/* $Id$ */
/** @file
* IPRT - Binary Image Loader, Template for ELF Relocatable Images.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#if ELF_MODE == 32
#define RTLDRELF_NAME(name) rtldrELF32##name
#define RTLDRELF_SUFF(name) name##32
#define RTLDRELF_MID(pre,suff) pre##32##suff
#define FMT_ELF_ADDR "%08RX32"
#define FMT_ELF_HALF "%04RX16"
#define FMT_ELF_OFF "%08RX32"
#define FMT_ELF_SIZE "%08RX32"
#define FMT_ELF_SWORD "%RI32"
#define FMT_ELF_WORD "%08RX32"
#define FMT_ELF_XWORD "%08RX32"
#define FMT_ELF_SXWORD "%RI32"
#elif ELF_MODE == 64
#define RTLDRELF_NAME(name) rtldrELF64##name
#define RTLDRELF_SUFF(name) name##64
#define RTLDRELF_MID(pre,suff) pre##64##suff
#define FMT_ELF_ADDR "%016RX64"
#define FMT_ELF_HALF "%04RX16"
#define FMT_ELF_SHALF "%RI16"
#define FMT_ELF_OFF "%016RX64"
#define FMT_ELF_SIZE "%016RX64"
#define FMT_ELF_SWORD "%RI32"
#define FMT_ELF_WORD "%08RX32"
#define FMT_ELF_XWORD "%016RX64"
#define FMT_ELF_SXWORD "%RI64"
#endif
#define Elf_Ehdr RTLDRELF_MID(Elf,_Ehdr)
#define Elf_Phdr RTLDRELF_MID(Elf,_Phdr)
#define Elf_Shdr RTLDRELF_MID(Elf,_Shdr)
#define Elf_Sym RTLDRELF_MID(Elf,_Sym)
#define Elf_Rel RTLDRELF_MID(Elf,_Rel)
#define Elf_Rela RTLDRELF_MID(Elf,_Rela)
#define Elf_Nhdr RTLDRELF_MID(Elf,_Nhdr)
#define Elf_Dyn RTLDRELF_MID(Elf,_Dyn)
#define Elf_Addr RTLDRELF_MID(Elf,_Addr)
#define Elf_Half RTLDRELF_MID(Elf,_Half)
#define Elf_Off RTLDRELF_MID(Elf,_Off)
#define Elf_Size RTLDRELF_MID(Elf,_Size)
#define Elf_Sword RTLDRELF_MID(Elf,_Sword)
#define Elf_Word RTLDRELF_MID(Elf,_Word)
#define RTLDRMODELF RTLDRELF_MID(RTLDRMODELF,RT_NOTHING)
#define PRTLDRMODELF RTLDRELF_MID(PRTLDRMODELF,RT_NOTHING)
#define ELF_R_SYM(info) RTLDRELF_MID(ELF,_R_SYM)(info)
#define ELF_R_TYPE(info) RTLDRELF_MID(ELF,_R_TYPE)(info)
#define ELF_R_INFO(sym, type) RTLDRELF_MID(ELF,_R_INFO)(sym, type)
#define ELF_ST_BIND(info) RTLDRELF_MID(ELF,_ST_BIND)(info)
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The ELF loader structure.
*/
typedef struct RTLDRMODELF
{
/** Core module structure. */
RTLDRMODINTERNAL Core;
/** Pointer to readonly mapping of the image bits.
* This mapping is provided by the pReader. */
const void *pvBits;
/** The ELF header. */
Elf_Ehdr Ehdr;
/** Pointer to our copy of the section headers with sh_addr as RVAs.
* The virtual addresses in this array is the 0 based assignments we've given the image.
* Not valid if the image is DONE. */
Elf_Shdr *paShdrs;
/** Unmodified section headers (allocated after paShdrs, so no need to free).
* Not valid if the image is DONE. */
Elf_Shdr const *paOrgShdrs;
/** The size of the loaded image. */
size_t cbImage;
/** The image base address if it's an EXEC or DYN image. */
Elf_Addr LinkAddress;
/** The symbol section index. */
unsigned iSymSh;
/** Number of symbols in the table. */
unsigned cSyms;
/** Pointer to symbol table within RTLDRMODELF::pvBits. */
const Elf_Sym *paSyms;
/** The string section index. */
unsigned iStrSh;
/** Size of the string table. */
unsigned cbStr;
/** Pointer to string table within RTLDRMODELF::pvBits. */
const char *pStr;
/** Size of the section header string table. */
unsigned cbShStr;
/** Pointer to section header string table within RTLDRMODELF::pvBits. */
const char *pShStr;
} RTLDRMODELF, *PRTLDRMODELF;
/**
* Maps the image bits into memory and resolve pointers into it.
*
* @returns iprt status code.
* @param pModElf The ELF loader module instance data.
* @param fNeedsBits Set if we actually need the pvBits member.
* If we don't, we can simply read the string and symbol sections, thus saving memory.
*/
static int RTLDRELF_NAME(MapBits)(PRTLDRMODELF pModElf, bool fNeedsBits)
{
NOREF(fNeedsBits);
if (pModElf->pvBits)
return VINF_SUCCESS;
int rc = pModElf->Core.pReader->pfnMap(pModElf->Core.pReader, &pModElf->pvBits);
if (RT_SUCCESS(rc))
{
const uint8_t *pu8 = (const uint8_t *)pModElf->pvBits;
if (pModElf->iSymSh != ~0U)
pModElf->paSyms = (const Elf_Sym *)(pu8 + pModElf->paShdrs[pModElf->iSymSh].sh_offset);
if (pModElf->iStrSh != ~0U)
pModElf->pStr = (const char *)(pu8 + pModElf->paShdrs[pModElf->iStrSh].sh_offset);
pModElf->pShStr = (const char *)(pu8 + pModElf->paShdrs[pModElf->Ehdr.e_shstrndx].sh_offset);
}
return rc;
}
/*
*
* EXEC & DYN.
* EXEC & DYN.
* EXEC & DYN.
* EXEC & DYN.
* EXEC & DYN.
*
*/
/**
* Applies the fixups for a section in an executable image.
*
* @returns iprt status code.
* @param pModElf The ELF loader module instance data.
* @param BaseAddr The base address which the module is being fixedup to.
* @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals).
* @param pvUser User argument to pass to the callback.
* @param SecAddr The section address. This is the address the relocations are relative to.
* @param cbSec The section size. The relocations must be inside this.
* @param pu8SecBaseR Where we read section bits from.
* @param pu8SecBaseW Where we write section bits to.
* @param pvRelocs Pointer to where we read the relocations from.
* @param cbRelocs Size of the relocations.
*/
static int RTLDRELF_NAME(RelocateSectionExecDyn)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr,
PFNRTLDRIMPORT pfnGetImport, void *pvUser,
const Elf_Addr SecAddr, Elf_Size cbSec,
const uint8_t *pu8SecBaseR, uint8_t *pu8SecBaseW,
const void *pvRelocs, Elf_Size cbRelocs)
{
#if ELF_MODE != 32
NOREF(pu8SecBaseR);
#endif
/*
* Iterate the relocations.
* The relocations are stored in an array of Elf32_Rel records and covers the entire relocation section.
*/
const Elf_Addr offDelta = BaseAddr - pModElf->LinkAddress;
const Elf_Reloc *paRels = (const Elf_Reloc *)pvRelocs;
const unsigned iRelMax = (unsigned)(cbRelocs / sizeof(paRels[0]));
AssertMsgReturn(iRelMax == cbRelocs / sizeof(paRels[0]), (FMT_ELF_SIZE "\n", cbRelocs / sizeof(paRels[0])),
VERR_IMAGE_TOO_BIG);
for (unsigned iRel = 0; iRel < iRelMax; iRel++)
{
/*
* Skip R_XXX_NONE entries early to avoid confusion in the symbol
* getter code.
*/
#if ELF_MODE == 32
if (ELF_R_TYPE(paRels[iRel].r_info) == R_386_NONE)
continue;
#elif ELF_MODE == 64
if (ELF_R_TYPE(paRels[iRel].r_info) == R_X86_64_NONE)
continue;
#endif
/*
* Validate and find the symbol, resolve undefined ones.
*/
Elf_Size iSym = ELF_R_SYM(paRels[iRel].r_info);
if (iSym >= pModElf->cSyms)
{
AssertMsgFailed(("iSym=%d is an invalid symbol index!\n", iSym));
return VERR_LDRELF_INVALID_SYMBOL_INDEX;
}
const Elf_Sym *pSym = &pModElf->paSyms[iSym];
if (pSym->st_name >= pModElf->cbStr)
{
AssertMsgFailed(("iSym=%d st_name=%d str sh_size=%d\n", iSym, pSym->st_name, pModElf->cbStr));
return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET;
}
Elf_Addr SymValue = 0;
if (pSym->st_shndx == SHN_UNDEF)
{
/* Try to resolve the symbol. */
const char *pszName = ELF_STR(pModElf, pSym->st_name);
RTUINTPTR ExtValue;
int rc = pfnGetImport(&pModElf->Core, "", pszName, ~0, &ExtValue, pvUser);
AssertMsgRCReturn(rc, ("Failed to resolve '%s' rc=%Rrc\n", pszName, rc), rc);
SymValue = (Elf_Addr)ExtValue;
AssertMsgReturn((RTUINTPTR)SymValue == ExtValue, ("Symbol value overflowed! '%s'\n", pszName),
VERR_SYMBOL_VALUE_TOO_BIG);
Log2(("rtldrELF: #%-3d - UNDEF " FMT_ELF_ADDR " '%s'\n", iSym, SymValue, pszName));
}
else
{
AssertMsgReturn(pSym->st_shndx < pModElf->cSyms || pSym->st_shndx == SHN_ABS, ("%#x\n", pSym->st_shndx),
VERR_LDRELF_INVALID_RELOCATION_OFFSET);
#if ELF_MODE == 64
SymValue = pSym->st_value;
#endif
}
#if ELF_MODE == 64
/* Calc the value. */
Elf_Addr Value;
if (pSym->st_shndx < pModElf->cSyms)
Value = SymValue + offDelta;
else
Value = SymValue + paRels[iRel].r_addend;
#endif
/*
* Apply the fixup.
