/*
* To business!
*/
/* take mutex */
int rc = pthread_mutex_lock(&pThis->Mutex);
AssertMsgReturn(rc == 0, ("rc=%d pThis=%p\n", rc, pThis), RTErrConvertFromErrno(rc)); NOREF(rc);
ASMAtomicIncU32(&pThis->cWaiters);
for (;;)
{
/* check state. */
uint32_t const u32State = pThis->u32State;
if (u32State != EVENTMULTI_STATE_NOT_SIGNALED)
{
ASMAtomicDecU32(&pThis->cWaiters);
rc = pthread_mutex_unlock(&pThis->Mutex);
AssertMsg(!rc, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc));
return u32State == EVENTMULTI_STATE_SIGNALED
? VINF_SUCCESS
: VERR_SEM_DESTROYED;
}
/* wait */
#ifdef RTSEMEVENTMULTI_STRICT
RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt();
if (pThis->fEverHadSignallers)
{
rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false,
uTimeout / UINT32_C(1000000), RTTHREADSTATE_EVENT_MULTI, true);
if (RT_FAILURE(rc))
{
ASMAtomicDecU32(&pThis->cWaiters);
pthread_mutex_unlock(&pThis->Mutex);
return rc;
}
}
#else
RTTHREAD hThreadSelf = RTThreadSelf();
#endif
RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT_MULTI, true);
rc = pthread_cond_timedwait(&pThis->Cond, &pThis->Mutex, &ts);
RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT_MULTI);
if ( rc
&& ( rc != EINTR /* according to SuS this function shall not return EINTR, but linux man page says differently. */
|| (fFlags & RTSEMWAIT_FLAGS_NORESUME)) )
{
AssertMsg(rc == ETIMEDOUT, ("Failed to wait on event multi sem %p, rc=%d.\n", pThis, rc));
ASMAtomicDecU32(&pThis->cWaiters);
int rc2 = pthread_mutex_unlock(&pThis->Mutex);
AssertMsg(!rc2, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc2)); NOREF(rc2);
return RTErrConvertFromErrno(rc);
}
/* check the absolute deadline. */
}
}
DECLINLINE(int) rtSemEventMultiPosixWait(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout,
PCRTLOCKVALSRCPOS pSrcPos)
{
/*
* Validate input.
*/
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
uint32_t u32 = pThis->u32State;
AssertReturn(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED, VERR_INVALID_HANDLE);
AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);
/*
* Optimize the case where the event is signalled.
*/
if (ASMAtomicUoReadU32(&pThis->u32State) == EVENTMULTI_STATE_SIGNALED)
{
int rc = rtSemEventMultiPosixWaitPoll(pThis);
if (RT_LIKELY(rc != VERR_TIMEOUT))
return rc;
}
/*
* Indefinite or timed wait?
*/
if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);
return rtSemEventMultiPosixWaitTimed(pThis, fFlags, uTimeout, pSrcPos);
}
#undef RTSemEventMultiWaitEx
RTDECL(int) RTSemEventMultiWaitEx(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout)
{
#ifndef RTSEMEVENT_STRICT
return rtSemEventMultiPosixWait(hEventMultiSem, fFlags, uTimeout, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtSemEventMultiPosixWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
#endif
}
RTDECL(int) RTSemEventMultiWaitExDebug(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout,
RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtSemEventMultiPosixWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
}
RTDECL(void) RTSemEventMultiSetSignaller(RTSEMEVENTMULTI hEventMultiSem, RTTHREAD hThread)
{
#ifdef RTSEMEVENTMULTI_STRICT
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
AssertPtrReturnVoid(pThis);
uint32_t u32 = pThis->u32State;
AssertReturnVoid(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED);
ASMAtomicWriteBool(&pThis->fEverHadSignallers, true);
RTLockValidatorRecSharedResetOwner(&pThis->Signallers, hThread, NULL);
#endif
}
RTDECL(void) RTSemEventMultiAddSignaller(RTSEMEVENTMULTI hEventMultiSem, RTTHREAD hThread)
{
#ifdef RTSEMEVENTMULTI_STRICT
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
AssertPtrReturnVoid(pThis);
uint32_t u32 = pThis->u32State;
AssertReturnVoid(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED);
ASMAtomicWriteBool(&pThis->fEverHadSignallers, true);
RTLockValidatorRecSharedAddOwner(&pThis->Signallers, hThread, NULL);
#endif
}
RTDECL(void) RTSemEventMultiRemoveSignaller(RTSEMEVENTMULTI hEventMultiSem, RTTHREAD hThread)
{
#ifdef RTSEMEVENTMULTI_STRICT
struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem;
AssertPtrReturnVoid(pThis);
uint32_t u32 = pThis->u32State;
AssertReturnVoid(u32 == EVENTMULTI_STATE_NOT_SIGNALED || u32 == EVENTMULTI_STATE_SIGNALED);
RTLockValidatorRecSharedRemoveOwner(&pThis->Signallers, hThread);
#endif
}