/* $Id$ */
/** @file
* IPRT - ASN.1, UTC TIME and GENERALIZED TIME Types, Decoding.
*/
/*
* Copyright (C) 2006-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "internal/iprt.h"
#include <iprt/asn1.h>
#include <iprt/alloca.h>
#include <iprt/err.h>
#include <iprt/string.h>
#include <iprt/ctype.h>
#include <iprt/formats/asn1.h>
/**
* Common code for UTCTime and GeneralizedTime converters that normalizes the
* converted time and checks that the input values doesn't change.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pThis The time to normalize and check.
* @param pszType The type name.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_NormalizeTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszType, const char *pszErrorTag)
{
int rc;
if ( pThis->Time.u8Month > 0
&& pThis->Time.u8Month <= 12
&& pThis->Time.u8Hour < 24
&& pThis->Time.u8Minute < 60
&& pThis->Time.u8Second < 60) /** @todo what about leap seconds? */
{
RTTIME const TimeCopy = pThis->Time;
if (RTTimeNormalize(&pThis->Time))
{
if ( TimeCopy.u8MonthDay == pThis->Time.u8MonthDay
&& TimeCopy.u8Month == pThis->Time.u8Month
&& TimeCopy.i32Year == pThis->Time.i32Year
&& TimeCopy.u8Hour == pThis->Time.u8Hour
&& TimeCopy.u8Minute == pThis->Time.u8Minute
&& TimeCopy.u8Second == pThis->Time.u8Second)
return VINF_SUCCESS;
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_MISMATCH,
"%s: Normalized result not the same as %s: '%.*s'",
pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_ERROR,
"%s: RTTimeNormalize failed on %s: '%.*s'",
pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_BAD_NORMALIZE_INPUT,
"%s: Bad %s values: '%.*s'; mth=%u h=%u min=%u sec=%u",
pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
pThis->Time.u8Month, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
return rc;
}
/**
* Converts the UTCTime string into an the RTTIME member of RTASN1TIME.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pThis The time to parse.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_ConvertUTCTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
{
/*
* While the current spec says the seconds field is not optional, this
* restriction was added later on. So, when parsing UTCTime we must deal
* with it being absent.
*/
int rc;
bool fHaveSeconds = pThis->Asn1Core.cb == sizeof("YYMMDDHHMMSSZ") - 1;
if (fHaveSeconds || pThis->Asn1Core.cb == sizeof("YYMMDDHHMMZ") - 1)
{
const char *pachTime = pThis->Asn1Core.uData.pch;
/* Basic encoding validation. */
if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */
&& RT_C_IS_DIGIT(pachTime[1]) /* Y */
&& RT_C_IS_DIGIT(pachTime[2]) /* M */
&& RT_C_IS_DIGIT(pachTime[3]) /* M */
&& RT_C_IS_DIGIT(pachTime[4]) /* D */
&& RT_C_IS_DIGIT(pachTime[5]) /* D */
&& RT_C_IS_DIGIT(pachTime[6]) /* H */
&& RT_C_IS_DIGIT(pachTime[7]) /* H */
&& RT_C_IS_DIGIT(pachTime[8]) /* M */
&& RT_C_IS_DIGIT(pachTime[9]) /* M */
&& ( !fHaveSeconds
|| ( RT_C_IS_DIGIT(pachTime[10]) /* S */
&& RT_C_IS_DIGIT(pachTime[11]) /* S */ ) )
&& pachTime[fHaveSeconds ? 12 : 10] == 'Z'
)
{
/* Basic conversion. */
pThis->Time.i32Year = (pachTime[0] - '0') * 10 + (pachTime[1] - '0');
pThis->Time.i32Year += pThis->Time.i32Year < 50 ? 2000 : 1900;
pThis->Time.u8Month = (pachTime[2] - '0') * 10 + (pachTime[3] - '0');
pThis->Time.u8WeekDay = 0;
pThis->Time.u16YearDay = 0;
pThis->Time.u8MonthDay = (pachTime[4] - '0') * 10 + (pachTime[5] - '0');
pThis->Time.u8Hour = (pachTime[6] - '0') * 10 + (pachTime[7] - '0');
pThis->Time.u8Minute = (pachTime[8] - '0') * 10 + (pachTime[9] - '0');
if (fHaveSeconds)
pThis->Time.u8Second = (pachTime[10] - '0') * 10 + (pachTime[11] - '0');
else
pThis->Time.u8Second = 0;
pThis->Time.u32Nanosecond = 0;
pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC;
pThis->Time.offUTC = 0;
/* Check the convered data and normalize the time structure. */
rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "UTCTime", pszErrorTag);
if (RT_SUCCESS(rc))
return rc;
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime encoding: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pachTime);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime length: %#x",
pszErrorTag, pThis->Asn1Core.cb);
RT_ZERO(*pThis);
return rc;
}
/**
* Converts the fraction part of a generalized time into nanoseconds.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pchFraction Pointer to the start of the fraction (dot).
* @param cchFraction The length of the fraction.
* @param pThis The time object we're working on,
* Time.u32Nanoseconds will be update.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_ConvertGeneralizedTimeFraction(PRTASN1CURSOR pCursor, const char *pchFraction, uint32_t cchFraction,
PRTASN1TIME pThis, const char *pszErrorTag)
{
pThis->Time.u32Nanosecond = 0;
/*
* Check the dot.
*/
if (*pchFraction != '.')