*/
AssertMsgReturn(paRels[iRel].r_offset < cbSec, (FMT_ELF_ADDR " " FMT_ELF_SIZE "\n", paRels[iRel].r_offset, cbSec), VERR_LDRELF_INVALID_RELOCATION_OFFSET);
#if ELF_MODE == 32
const Elf_Addr *pAddrR = (const Elf_Addr *)(pu8SecBaseR + paRels[iRel].r_offset); /* Where to read the addend. */
#endif
Elf_Addr *pAddrW = (Elf_Addr *)(pu8SecBaseW + paRels[iRel].r_offset); /* Where to write the fixup. */
switch (ELF_R_TYPE(paRels[iRel].r_info))
{
#if ELF_MODE == 32
/*
* Absolute addressing.
*/
case R_386_32:
{
Elf_Addr Value;
if (pSym->st_shndx < pModElf->Ehdr.e_shnum)
Value = *pAddrR + offDelta; /* Simplified. */
else if (pSym->st_shndx == SHN_ABS)
continue; /* Internal fixup, no need to apply it. */
else if (pSym->st_shndx == SHN_UNDEF)
Value = SymValue + *pAddrR;
else
AssertFailedReturn(VERR_LDR_GENERAL_FAILURE); /** @todo SHN_COMMON */
*(uint32_t *)pAddrW = Value;
Log4((FMT_ELF_ADDR": R_386_32 Value=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value));
break;
}
/*
* PC relative addressing.
*/
case R_386_PC32:
{
Elf_Addr Value;
if (pSym->st_shndx < pModElf->Ehdr.e_shnum)
continue; /* Internal fixup, no need to apply it. */
else if (pSym->st_shndx == SHN_ABS)
Value = *pAddrR + offDelta; /* Simplified. */
else if (pSym->st_shndx == SHN_UNDEF)
{
const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
Value = SymValue + *(uint32_t *)pAddrR - SourceAddr;
*(uint32_t *)pAddrW = Value;
}
else
AssertFailedReturn(VERR_LDR_GENERAL_FAILURE); /** @todo SHN_COMMON */
Log4((FMT_ELF_ADDR": R_386_PC32 Value=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value));
break;
}
#elif ELF_MODE == 64
/*
* Absolute addressing
*/
case R_X86_64_64:
{
*(uint64_t *)pAddrW = Value;
Log4((FMT_ELF_ADDR": R_X86_64_64 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
break;
}
/*
* Truncated 32-bit value (zero-extendedable to the 64-bit value).
*/
case R_X86_64_32:
{
*(uint32_t *)pAddrW = (uint32_t)Value;
Log4((FMT_ELF_ADDR": R_X86_64_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
AssertMsgReturn((Elf_Addr)*(uint32_t *)pAddrW == SymValue, ("Value=" FMT_ELF_ADDR "\n", SymValue),
VERR_SYMBOL_VALUE_TOO_BIG);
break;
}
/*
* Truncated 32-bit value (sign-extendedable to the 64-bit value).
*/
case R_X86_64_32S:
{
*(int32_t *)pAddrW = (int32_t)Value;
Log4((FMT_ELF_ADDR": R_X86_64_32S Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
break;
}
/*
* PC relative addressing.
*/
case R_X86_64_PC32:
{
const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
Value -= SourceAddr;
*(int32_t *)pAddrW = (int32_t)Value;
Log4((FMT_ELF_ADDR": R_X86_64_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SourceAddr, Value, SymValue));
AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
break;
}
#endif
default:
AssertMsgFailed(("Unknown relocation type: %d (iRel=%d iRelMax=%d)\n",
ELF_R_TYPE(paRels[iRel].r_info), iRel, iRelMax));
return VERR_LDRELF_RELOCATION_NOT_SUPPORTED;
}
}
return VINF_SUCCESS;
}
/*
*
* REL
* REL
* REL
* REL
* REL
*
*/
/**
* Get the symbol and symbol value.
*
* @returns iprt status code.
* @param pModElf The ELF loader module instance data.
* @param BaseAddr The base address which the module is being fixedup to.
* @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals).
* @param pvUser User argument to pass to the callback.
* @param iSym The symbol to get.
* @param ppSym Where to store the symbol pointer on success. (read only)
* @param pSymValue Where to store the symbol value on success.
*/
static int RTLDRELF_NAME(Symbol)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser,
Elf_Size iSym, const Elf_Sym **ppSym, Elf_Addr *pSymValue)
{
/*
* Validate and find the symbol.
*/
if (iSym >= pModElf->cSyms)
{
AssertMsgFailed(("iSym=%d is an invalid symbol index!\n", iSym));
return VERR_LDRELF_INVALID_SYMBOL_INDEX;
}
const Elf_Sym *pSym = &pModElf->paSyms[iSym];
*ppSym = pSym;
if (pSym->st_name >= pModElf->cbStr)
{
AssertMsgFailed(("iSym=%d st_name=%d str sh_size=%d\n", iSym, pSym->st_name, pModElf->cbStr));
return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET;
}
const char *pszName = ELF_STR(pModElf, pSym->st_name);
/*
* Determine the symbol value.
*
* Symbols needs different treatment depending on which section their are in.
* Undefined and absolute symbols goes into special non-existing sections.
*/
switch (pSym->st_shndx)
{
/*
* Undefined symbol, needs resolving.
*
* Since ELF has no generic concept of importing from specific module (the OS/2 ELF format
* has but that's a OS extension and only applies to programs and dlls), we'll have to ask
* the resolver callback to do a global search.
*/
case SHN_UNDEF:
{
/* Try to resolve the symbol. */
RTUINTPTR Value;
int rc = pfnGetImport(&pModElf->Core, "", pszName, ~0, &Value, pvUser);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Failed to resolve '%s' rc=%Rrc\n", pszName, rc));
return rc;
}
*pSymValue = (Elf_Addr)Value;
if ((RTUINTPTR)*pSymValue != Value)
{
AssertMsgFailed(("Symbol value overflowed! '%s'\n", pszName));
return VERR_SYMBOL_VALUE_TOO_BIG;
}
Log2(("rtldrELF: #%-3d - UNDEF " FMT_ELF_ADDR " '%s'\n", iSym, *pSymValue, pszName));
break;
}
/*
* Absolute symbols needs no fixing since they are, well, absolute.
*/
case SHN_ABS:
*pSymValue = pSym->st_value;
Log2(("rtldrELF: #%-3d - ABS " FMT_ELF_ADDR " '%s'\n", iSym, *pSymValue, pszName));
break;
/*
* All other symbols are addressed relative to their section and need to be fixed up.
*/
default:
if (pSym->st_shndx >= pModElf->Ehdr.e_shnum)
{
/* what about common symbols? */
AssertMsg(pSym->st_shndx < pModElf->Ehdr.e_shnum,
("iSym=%d st_shndx=%d e_shnum=%d pszName=%s\n", iSym, pSym->st_shndx, pModElf->Ehdr.e_shnum, pszName));
return VERR_BAD_EXE_FORMAT;
}
*pSymValue = pSym->st_value + pModElf->paShdrs[pSym->st_shndx].sh_addr + BaseAddr;
Log2(("rtldrELF: #%-3d - %5d " FMT_ELF_ADDR " '%s'\n", iSym, pSym->st_shndx, *pSymValue, pszName));
break;
}
return VINF_SUCCESS;
}
/**
* Applies the fixups for a sections.
*
* @returns iprt status code.
* @param pModElf The ELF loader module instance data.
* @param BaseAddr The base address which the module is being fixedup to.
* @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals).
* @param pvUser User argument to pass to the callback.
* @param SecAddr The section address. This is the address the relocations are relative to.
* @param cbSec The section size. The relocations must be inside this.
* @param pu8SecBaseR Where we read section bits from.
* @param pu8SecBaseW Where we write section bits to.
* @param pvRelocs Pointer to where we read the relocations from.
* @param cbRelocs Size of the relocations.
*/
static int RTLDRELF_NAME(RelocateSection)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser,
const Elf_Addr SecAddr, Elf_Size cbSec, const uint8_t *pu8SecBaseR, uint8_t *pu8SecBaseW,
const void *pvRelocs, Elf_Size cbRelocs)
{
#if ELF_MODE != 32
NOREF(pu8SecBaseR);
#endif
/*
* Iterate the relocations.
* The relocations are stored in an array of Elf32_Rel records and covers the entire relocation section.
*/
const Elf_Reloc *paRels = (const Elf_Reloc *)pvRelocs;
const unsigned iRelMax = (unsigned)(cbRelocs / sizeof(paRels[0]));
AssertMsgReturn(iRelMax == cbRelocs / sizeof(paRels[0]), (FMT_ELF_SIZE "\n", cbRelocs / sizeof(paRels[0])), VERR_IMAGE_TOO_BIG);
for (unsigned iRel = 0; iRel < iRelMax; iRel++)
{
/*
* Skip R_XXX_NONE entries early to avoid confusion in the symbol
* getter code.
*/
#if ELF_MODE == 32
if (ELF_R_TYPE(paRels[iRel].r_info) == R_386_NONE)
continue;
#elif ELF_MODE == 64
if (ELF_R_TYPE(paRels[iRel].r_info) == R_X86_64_NONE)
continue;
#endif
/*
* Get the symbol.
*/
const Elf_Sym *pSym = NULL; /* shut up gcc */
Elf_Addr SymValue = 0; /* shut up gcc-4 */
int rc = RTLDRELF_NAME(Symbol)(pModElf, BaseAddr, pfnGetImport, pvUser, ELF_R_SYM(paRels[iRel].r_info), &pSym, &SymValue);
if (RT_FAILURE(rc))
return rc;
Log3(("rtldrELF: " FMT_ELF_ADDR " %02x %06x - " FMT_ELF_ADDR " %3d %02x %s\n",
paRels[iRel].r_offset, ELF_R_TYPE(paRels[iRel].r_info), (unsigned)ELF_R_SYM(paRels[iRel].r_info),
SymValue, (unsigned)pSym->st_shndx, pSym->st_info, ELF_STR(pModElf, pSym->st_name)));
/*
* Apply the fixup.
*/
AssertMsgReturn(paRels[iRel].r_offset < cbSec, (FMT_ELF_ADDR " " FMT_ELF_SIZE "\n", paRels[iRel].r_offset, cbSec), VERR_LDRELF_INVALID_RELOCATION_OFFSET);
#if ELF_MODE == 32
const Elf_Addr *pAddrR = (const Elf_Addr *)(pu8SecBaseR + paRels[iRel].r_offset); /* Where to read the addend. */
#endif
Elf_Addr *pAddrW = (Elf_Addr *)(pu8SecBaseW + paRels[iRel].r_offset); /* Where to write the fixup. */
switch (ELF_R_TYPE(paRels[iRel].r_info))
{
#if ELF_MODE == 32
/*
* Absolute addressing.
*/
case R_386_32:
{
const Elf_Addr Value = SymValue + *pAddrR;
*(uint32_t *)pAddrW = Value;
Log4((FMT_ELF_ADDR": R_386_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
break;
}
/*
* PC relative addressing.
*/
case R_386_PC32:
{
const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
const Elf_Addr Value = SymValue + *(uint32_t *)pAddrR - SourceAddr;
*(uint32_t *)pAddrW = Value;
Log4((FMT_ELF_ADDR": R_386_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SourceAddr, Value, SymValue));
break;
}
/* ignore */
case R_386_NONE:
break;
#elif ELF_MODE == 64
/*
* Absolute addressing
*/
case R_X86_64_64:
{
const Elf_Addr Value = SymValue + paRels[iRel].r_addend;
*(uint64_t *)pAddrW = Value;
Log4((FMT_ELF_ADDR": R_X86_64_64 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
break;
}
/*
* Truncated 32-bit value (zero-extendedable to the 64-bit value).
*/
case R_X86_64_32:
{
const Elf_Addr Value = SymValue + paRels[iRel].r_addend;
*(uint32_t *)pAddrW = (uint32_t)Value;
Log4((FMT_ELF_ADDR": R_X86_64_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
AssertMsgReturn((Elf_Addr)*(uint32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG);
break;
}
/*
* Truncated 32-bit value (sign-extendedable to the 64-bit value).
*/
case R_X86_64_32S:
{
const Elf_Addr Value = SymValue + paRels[iRel].r_addend;
*(int32_t *)pAddrW = (int32_t)Value;
Log4((FMT_ELF_ADDR": R_X86_64_32S Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
break;
}
/*
* PC relative addressing.
*/
case R_X86_64_PC32:
{
const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
const Elf_Addr Value = SymValue + paRels[iRel].r_addend - SourceAddr;
*(int32_t *)pAddrW = (int32_t)Value;
Log4((FMT_ELF_ADDR": R_X86_64_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
SourceAddr, Value, SymValue));
AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
break;
}
/* ignore */
case R_X86_64_NONE:
break;
#endif
default:
AssertMsgFailed(("Unknown relocation type: %d (iRel=%d iRelMax=%d)\n",
ELF_R_TYPE(paRels[iRel].r_info), iRel, iRelMax));
return VERR_LDRELF_RELOCATION_NOT_SUPPORTED;
}
}
return VINF_SUCCESS;
}
/** @copydoc RTLDROPS::pfnClose */
static DECLCALLBACK(int) RTLDRELF_NAME(Close)(PRTLDRMODINTERNAL pMod)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
if (pModElf->paShdrs)
{
RTMemFree(pModElf->paShdrs);
pModElf->paShdrs = NULL;
}
pModElf->pvBits = NULL;
return VINF_SUCCESS;
}
/** @copydoc RTLDROPS::Done */
static DECLCALLBACK(int) RTLDRELF_NAME(Done)(PRTLDRMODINTERNAL pMod)
{
NOREF(pMod); /*PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;*/
/** @todo Have to think more about this .... */
return -1;
}
/** @copydoc RTLDROPS::EnumSymbols */
static DECLCALLBACK(int) RTLDRELF_NAME(EnumSymbols)(PRTLDRMODINTERNAL pMod, unsigned fFlags, const void *pvBits, RTUINTPTR BaseAddress,
PFNRTLDRENUMSYMS pfnCallback, void *pvUser)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
NOREF(pvBits);
/*
* Validate the input.
*/
Elf_Addr BaseAddr = (Elf_Addr)BaseAddress;
AssertMsgReturn((RTUINTPTR)BaseAddr == BaseAddress, ("#RTptr", BaseAddress), VERR_IMAGE_BASE_TOO_HIGH);
/*
* Make sure we've got the string and symbol tables. (We don't need the pvBits.)
*/
int rc = RTLDRELF_NAME(MapBits)(pModElf, false);
if (RT_FAILURE(rc))
return rc;
/*
* Enumerate the symbol table.
*/
const Elf_Sym *paSyms = pModElf->paSyms;
unsigned cSyms = pModElf->cSyms;
for (unsigned iSym = 1; iSym < cSyms; iSym++)
{
/*
* Skip imports (undefined).
*/
if (paSyms[iSym].st_shndx != SHN_UNDEF)
{
/*
* Calc value and get name.
*/
Elf_Addr Value;
if (paSyms[iSym].st_shndx == SHN_ABS)
/* absolute symbols are not subject to any relocation. */
Value = paSyms[iSym].st_value;
else if (paSyms[iSym].st_shndx < pModElf->Ehdr.e_shnum)
{
if (pModElf->Ehdr.e_type == ET_REL)
/* relative to the section. */
Value = BaseAddr + paSyms[iSym].st_value + pModElf->paShdrs[paSyms[iSym].st_shndx].sh_addr;
else /* Fixed up for link address. */
Value = BaseAddr + paSyms[iSym].st_value - pModElf->LinkAddress;
}
else
{
AssertMsgFailed(("Arg! paSyms[%u].st_shndx=" FMT_ELF_HALF "\n", iSym, paSyms[iSym].st_shndx));
return VERR_BAD_EXE_FORMAT;
}
const char *pszName = ELF_STR(pModElf, paSyms[iSym].st_name);
if ( (pszName && *pszName)
&& ( (fFlags & RTLDR_ENUM_SYMBOL_FLAGS_ALL)
|| ELF_ST_BIND(paSyms[iSym].st_info) == STB_GLOBAL)
)
{
/*
* Call back.
*/
AssertMsgReturn(Value == (RTUINTPTR)Value, (FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG);
rc = pfnCallback(pMod, pszName, ~0, (RTUINTPTR)Value, pvUser);
if (rc)
return rc;
}
}
}
return VINF_SUCCESS;
}
/** @copydoc RTLDROPS::GetImageSize */
static DECLCALLBACK(size_t) RTLDRELF_NAME(GetImageSize)(PRTLDRMODINTERNAL pMod)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
return pModElf->cbImage;
}
/** @copydoc RTLDROPS::GetBits */
static DECLCALLBACK(int) RTLDRELF_NAME(GetBits)(PRTLDRMODINTERNAL pMod, void *pvBits, RTUINTPTR BaseAddress, PFNRTLDRIMPORT pfnGetImport, void *pvUser)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
/*
* This operation is currently only available on relocatable images.
*/
switch (pModElf->Ehdr.e_type)
{
case ET_REL:
break;
case ET_EXEC:
Log(("RTLdrELF: %s: Executable images are not supported yet!\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader)));
return VERR_LDRELF_EXEC;
case ET_DYN:
Log(("RTLdrELF: %s: Dynamic images are not supported yet!\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader)));
return VERR_LDRELF_DYN;
default: AssertFailedReturn(VERR_BAD_EXE_FORMAT);
}
/*
* Load the bits into pvBits.
*/
const Elf_Shdr *paShdrs = pModElf->paShdrs;
for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
{
if (paShdrs[iShdr].sh_flags & SHF_ALLOC)
{
AssertMsgReturn((size_t)paShdrs[iShdr].sh_size == (size_t)paShdrs[iShdr].sh_size, (FMT_ELF_SIZE "\n", paShdrs[iShdr].sh_size), VERR_IMAGE_TOO_BIG);
switch (paShdrs[iShdr].sh_type)
{
case SHT_NOBITS:
memset((uint8_t *)pvBits + paShdrs[iShdr].sh_addr, 0, (size_t)paShdrs[iShdr].sh_size);
break;
case SHT_PROGBITS:
default:
{
int rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, (uint8_t *)pvBits + paShdrs[iShdr].sh_addr,
(size_t)paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_offset);
if (RT_FAILURE(rc))
{
Log(("RTLdrELF: %s: Read error when reading " FMT_ELF_SIZE " bytes at " FMT_ELF_OFF ", iShdr=%d\n",
pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader),
paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_offset, iShdr));
return rc;
}
}
}
}
}
/*
* Relocate the image.