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Expected GeneralizedTime fraction dot, found: '%c' ('%.*s')",
pszErrorTag, *pchFraction, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
pchFraction++;
cchFraction--;
if (!cchFraction)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: No digit following GeneralizedTime fraction dot: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core);
/*
* Do the conversion.
*/
char chLastDigit;
uint32_t uMult = 100000000;
do
{
char chDigit = chLastDigit = *pchFraction;
if (!RT_C_IS_DIGIT(chDigit))
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime fraction digit: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
pThis->Time.u32Nanosecond += uMult * (uint32_t)(chDigit - '0');
/* Advance */
cchFraction--;
pchFraction++;
uMult /= 10;
} while (cchFraction > 0 && uMult > 0);
/*
* Lazy bird: For now, we don't permit higher resolution than we can
* internally represent. Deal with this if it ever becomes an issue.
*/
if (cchFraction > 0)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime fraction too long: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
if (chLastDigit == '0')
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Trailing zeros not allowed for GeneralizedTime: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
return VINF_SUCCESS;
}
/**
* Converts the GeneralizedTime string into an the RTTIME member of RTASN1TIME.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pThis The time to parse.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_ConvertGeneralizedTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
{
int rc;
if (pThis->Asn1Core.cb >= sizeof("YYYYMMDDHHMMSSZ") - 1)
{
const char *pachTime = pThis->Asn1Core.uData.pch;
/* Basic encoding validation. */
if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */
&& RT_C_IS_DIGIT(pachTime[1]) /* Y */
&& RT_C_IS_DIGIT(pachTime[2]) /* Y */
&& RT_C_IS_DIGIT(pachTime[3]) /* Y */
&& RT_C_IS_DIGIT(pachTime[4]) /* M */
&& RT_C_IS_DIGIT(pachTime[5]) /* M */
&& RT_C_IS_DIGIT(pachTime[6]) /* D */
&& RT_C_IS_DIGIT(pachTime[7]) /* D */
&& RT_C_IS_DIGIT(pachTime[8]) /* H */
&& RT_C_IS_DIGIT(pachTime[9]) /* H */
&& RT_C_IS_DIGIT(pachTime[10]) /* M */
&& RT_C_IS_DIGIT(pachTime[11]) /* M */
&& RT_C_IS_DIGIT(pachTime[12]) /* S */ /** @todo was this once optional? */
&& RT_C_IS_DIGIT(pachTime[13]) /* S */
&& pachTime[pThis->Asn1Core.cb - 1] == 'Z'
)
{
/* Basic conversion. */
pThis->Time.i32Year = 1000 * (pachTime[0] - '0')
+ 100 * (pachTime[1] - '0')
+ 10 * (pachTime[2] - '0')
+ (pachTime[3] - '0');
pThis->Time.u8Month = (pachTime[4] - '0') * 10 + (pachTime[5] - '0');
pThis->Time.u8WeekDay = 0;
pThis->Time.u16YearDay = 0;
pThis->Time.u8MonthDay = (pachTime[6] - '0') * 10 + (pachTime[7] - '0');
pThis->Time.u8Hour = (pachTime[8] - '0') * 10 + (pachTime[9] - '0');
pThis->Time.u8Minute = (pachTime[10] - '0') * 10 + (pachTime[11] - '0');
pThis->Time.u8Second = (pachTime[12] - '0') * 10 + (pachTime[13] - '0');
pThis->Time.u32Nanosecond = 0;
pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC;
pThis->Time.offUTC = 0;
/* Optional fraction part. */
rc = VINF_SUCCESS;
uint32_t cchLeft = pThis->Asn1Core.cb - 14 - 1;
if (cchLeft > 0)
rc = rtAsn1Time_ConvertGeneralizedTimeFraction(pCursor, pachTime + 14, cchLeft, pThis, pszErrorTag);
/* Check the convered data and normalize the time structure. */
if (RT_SUCCESS(rc))
{
rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "GeneralizedTime", pszErrorTag);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
}
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime encoding: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pachTime);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime length: %#x",
pszErrorTag, pThis->Asn1Core.cb);
RT_ZERO(*pThis);
return rc;
}
RTDECL(int) RTAsn1Time_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
Assert(!(fFlags & RTASN1CURSOR_GET_F_IMPLICIT));
int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
if (pThis->Asn1Core.fClass == (ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE) )
{
if (pThis->Asn1Core.uTag == ASN1_TAG_UTC_TIME)
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
}
if (pThis->Asn1Core.uTag == ASN1_TAG_GENERALIZED_TIME)
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
}
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: uTag=%#x",
pszErrorTag, pThis->Asn1Core.uTag);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH,
"%s: Not UTCTime nor GeneralizedTime: fClass=%#x / uTag=%#x",
pszErrorTag, pThis->Asn1Core.fClass, pThis->Asn1Core.uTag);
}
RT_ZERO(*pThis);
return rc;
}
RTDECL(int) RTAsn1UtcTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_UTC_TIME,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
fFlags, pszErrorTag, "UTC TIME");
if (RT_SUCCESS(rc))
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
}
}
RT_ZERO(*pThis);
return rc;
}
RTDECL(int) RTAsn1GeneralizedTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_GENERALIZED_TIME,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
fFlags, pszErrorTag, "GENERALIZED TIME");
if (RT_SUCCESS(rc))
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
}
}
RT_ZERO(*pThis);
return rc;
}
/*
* Generate code for the associated collection types.
*/
#define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-time-template.h"
#include <iprt/asn1-generator-internal-header.h>
#include <iprt/asn1-generator-asn1-decoder.h>