*/
return pModElf->Core.pOps->pfnRelocate(pMod, pvBits, BaseAddress, ~(RTUINTPTR)0, pfnGetImport, pvUser);
}
/** @copydoc RTLDROPS::Relocate */
static DECLCALLBACK(int) RTLDRELF_NAME(Relocate)(PRTLDRMODINTERNAL pMod, void *pvBits, RTUINTPTR NewBaseAddress,
RTUINTPTR OldBaseAddress, PFNRTLDRIMPORT pfnGetImport, void *pvUser)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
#ifdef LOG_ENABLED
const char *pszLogName = pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader);
#endif
NOREF(OldBaseAddress);
/*
* This operation is currently only available on relocatable images.
*/
switch (pModElf->Ehdr.e_type)
{
case ET_REL:
break;
case ET_EXEC:
Log(("RTLdrELF: %s: Executable images are not supported yet!\n", pszLogName));
return VERR_LDRELF_EXEC;
case ET_DYN:
Log(("RTLdrELF: %s: Dynamic images are not supported yet!\n", pszLogName));
return VERR_LDRELF_DYN;
default: AssertFailedReturn(VERR_BAD_EXE_FORMAT);
}
/*
* Validate the input.
*/
Elf_Addr BaseAddr = (Elf_Addr)NewBaseAddress;
AssertMsgReturn((RTUINTPTR)BaseAddr == NewBaseAddress, ("#RTptr", NewBaseAddress), VERR_IMAGE_BASE_TOO_HIGH);
/*
* Map the image bits if not already done and setup pointer into it.
*/
int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
if (RT_FAILURE(rc))
return rc;
/*
* Iterate the sections looking for interesting SHT_REL[A] sections.
* SHT_REL[A] sections have the section index of the section they contain fixups
* for in the sh_info member.
*/
const Elf_Shdr *paShdrs = pModElf->paShdrs;
Log2(("rtLdrElf: %s: Fixing up image\n", pszLogName));
for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
{
const Elf_Shdr *pShdrRel = &paShdrs[iShdr];
/*
* Skip sections without interest to us.
*/
#if ELF_MODE == 32
if (pShdrRel->sh_type != SHT_REL)
#else
if (pShdrRel->sh_type != SHT_RELA)
#endif
continue;
if (pShdrRel->sh_info >= pModElf->Ehdr.e_shnum)
continue;
const Elf_Shdr *pShdr = &paShdrs[pShdrRel->sh_info]; /* the section to fixup. */
if (!(pShdr->sh_flags & SHF_ALLOC))
continue;
/*
* Relocate the section.
*/
Log2(("rtldrELF: %s: Relocation records for #%d [%s] (sh_info=%d sh_link=%d) found in #%d [%s] (sh_info=%d sh_link=%d)\n",
pszLogName, (int)pShdrRel->sh_info, ELF_SH_STR(pModElf, pShdr->sh_name), (int)pShdr->sh_info, (int)pShdr->sh_link,
iShdr, ELF_SH_STR(pModElf, pShdrRel->sh_name), (int)pShdrRel->sh_info, (int)pShdrRel->sh_link));
/** @todo Make RelocateSection a function pointer so we can select the one corresponding to the machine when opening the image. */
if (pModElf->Ehdr.e_type == ET_REL)
rc = RTLDRELF_NAME(RelocateSection)(pModElf, BaseAddr, pfnGetImport, pvUser,
pShdr->sh_addr,
pShdr->sh_size,
(const uint8_t *)pModElf->pvBits + pShdr->sh_offset,
(uint8_t *)pvBits + pShdr->sh_addr,
(const uint8_t *)pModElf->pvBits + pShdrRel->sh_offset,
pShdrRel->sh_size);
else
rc = RTLDRELF_NAME(RelocateSectionExecDyn)(pModElf, BaseAddr, pfnGetImport, pvUser,
pShdr->sh_addr,
pShdr->sh_size,
(const uint8_t *)pModElf->pvBits + pShdr->sh_offset,
(uint8_t *)pvBits + pShdr->sh_addr,
(const uint8_t *)pModElf->pvBits + pShdrRel->sh_offset,
pShdrRel->sh_size);
if (RT_FAILURE(rc))
return rc;
}
return VINF_SUCCESS;
}
/**
* Worker for pfnGetSymbolEx.
*/
static int RTLDRELF_NAME(ReturnSymbol)(PRTLDRMODELF pThis, const Elf_Sym *pSym, Elf_Addr uBaseAddr, PRTUINTPTR pValue)
{
Elf_Addr Value;
if (pSym->st_shndx == SHN_ABS)
/* absolute symbols are not subject to any relocation. */
Value = pSym->st_value;
else if (pSym->st_shndx < pThis->Ehdr.e_shnum)
{
if (pThis->Ehdr.e_type == ET_REL)
/* relative to the section. */
Value = uBaseAddr + pSym->st_value + pThis->paShdrs[pSym->st_shndx].sh_addr;
else /* Fixed up for link address. */
Value = uBaseAddr + pSym->st_value - pThis->LinkAddress;
}
else
{
AssertMsgFailed(("Arg! pSym->st_shndx=%d\n", pSym->st_shndx));
return VERR_BAD_EXE_FORMAT;
}
AssertMsgReturn(Value == (RTUINTPTR)Value, (FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG);
*pValue = (RTUINTPTR)Value;
return VINF_SUCCESS;
}
/** @copydoc RTLDROPS::pfnGetSymbolEx */
static DECLCALLBACK(int) RTLDRELF_NAME(GetSymbolEx)(PRTLDRMODINTERNAL pMod, const void *pvBits, RTUINTPTR BaseAddress,
uint32_t iOrdinal, const char *pszSymbol, RTUINTPTR *pValue)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
NOREF(pvBits);
/*
* Validate the input.
*/
Elf_Addr uBaseAddr = (Elf_Addr)BaseAddress;
AssertMsgReturn((RTUINTPTR)uBaseAddr == BaseAddress, ("#RTptr", BaseAddress), VERR_IMAGE_BASE_TOO_HIGH);
/*
* Map the image bits if not already done and setup pointer into it.
*/
int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
if (RT_FAILURE(rc))
return rc;
/*
* Calc all kinds of pointers before we start iterating the symbol table.
*/
const Elf_Sym *paSyms = pModElf->paSyms;
unsigned cSyms = pModElf->cSyms;
if (iOrdinal == UINT32_MAX)
{
const char *pStr = pModElf->pStr;
for (unsigned iSym = 1; iSym < cSyms; iSym++)
{
/* Undefined symbols are not exports, they are imports. */
if ( paSyms[iSym].st_shndx != SHN_UNDEF
&& ( ELF_ST_BIND(paSyms[iSym].st_info) == STB_GLOBAL
|| ELF_ST_BIND(paSyms[iSym].st_info) == STB_WEAK))
{
/* Validate the name string and try match with it. */
if (paSyms[iSym].st_name < pModElf->cbStr)
{
if (!strcmp(pszSymbol, pStr + paSyms[iSym].st_name))
{
/* matched! */
return RTLDRELF_NAME(ReturnSymbol)(pModElf, &paSyms[iSym], uBaseAddr, pValue);
}
}
else
{
AssertMsgFailed(("String outside string table! iSym=%d paSyms[iSym].st_name=%#x\n", iSym, paSyms[iSym].st_name));
return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET;
}
}
}
}
else if (iOrdinal < cSyms)
{
if ( paSyms[iOrdinal].st_shndx != SHN_UNDEF
&& ( ELF_ST_BIND(paSyms[iOrdinal].st_info) == STB_GLOBAL
|| ELF_ST_BIND(paSyms[iOrdinal].st_info) == STB_WEAK))
return RTLDRELF_NAME(ReturnSymbol)(pModElf, &paSyms[iOrdinal], uBaseAddr, pValue);
}
return VERR_SYMBOL_NOT_FOUND;
}
/** @copydoc RTLDROPS::pfnEnumDbgInfo */
static DECLCALLBACK(int) RTLDRELF_NAME(EnumDbgInfo)(PRTLDRMODINTERNAL pMod, const void *pvBits,
PFNRTLDRENUMDBG pfnCallback, void *pvUser)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
/*
* Map the image bits if not already done and setup pointer into it.
*/
int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
if (RT_FAILURE(rc))
return rc;
/*
* Do the enumeration.
*/
const Elf_Shdr *paShdrs = pModElf->paOrgShdrs;
for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
{
/* Debug sections are expected to be PROGBITS and not allocated. */
if (paShdrs[iShdr].sh_type != SHT_PROGBITS)
continue;
if (paShdrs[iShdr].sh_flags & SHF_ALLOC)
continue;
RTLDRDBGINFO DbgInfo;
const char *pszSectName = ELF_SH_STR(pModElf, paShdrs[iShdr].sh_name);
if ( !strncmp(pszSectName, RT_STR_TUPLE(".debug_"))
|| !strcmp(pszSectName, ".WATCOM_references") )
{
RT_ZERO(DbgInfo.u);
DbgInfo.enmType = RTLDRDBGINFOTYPE_DWARF;
DbgInfo.pszExtFile = NULL;
DbgInfo.offFile = paShdrs[iShdr].sh_offset;
DbgInfo.cb = paShdrs[iShdr].sh_size;
DbgInfo.u.Dwarf.pszSection = pszSectName;
}
else if (!strcmp(pszSectName, ".gnu_debuglink"))
{
if ((paShdrs[iShdr].sh_size & 3) || paShdrs[iShdr].sh_size < 8)
return VERR_BAD_EXE_FORMAT;
RT_ZERO(DbgInfo.u);
DbgInfo.enmType = RTLDRDBGINFOTYPE_DWARF_DWO;
DbgInfo.pszExtFile = (const char *)((uintptr_t)pModElf->pvBits + (uintptr_t)paShdrs[iShdr].sh_offset);
if (!RTStrEnd(DbgInfo.pszExtFile, paShdrs[iShdr].sh_size))
return VERR_BAD_EXE_FORMAT;
DbgInfo.u.Dwo.uCrc32 = *(uint32_t *)((uintptr_t)DbgInfo.pszExtFile + (uintptr_t)paShdrs[iShdr].sh_size
- sizeof(uint32_t));
DbgInfo.offFile = -1;
DbgInfo.cb = 0;
}
else
continue;
DbgInfo.LinkAddress = NIL_RTLDRADDR;
DbgInfo.iDbgInfo = iShdr - 1;
rc = pfnCallback(pMod, &DbgInfo, pvUser);
if (rc != VINF_SUCCESS)
return rc;
}
return VINF_SUCCESS;
}
/**
* Helper that locates the first allocated section.
*
* @returns Pointer to the section header if found, NULL if none.
* @param pShdr The section header to start searching at.
* @param cLeft The number of section headers left to search. Can be 0.
*/
static const Elf_Shdr *RTLDRELF_NAME(GetFirstAllocatedSection)(const Elf_Shdr *pShdr, unsigned cLeft)
{
while (cLeft-- > 0)
{
if (pShdr->sh_flags & SHF_ALLOC)
return pShdr;
pShdr++;
}
return NULL;
}
/** @copydoc RTLDROPS::pfnEnumSegments. */
static DECLCALLBACK(int) RTLDRELF_NAME(EnumSegments)(PRTLDRMODINTERNAL pMod, PFNRTLDRENUMSEGS pfnCallback, void *pvUser)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
/*
* Map the image bits if not already done and setup pointer into it.
*/
int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
if (RT_FAILURE(rc))
return rc;
/*
* Do the enumeration.
*/
char szName[32];
Elf_Addr uPrevMappedRva = 0;
const Elf_Shdr *paShdrs = pModElf->paShdrs;
const Elf_Shdr *paOrgShdrs = pModElf->paOrgShdrs;
for (unsigned iShdr = 1; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
{
RTLDRSEG Seg;
Seg.pszName = ELF_SH_STR(pModElf, paShdrs[iShdr].sh_name);
Seg.cchName = (uint32_t)strlen(Seg.pszName);
if (Seg.cchName == 0)
{
Seg.pszName = szName;
Seg.cchName = (uint32_t)RTStrPrintf(szName, sizeof(szName), "UnamedSect%02u", iShdr);
}
Seg.SelFlat = 0;
Seg.Sel16bit = 0;
Seg.fFlags = 0;
Seg.fProt = RTMEM_PROT_READ;
if (paShdrs[iShdr].sh_flags & SHF_WRITE)
Seg.fProt |= RTMEM_PROT_WRITE;
if (paShdrs[iShdr].sh_flags & SHF_EXECINSTR)
Seg.fProt |= RTMEM_PROT_EXEC;
Seg.cb = paShdrs[iShdr].sh_size;
Seg.Alignment = paShdrs[iShdr].sh_addralign;
if (paShdrs[iShdr].sh_flags & SHF_ALLOC)
{
Seg.LinkAddress = paOrgShdrs[iShdr].sh_addr;
Seg.RVA = paShdrs[iShdr].sh_addr;
const Elf_Shdr *pShdr2 = RTLDRELF_NAME(GetFirstAllocatedSection)(&paShdrs[iShdr + 1],
pModElf->Ehdr.e_shnum - iShdr - 1);
if ( pShdr2
&& pShdr2->sh_addr >= paShdrs[iShdr].sh_addr
&& Seg.RVA >= uPrevMappedRva)
Seg.cbMapped = pShdr2->sh_addr - paShdrs[iShdr].sh_addr;
else
Seg.cbMapped = RT_MAX(paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_addralign);
uPrevMappedRva = Seg.RVA;
}
else
{
Seg.LinkAddress = NIL_RTLDRADDR;
Seg.RVA = NIL_RTLDRADDR;
Seg.cbMapped = NIL_RTLDRADDR;
}
if (paShdrs[iShdr].sh_type != SHT_NOBITS)
{
Seg.offFile = paShdrs[iShdr].sh_offset;
Seg.cbFile = paShdrs[iShdr].sh_size;
}
else
{
Seg.offFile = -1;
Seg.cbFile = 0;
}
rc = pfnCallback(pMod, &Seg, pvUser);
if (rc != VINF_SUCCESS)
return rc;
}
return VINF_SUCCESS;
}
/** @copydoc RTLDROPS::pfnLinkAddressToSegOffset. */
static DECLCALLBACK(int) RTLDRELF_NAME(LinkAddressToSegOffset)(PRTLDRMODINTERNAL pMod, RTLDRADDR LinkAddress,
uint32_t *piSeg, PRTLDRADDR poffSeg)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
const Elf_Shdr *pShdrEnd = NULL;
unsigned cLeft = pModElf->Ehdr.e_shnum - 1;
const Elf_Shdr *pShdr = &pModElf->paOrgShdrs[cLeft];
while (cLeft-- > 0)
{
if (pShdr->sh_flags & SHF_ALLOC)
{
RTLDRADDR offSeg = LinkAddress - pShdr->sh_addr;
if (offSeg < pShdr->sh_size)
{
*poffSeg = offSeg;
*piSeg = cLeft;
return VINF_SUCCESS;
}
if (offSeg == pShdr->sh_size)
pShdrEnd = pShdr;
}
pShdr--;
}
if (pShdrEnd)
{
*poffSeg = pShdrEnd->sh_size;
*piSeg = pShdrEnd - pModElf->paOrgShdrs - 1;
return VINF_SUCCESS;
}
return VERR_LDR_INVALID_LINK_ADDRESS;
}
/** @copydoc RTLDROPS::pfnLinkAddressToRva. */
static DECLCALLBACK(int) RTLDRELF_NAME(LinkAddressToRva)(PRTLDRMODINTERNAL pMod, RTLDRADDR LinkAddress, PRTLDRADDR pRva)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
uint32_t iSeg;
RTLDRADDR offSeg;
int rc = RTLDRELF_NAME(LinkAddressToSegOffset)(pMod, LinkAddress, &iSeg, &offSeg);
if (RT_SUCCESS(rc))
*pRva = pModElf->paShdrs[iSeg + 1].sh_addr + offSeg;
return rc;
}
/** @copydoc RTLDROPS::pfnSegOffsetToRva. */
static DECLCALLBACK(int) RTLDRELF_NAME(SegOffsetToRva)(PRTLDRMODINTERNAL pMod, uint32_t iSeg, RTLDRADDR offSeg,
PRTLDRADDR pRva)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
if (iSeg >= pModElf->Ehdr.e_shnum - 1U)
return VERR_LDR_INVALID_SEG_OFFSET;
iSeg++; /* skip section 0 */
if (offSeg > pModElf->paShdrs[iSeg].sh_size)
{
const Elf_Shdr *pShdr2 = RTLDRELF_NAME(GetFirstAllocatedSection)(&pModElf->paShdrs[iSeg + 1],
pModElf->Ehdr.e_shnum - iSeg - 1);
if ( !pShdr2
|| offSeg > (pShdr2->sh_addr - pModElf->paShdrs[iSeg].sh_addr))
return VERR_LDR_INVALID_SEG_OFFSET;
}
if (!(pModElf->paShdrs[iSeg].sh_flags & SHF_ALLOC))
return VERR_LDR_INVALID_SEG_OFFSET;
*pRva = pModElf->paShdrs[iSeg].sh_addr;
return VINF_SUCCESS;
}
/** @copydoc RTLDROPS::pfnRvaToSegOffset. */
static DECLCALLBACK(int) RTLDRELF_NAME(RvaToSegOffset)(PRTLDRMODINTERNAL pMod, RTLDRADDR Rva,
uint32_t *piSeg, PRTLDRADDR poffSeg)
{
PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
Elf_Addr PrevAddr = 0;
unsigned cLeft = pModElf->Ehdr.e_shnum - 1;
const Elf_Shdr *pShdr = &pModElf->paShdrs[cLeft];
while (cLeft-- > 0)
{
if (pShdr->sh_flags & SHF_ALLOC)
{
Elf_Addr cbSeg = PrevAddr ? PrevAddr - pShdr->sh_addr : pShdr->sh_size;
RTLDRADDR offSeg = Rva - pShdr->sh_addr;
if (offSeg <= cbSeg)
{
*poffSeg = offSeg;
*piSeg = cLeft;
return VINF_SUCCESS;
}
PrevAddr = pShdr->sh_addr;
}
pShdr--;
}
return VERR_LDR_INVALID_RVA;
}
/** @callback_method_impl{FNRTLDRIMPORT, Stub used by ReadDbgInfo.} */
static DECLCALLBACK(int) RTLDRELF_NAME(GetImportStubCallback)(RTLDRMOD hLdrMod, const char *pszModule, const char *pszSymbol,
unsigned uSymbol, PRTLDRADDR pValue, void *pvUser)
{
return VERR_SYMBOL_NOT_FOUND;
}
/** @copydoc RTLDROPS::pfnRvaToSegOffset. */
static DECLCALLBACK(int) RTLDRELF_NAME(ReadDbgInfo)(PRTLDRMODINTERNAL pMod, uint32_t iDbgInfo, RTFOFF off,
size_t cb, void *pvBuf)
{
PRTLDRMODELF pThis = (PRTLDRMODELF)pMod;
LogFlow(("%s: iDbgInfo=%#x off=%RTfoff cb=%#zu\n", __FUNCTION__, iDbgInfo, off, cb));
/*
* Input validation.
*/
AssertReturn(iDbgInfo < pThis->Ehdr.e_shnum && iDbgInfo + 1 < pThis->Ehdr.e_shnum, VERR_INVALID_PARAMETER);
iDbgInfo++;
AssertReturn(!(pThis->paShdrs[iDbgInfo].sh_flags & SHF_ALLOC), VERR_INVALID_PARAMETER);
AssertReturn(pThis->paShdrs[iDbgInfo].sh_type == SHT_PROGBITS, VERR_INVALID_PARAMETER);
AssertReturn(pThis->paShdrs[iDbgInfo].sh_offset == (uint64_t)off, VERR_INVALID_PARAMETER);
AssertReturn(pThis->paShdrs[iDbgInfo].sh_size == cb, VERR_INVALID_PARAMETER);
RTFOFF cbRawImage = pThis->Core.pReader->pfnSize(pThis->Core.pReader);
AssertReturn(cbRawImage >= 0, VERR_INVALID_PARAMETER);
AssertReturn(off >= 0 && cb <= (uint64_t)cbRawImage && (uint64_t)off + cb <= (uint64_t)cbRawImage, VERR_INVALID_PARAMETER);
/*
* Read it from the file and look for fixup sections.
*/
int rc;
if (pThis->pvBits)
memcpy(pvBuf, (const uint8_t *)pThis->pvBits + (size_t)off, cb);
else
{
rc = pThis->Core.pReader->pfnRead(pThis->Core.pReader, pvBuf, cb, off);
if (RT_FAILURE(rc))
return rc;
}
uint32_t iRelocs = iDbgInfo + 1;
if ( iRelocs >= pThis->Ehdr.e_shnum
|| pThis->paShdrs[iRelocs].sh_info != iDbgInfo
|| ( pThis->paShdrs[iRelocs].sh_type != SHT_REL
&& pThis->paShdrs[iRelocs].sh_type != SHT_RELA) )
{
iRelocs = 0;
while ( iRelocs < pThis->Ehdr.e_shnum
&& ( pThis->paShdrs[iRelocs].sh_info != iDbgInfo
|| ( pThis->paShdrs[iRelocs].sh_type != SHT_REL
&& pThis->paShdrs[iRelocs].sh_type != SHT_RELA)) )
iRelocs++;
}
if ( iRelocs < pThis->Ehdr.e_shnum
&& pThis->paShdrs[iRelocs].sh_size > 0)
{
/*
* Load the relocations.
*/
uint8_t *pbRelocsBuf = NULL;
const uint8_t *pbRelocs;
if (pThis->pvBits)
pbRelocs = (const uint8_t *)pThis->pvBits + pThis->paShdrs[iRelocs].sh_offset;
else
{
pbRelocs = pbRelocsBuf = (uint8_t *)RTMemTmpAlloc(pThis->paShdrs[iRelocs].sh_size);
if (!pbRelocsBuf)
return VERR_NO_TMP_MEMORY;
rc = pThis->Core.pReader->pfnRead(pThis->Core.pReader, pbRelocsBuf,
pThis->paShdrs[iRelocs].sh_size,
pThis->paShdrs[iRelocs].sh_offset);
if (RT_FAILURE(rc))
{
RTMemTmpFree(pbRelocsBuf);
return rc;
}
}
/*
* Apply the relocations.
*/
if (pThis->Ehdr.e_type == ET_REL)
rc = RTLDRELF_NAME(RelocateSection)(pThis, pThis->LinkAddress,
RTLDRELF_NAME(GetImportStubCallback), NULL /*pvUser*/,
pThis->paShdrs[iDbgInfo].sh_addr,
pThis->paShdrs[iDbgInfo].sh_size,
(const uint8_t *)pvBuf,
(uint8_t *)pvBuf,
pbRelocs,
pThis->paShdrs[iRelocs].sh_size);
else
rc = RTLDRELF_NAME(RelocateSectionExecDyn)(pThis, pThis->LinkAddress,
RTLDRELF_NAME(GetImportStubCallback), NULL /*pvUser*/,
pThis->paShdrs[iDbgInfo].sh_addr,
pThis->paShdrs[iDbgInfo].sh_size,
(const uint8_t *)pvBuf,
(uint8_t *)pvBuf,
pbRelocs,
pThis->paShdrs[iRelocs].sh_size);
RTMemTmpFree(pbRelocsBuf);
}
else
rc = VINF_SUCCESS;
return rc;
}
/**
* The ELF module operations.
*/
static RTLDROPS RTLDRELF_MID(s_rtldrElf,Ops) =
{
#if ELF_MODE == 32
"elf32",
#elif ELF_MODE == 64
"elf64",
#endif
RTLDRELF_NAME(Close),
NULL, /* Get Symbol */
RTLDRELF_NAME(Done),
RTLDRELF_NAME(EnumSymbols),
/* ext: */
RTLDRELF_NAME(GetImageSize),
RTLDRELF_NAME(GetBits),
RTLDRELF_NAME(Relocate),
RTLDRELF_NAME(GetSymbolEx),
NULL /*pfnQueryForwarderInfo*/,
RTLDRELF_NAME(EnumDbgInfo),
RTLDRELF_NAME(EnumSegments),
RTLDRELF_NAME(LinkAddressToSegOffset),
RTLDRELF_NAME(LinkAddressToRva),
RTLDRELF_NAME(SegOffsetToRva),
RTLDRELF_NAME(RvaToSegOffset),
RTLDRELF_NAME(ReadDbgInfo),
NULL /*pfnQueryProp*/,
NULL /*pfnVerifySignature*/,
NULL /*pfnHashImage*/,
42
};
/**
* Validates the ELF header.
*
* @returns iprt status code.
* @param pEhdr Pointer to the ELF header.
* @param pszLogName The log name.
* @param cbRawImage The size of the raw image.
*/
static int RTLDRELF_NAME(ValidateElfHeader)(const Elf_Ehdr *pEhdr, const char *pszLogName, uint64_t cbRawImage,
PRTLDRARCH penmArch)
{
Log3(("RTLdrELF: e_ident: %.*Rhxs\n"
"RTLdrELF: e_type: " FMT_ELF_HALF "\n"
"RTLdrELF: e_version: " FMT_ELF_HALF "\n"
"RTLdrELF: e_entry: " FMT_ELF_ADDR "\n"
"RTLdrELF: e_phoff: " FMT_ELF_OFF "\n"
"RTLdrELF: e_shoff: " FMT_ELF_OFF "\n"
"RTLdrELF: e_flags: " FMT_ELF_WORD "\n"
"RTLdrELF: e_ehsize: " FMT_ELF_HALF "\n"
"RTLdrELF: e_phentsize: " FMT_ELF_HALF "\n"
"RTLdrELF: e_phnum: " FMT_ELF_HALF "\n"
"RTLdrELF: e_shentsize: " FMT_ELF_HALF "\n"
"RTLdrELF: e_shnum: " FMT_ELF_HALF "\n"
"RTLdrELF: e_shstrndx: " FMT_ELF_HALF "\n",
RT_ELEMENTS(pEhdr->e_ident), &pEhdr->e_ident[0], pEhdr->e_type, pEhdr->e_version,
pEhdr->e_entry, pEhdr->e_phoff, pEhdr->e_shoff,pEhdr->e_flags, pEhdr->e_ehsize, pEhdr->e_phentsize,
pEhdr->e_phnum, pEhdr->e_shentsize, pEhdr->e_shnum, pEhdr->e_shstrndx));
if ( pEhdr->e_ident[EI_MAG0] != ELFMAG0
|| pEhdr->e_ident[EI_MAG1] != ELFMAG1
|| pEhdr->e_ident[EI_MAG2] != ELFMAG2
|| pEhdr->e_ident[EI_MAG3] != ELFMAG3
)
{
Log(("RTLdrELF: %s: Invalid ELF magic (%.*Rhxs)\n", pszLogName, sizeof(pEhdr->e_ident), pEhdr->e_ident)); NOREF(pszLogName);
return VERR_BAD_EXE_FORMAT;
}
if (pEhdr->e_ident[EI_CLASS] != RTLDRELF_SUFF(ELFCLASS))
{
Log(("RTLdrELF: %s: Invalid ELF class (%.*Rhxs)\n", pszLogName, sizeof(pEhdr->e_ident), pEhdr->e_ident));
return VERR_BAD_EXE_FORMAT;
}
if (pEhdr->e_ident[EI_DATA] != ELFDATA2LSB)
{
Log(("RTLdrELF: %s: ELF endian %x is unsupported\n", pEhdr->e_ident[EI_DATA]));
return VERR_LDRELF_ODD_ENDIAN;
}
if (pEhdr->e_version != EV_CURRENT)
{
Log(("RTLdrELF: %s: ELF version %x is unsupported\n", pEhdr->e_version));
return VERR_LDRELF_VERSION;
}
if (sizeof(Elf_Ehdr) != pEhdr->e_ehsize)
{
Log(("RTLdrELF: %s: Elf header e_ehsize is %d expected %d!\n",
pszLogName, pEhdr->e_ehsize, sizeof(Elf_Ehdr)));
return VERR_BAD_EXE_FORMAT;
}
if ( sizeof(Elf_Phdr) != pEhdr->e_phentsize
&& ( pEhdr->e_phnum != 0
|| pEhdr->e_type == ET_DYN))
{
Log(("RTLdrELF: %s: Elf header e_phentsize is %d expected %d!\n",
pszLogName, pEhdr->e_phentsize, sizeof(Elf_Phdr)));
return VERR_BAD_EXE_FORMAT;
}
if (sizeof(Elf_Shdr) != pEhdr->e_shentsize)
{
Log(("RTLdrELF: %s: Elf header e_shentsize is %d expected %d!\n",
pszLogName, pEhdr->e_shentsize, sizeof(Elf_Shdr)));
return VERR_BAD_EXE_FORMAT;
}
switch (pEhdr->e_type)
{
case ET_REL:
case ET_EXEC:
case ET_DYN:
break;
default:
Log(("RTLdrELF: %s: image type %#x is not supported!\n", pszLogName, pEhdr->e_type));
return VERR_BAD_EXE_FORMAT;
}
switch (pEhdr->e_machine)
{
#if ELF_MODE == 32
case EM_386:
case EM_486:
*penmArch = RTLDRARCH_X86_32;
break;
#elif ELF_MODE == 64
case EM_X86_64:
*penmArch = RTLDRARCH_AMD64;
break;
#endif
default:
Log(("RTLdrELF: %s: machine type %u is not supported!\n", pEhdr->e_machine));
return VERR_LDRELF_MACHINE;
}
if ( pEhdr->e_phoff < pEhdr->e_ehsize
&& !(pEhdr->e_phoff && pEhdr->e_phnum)
&& pEhdr->e_phnum)
{
Log(("RTLdrELF: %s: The program headers overlap with the ELF header! e_phoff=" FMT_ELF_OFF "\n",
pszLogName, pEhdr->e_phoff));
return VERR_BAD_EXE_FORMAT;
}
if ( pEhdr->e_phoff + pEhdr->e_phnum * pEhdr->e_phentsize > cbRawImage
|| pEhdr->e_phoff + pEhdr->e_phnum * pEhdr->e_phentsize < pEhdr->e_phoff)
{
Log(("RTLdrELF: %s: The program headers extends beyond the file! e_phoff=" FMT_ELF_OFF " e_phnum=" FMT_ELF_HALF "\n",
pszLogName, pEhdr->e_phoff, pEhdr->e_phnum));
return VERR_BAD_EXE_FORMAT;
}
if ( pEhdr->e_shoff < pEhdr->e_ehsize
&& !(pEhdr->e_shoff && pEhdr->e_shnum))
{
Log(("RTLdrELF: %s: The section headers overlap with the ELF header! e_shoff=" FMT_ELF_OFF "\n",
pszLogName, pEhdr->e_shoff));
return VERR_BAD_EXE_FORMAT;
}
if ( pEhdr->e_shoff + pEhdr->e_shnum * pEhdr->e_shentsize > cbRawImage
|| pEhdr->e_shoff + pEhdr->e_shnum * pEhdr->e_shentsize < pEhdr->e_shoff)
{
Log(("RTLdrELF: %s: The section headers extends beyond the file! e_shoff=" FMT_ELF_OFF " e_shnum=" FMT_ELF_HALF "\n",
pszLogName, pEhdr->e_shoff, pEhdr->e_shnum));
return VERR_BAD_EXE_FORMAT;
}
if (pEhdr->e_shstrndx == 0 || pEhdr->e_shstrndx > pEhdr->e_shnum)
{
Log(("RTLdrELF: %s: The section headers string table is out of bounds! e_shstrndx=" FMT_ELF_HALF " e_shnum=" FMT_ELF_HALF "\n",
pszLogName, pEhdr->e_shstrndx, pEhdr->e_shnum));
return VERR_BAD_EXE_FORMAT;
}
return VINF_SUCCESS;
}
/**
* Gets the section header name.
*
* @returns pszName.
* @param pEhdr The elf header.
* @param offName The offset of the section header name.
* @param pszName Where to store the name.
* @param cbName The size of the buffer pointed to by pszName.
*/
const char *RTLDRELF_NAME(GetSHdrName)(PRTLDRMODELF pModElf, Elf_Word offName, char *pszName, size_t cbName)
{
RTFOFF off = pModElf->paShdrs[pModElf->Ehdr.e_shstrndx].sh_offset + offName;
int rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, pszName, cbName - 1, off);
if (RT_FAILURE(rc))
{
/* read by for byte. */
for (unsigned i = 0; i < cbName; i++, off++)
{
rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, pszName + i, 1, off);
if (RT_FAILURE(rc))
{
pszName[i] = '\0';
break;
}
}
}
pszName[cbName - 1] = '\0';
return pszName;
}
/**
* Validates a section header.
*
* @returns iprt status code.
* @param pModElf Pointer to the module structure.
* @param iShdr The index of section header which should be validated.
* The section headers are found in the pModElf->paShdrs array.
* @param pszLogName The log name.
* @param cbRawImage The size of the raw image.
*/
static int RTLDRELF_NAME(ValidateSectionHeader)(PRTLDRMODELF pModElf, unsigned iShdr, const char *pszLogName, RTFOFF cbRawImage)
{
const Elf_Shdr *pShdr = &pModElf->paShdrs[iShdr];
char szSectionName[80]; NOREF(szSectionName);
Log3(("RTLdrELF: Section Header #%d:\n"
"RTLdrELF: sh_name: " FMT_ELF_WORD " - %s\n"
"RTLdrELF: sh_type: " FMT_ELF_WORD " (%s)\n"
"RTLdrELF: sh_flags: " FMT_ELF_XWORD "\n"
"RTLdrELF: sh_addr: " FMT_ELF_ADDR "\n"
"RTLdrELF: sh_offset: " FMT_ELF_OFF "\n"
"RTLdrELF: sh_size: " FMT_ELF_XWORD "\n"
"RTLdrELF: sh_link: " FMT_ELF_WORD "\n"
"RTLdrELF: sh_info: " FMT_ELF_WORD "\n"
"RTLdrELF: sh_addralign: " FMT_ELF_XWORD "\n"
"RTLdrELF: sh_entsize: " FMT_ELF_XWORD "\n",
iShdr,
pShdr->sh_name, RTLDRELF_NAME(GetSHdrName)(pModElf, pShdr->sh_name, szSectionName, sizeof(szSectionName)),
pShdr->sh_type, rtldrElfGetShdrType(pShdr->sh_type), pShdr->sh_flags, pShdr->sh_addr,
pShdr->sh_offset, pShdr->sh_size, pShdr->sh_link, pShdr->sh_info, pShdr->sh_addralign,
pShdr->sh_entsize));
if (iShdr == 0)
{
if ( pShdr->sh_name != 0
|| pShdr->sh_type != SHT_NULL
|| pShdr->sh_flags != 0
|| pShdr->sh_addr != 0
|| pShdr->sh_size != 0
|| pShdr->sh_offset != 0
|| pShdr->sh_link != SHN_UNDEF
|| pShdr->sh_addralign != 0
|| pShdr->sh_entsize != 0 )
{
Log(("RTLdrELF: %s: Bad #0 section: %.*Rhxs\n", pszLogName, sizeof(*pShdr), pShdr ));
return VERR_BAD_EXE_FORMAT;
}
return VINF_SUCCESS;
}
if (pShdr->sh_name >= pModElf->cbShStr)
{
Log(("RTLdrELF: %s: Shdr #%d: sh_name (%d) is beyond the end of the section header string table (%d)!\n",
pszLogName, iShdr, pShdr->sh_name, pModElf->cbShStr)); NOREF(pszLogName);
return VERR_BAD_EXE_FORMAT;
}
if (pShdr->sh_link >= pModElf->Ehdr.e_shnum)
{
Log(("RTLdrELF: %s: Shdr #%d: sh_link (%d) is beyond the end of the section table (%d)!\n",
pszLogName, iShdr, pShdr->sh_link, pModElf->Ehdr.e_shnum)); NOREF(pszLogName);
return VERR_BAD_EXE_FORMAT;
}
switch (pShdr->sh_type)
{
/** @todo find specs and check up which sh_info fields indicates section table entries */
case 12301230:
if (pShdr->sh_info >= pModElf->Ehdr.e_shnum)
{
Log(("RTLdrELF: %s: Shdr #%d: sh_info (%d) is beyond the end of the section table (%d)!\n",
pszLogName, iShdr, pShdr->sh_link, pModElf->Ehdr.e_shnum));
return VERR_BAD_EXE_FORMAT;
}
break;
case SHT_NULL:
break;
case SHT_PROGBITS:
case SHT_SYMTAB:
case SHT_STRTAB:
case SHT_RELA:
case SHT_HASH:
case SHT_DYNAMIC:
case SHT_NOTE:
case SHT_NOBITS:
case SHT_REL:
case SHT_SHLIB:
case SHT_DYNSYM:
/*
* For these types sh_info doesn't have any special meaning, or anything which
* we need/can validate now.
*/
break;
default:
Log(("RTLdrELF: %s: Warning, unknown type %d!\n", pszLogName, pShdr->sh_type));
break;
}
if ( pShdr->sh_type != SHT_NOBITS
&& pShdr->sh_size)
{
RTFOFF offEnd = pShdr->sh_offset + pShdr->sh_size;
if ( offEnd > cbRawImage
|| offEnd < (RTFOFF)pShdr->sh_offset)
{
Log(("RTLdrELF: %s: Shdr #%d: sh_offset (" FMT_ELF_OFF ") + sh_size (" FMT_ELF_XWORD " = %RTfoff) is beyond the end of the file (%RTfoff)!\n",
pszLogName, iShdr, pShdr->sh_offset, pShdr->sh_size, offEnd, cbRawImage));
return VERR_BAD_EXE_FORMAT;
}
if (pShdr->sh_offset < sizeof(Elf_Ehdr))
{
Log(("RTLdrELF: %s: Shdr #%d: sh_offset (" FMT_ELF_OFF ") + sh_size (" FMT_ELF_XWORD ") is starting in the ELF header!\n",
pszLogName, iShdr, pShdr->sh_offset, pShdr->sh_size, cbRawImage));
return VERR_BAD_EXE_FORMAT;
}
}
return VINF_SUCCESS;
}
/**
* Opens an ELF image, fixed bitness.
*
* @returns iprt status code.
* @param pReader The loader reader instance which will provide the raw image bits.
* @param fFlags Reserved, MBZ.
* @param enmArch Architecture specifier.
* @param phLdrMod Where to store the handle.
*/
static int RTLDRELF_NAME(Open)(PRTLDRREADER pReader, uint32_t fFlags, RTLDRARCH enmArch, PRTLDRMOD phLdrMod)
{
const char *pszLogName = pReader->pfnLogName(pReader);
RTFOFF cbRawImage = pReader->pfnSize(pReader);
/*
* Create the loader module instance.
*/
PRTLDRMODELF pModElf = (PRTLDRMODELF)RTMemAllocZ(sizeof(*pModElf));
if (!pModElf)
return VERR_NO_MEMORY;
pModElf->Core.u32Magic = RTLDRMOD_MAGIC;
pModElf->Core.eState = LDR_STATE_INVALID;
pModElf->Core.pReader = pReader;
pModElf->Core.enmFormat = RTLDRFMT_ELF;
pModElf->Core.enmType = RTLDRTYPE_OBJECT;
pModElf->Core.enmEndian = RTLDRENDIAN_LITTLE;
#if ELF_MODE == 32
pModElf->Core.enmArch = RTLDRARCH_X86_32;
#else
pModElf->Core.enmArch = RTLDRARCH_AMD64;
#endif
//pModElf->pvBits = NULL;
//pModElf->Ehdr = {0};
//pModElf->paShdrs = NULL;
//pModElf->paSyms = NULL;
pModElf->iSymSh = ~0U;
//pModElf->cSyms = 0;
pModElf->iStrSh = ~0U;
//pModElf->cbStr = 0;
//pModElf->cbImage = 0;
//pModElf->LinkAddress = 0;
//pModElf->pStr = NULL;
//pModElf->cbShStr = 0;
//pModElf->pShStr = NULL;
/*
* Read and validate the ELF header and match up the CPU architecture.
*/
int rc = pReader->pfnRead(pReader, &pModElf->Ehdr, sizeof(pModElf->Ehdr), 0);
if (RT_SUCCESS(rc))
{
RTLDRARCH enmArchImage = RTLDRARCH_INVALID; /* shut up gcc */
rc = RTLDRELF_NAME(ValidateElfHeader)(&pModElf->Ehdr, pszLogName, cbRawImage, &enmArchImage);
if (RT_SUCCESS(rc))
{
if ( enmArch != RTLDRARCH_WHATEVER
&& enmArch != enmArchImage)
rc = VERR_LDR_ARCH_MISMATCH;
}
}
if (RT_SUCCESS(rc))
{
/*
* Read the section headers, keeping a prestine copy for the module
* introspection methods.
*/
size_t const cbShdrs = pModElf->Ehdr.e_shnum * sizeof(Elf_Shdr);
Elf_Shdr *paShdrs = (Elf_Shdr *)RTMemAlloc(cbShdrs * 2);
if (paShdrs)
{
pModElf->paShdrs = paShdrs;
rc = pReader->pfnRead(pReader, paShdrs, cbShdrs, pModElf->Ehdr.e_shoff);
if (RT_SUCCESS(rc))
{
memcpy(&paShdrs[pModElf->Ehdr.e_shnum], paShdrs, cbShdrs);
pModElf->paOrgShdrs = &paShdrs[pModElf->Ehdr.e_shnum];
pModElf->cbShStr = paShdrs[pModElf->Ehdr.e_shstrndx].sh_size;
/*
* Validate the section headers and find relevant sections.
*/
Elf_Addr uNextAddr = 0;
for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++)
{
rc = RTLDRELF_NAME(ValidateSectionHeader)(pModElf, i, pszLogName, cbRawImage);
if (RT_FAILURE(rc))
break;
/* We're looking for symbol tables. */
if (paShdrs[i].sh_type == SHT_SYMTAB)
{
if (pModElf->iSymSh != ~0U)
{
Log(("RTLdrElf: %s: Multiple symbol tabs! iSymSh=%d i=%d\n", pszLogName, pModElf->iSymSh, i));
rc = VERR_LDRELF_MULTIPLE_SYMTABS;
break;
}
pModElf->iSymSh = i;
pModElf->cSyms = (unsigned)(paShdrs[i].sh_size / sizeof(Elf_Sym));
AssertReturn(pModElf->cSyms == paShdrs[i].sh_size / sizeof(Elf_Sym), VERR_IMAGE_TOO_BIG);
pModElf->iStrSh = paShdrs[i].sh_link;
pModElf->cbStr = (unsigned)paShdrs[pModElf->iStrSh].sh_size;
AssertReturn(pModElf->cbStr == paShdrs[pModElf->iStrSh].sh_size, VERR_IMAGE_TOO_BIG);
}
/* Special checks for the section string table. */
if (i == pModElf->Ehdr.e_shstrndx)
{
if (paShdrs[i].sh_type != SHT_STRTAB)
{
Log(("RTLdrElf: Section header string table is not a SHT_STRTAB: %#x\n", paShdrs[i].sh_type));
rc = VERR_BAD_EXE_FORMAT;
break;
}
if (paShdrs[i].sh_size == 0)
{
Log(("RTLdrElf: Section header string table is empty\n"));
rc = VERR_BAD_EXE_FORMAT;
break;
}
}
/* Kluge for the .data..percpu segment in 64-bit linux kernels. */
if (paShdrs[i].sh_flags & SHF_ALLOC)
{
if ( paShdrs[i].sh_addr == 0
&& paShdrs[i].sh_addr < uNextAddr)
{
Elf_Addr uAddr = RT_ALIGN_T(uNextAddr, paShdrs[i].sh_addralign, Elf_Addr);
Log(("RTLdrElf: Out of order section #%d; adjusting sh_addr from " FMT_ELF_ADDR " to " FMT_ELF_ADDR "\n",
paShdrs[i].sh_addr, uAddr));
paShdrs[i].sh_addr = uAddr;
}
uNextAddr = paShdrs[i].sh_addr + paShdrs[i].sh_size;
}
} /* for each section header */
/*
* Calculate the image base address if the image isn't relocatable.
*/
if (RT_SUCCESS(rc) && pModElf->Ehdr.e_type != ET_REL)
{
pModElf->LinkAddress = ~(Elf_Addr)0;
for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++)
if ( (paShdrs[i].sh_flags & SHF_ALLOC)
&& paShdrs[i].sh_addr < pModElf->LinkAddress)
pModElf->LinkAddress = paShdrs[i].sh_addr;
if (pModElf->LinkAddress == ~(Elf_Addr)0)
{
AssertFailed();
rc = VERR_LDR_GENERAL_FAILURE;
}
}
/*
* Perform allocations / RVA calculations, determine the image size.
*/
if (RT_SUCCESS(rc))
for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++)
if (paShdrs[i].sh_flags & SHF_ALLOC)
{
if (pModElf->Ehdr.e_type == ET_REL)
paShdrs[i].sh_addr = paShdrs[i].sh_addralign
? RT_ALIGN_T(pModElf->cbImage, paShdrs[i].sh_addralign, Elf_Addr)
: (Elf_Addr)pModElf->cbImage;
else
paShdrs[i].sh_addr -= pModElf->LinkAddress;
Elf_Addr EndAddr = paShdrs[i].sh_addr + paShdrs[i].sh_size;
if (pModElf->cbImage < EndAddr)
{
pModElf->cbImage = (size_t)EndAddr;
AssertMsgReturn(pModElf->cbImage == EndAddr, (FMT_ELF_ADDR "\n", EndAddr), VERR_IMAGE_TOO_BIG);
}
Log2(("RTLdrElf: %s: Assigned " FMT_ELF_ADDR " to section #%d\n", pszLogName, paShdrs[i].sh_addr, i));
}
Log2(("RTLdrElf: iSymSh=%u cSyms=%u iStrSh=%u cbStr=%u rc=%Rrc cbImage=%#zx LinkAddress=" FMT_ELF_ADDR "\n",
pModElf->iSymSh, pModElf->cSyms, pModElf->iStrSh, pModElf->cbStr, rc,
pModElf->cbImage, pModElf->LinkAddress));
if (RT_SUCCESS(rc))
{
pModElf->Core.pOps = &RTLDRELF_MID(s_rtldrElf,Ops);
pModElf->Core.eState = LDR_STATE_OPENED;
*phLdrMod = &pModElf->Core;
LogFlow(("%s: %s: returns VINF_SUCCESS *phLdrMod=%p\n", __FUNCTION__, pszLogName, *phLdrMod));
return VINF_SUCCESS;
}
}
RTMemFree(paShdrs);
}
else
rc = VERR_NO_MEMORY;
}
RTMemFree(pModElf);
LogFlow(("%s: returns %Rrc\n", __FUNCTION__, rc));
return rc;
}
/*******************************************************************************
* Cleanup Constants And Macros *
*******************************************************************************/
#undef RTLDRELF_NAME
#undef RTLDRELF_SUFF
#undef RTLDRELF_MID
#undef FMT_ELF_ADDR
#undef FMT_ELF_HALF
#undef FMT_ELF_SHALF
#undef FMT_ELF_OFF
#undef FMT_ELF_SIZE
#undef FMT_ELF_SWORD
#undef FMT_ELF_WORD
#undef FMT_ELF_XWORD
#undef FMT_ELF_SXWORD
#undef Elf_Ehdr
#undef Elf_Phdr
#undef Elf_Shdr
#undef Elf_Sym
#undef Elf_Rel
#undef Elf_Rela
#undef Elf_Reloc
#undef Elf_Nhdr
#undef Elf_Dyn
#undef Elf_Addr
#undef Elf_Half
#undef Elf_Off
#undef Elf_Size
#undef Elf_Sword
#undef Elf_Word
#undef RTLDRMODELF
#undef PRTLDRMODELF
#undef ELF_R_SYM
#undef ELF_R_TYPE
#undef ELF_R_INFO
#undef ELF_ST_BIND