/* $Id$ */
/** @file
* IPRT - ASN.1, Basic Operations.
*/
/*
* Copyright (C) 2006-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "internal/iprt.h"
#include <iprt/asn1.h>
#include <iprt/alloca.h>
#include <iprt/err.h>
#include <iprt/string.h>
#include <iprt/ctype.h>
#include <iprt/formats/asn1.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @def RTASN1_MAX_NESTING
* The maximum nesting depth we allow. This limit is enforced to avoid running
* out of stack due to malformed ASN.1 input.
*
* For reference, 'RTSignTool verify-exe RTSignTool.exe', requires a value of 15
* to work without hitting the limit for signatures with simple timestamps, and
* 23 (amd64/rel = ~3KB) for the new microsoft timestamp counter signatures.
*/
#ifdef IN_RING3
# define RTASN1_MAX_NESTING 64
#else
# define RTASN1_MAX_NESTING 32
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
static char const g_achDigits[11] = "0123456789";
RTDECL(PRTASN1CURSOR) RTAsn1CursorInitPrimary(PRTASN1CURSORPRIMARY pPrimaryCursor, void const *pvFirst, uint32_t cb,
PRTERRINFO pErrInfo, PCRTASN1ALLOCATORVTABLE pAllocator, uint32_t fFlags,
const char *pszErrorTag)
{
pPrimaryCursor->Cursor.pbCur = (uint8_t const *)pvFirst;
pPrimaryCursor->Cursor.cbLeft = cb;
pPrimaryCursor->Cursor.fFlags = fFlags;
pPrimaryCursor->Cursor.cDepth = 0;
pPrimaryCursor->Cursor.abReserved[0] = 0;
pPrimaryCursor->Cursor.abReserved[1] = 0;
pPrimaryCursor->Cursor.pPrimary = pPrimaryCursor;
pPrimaryCursor->Cursor.pUp = NULL;
pPrimaryCursor->Cursor.pszErrorTag = pszErrorTag;
pPrimaryCursor->pErrInfo = pErrInfo;
pPrimaryCursor->pAllocator = pAllocator;
return &pPrimaryCursor->Cursor;
}
RTDECL(int) RTAsn1CursorInitSub(PRTASN1CURSOR pParent, uint32_t cb, PRTASN1CURSOR pChild, const char *pszErrorTag)
{
AssertReturn(pParent->pPrimary, VERR_ASN1_INTERNAL_ERROR_1);
AssertReturn(pParent->pbCur, VERR_ASN1_INTERNAL_ERROR_2);
pChild->pbCur = pParent->pbCur;
pChild->cbLeft = cb;
pChild->fFlags = pParent->fFlags;
pChild->cDepth = pParent->cDepth + 1;
AssertReturn(pChild->cDepth < RTASN1_MAX_NESTING, VERR_ASN1_TOO_DEEPLY_NESTED);
pChild->abReserved[0] = 0;
pChild->abReserved[1] = 0;
pChild->pPrimary = pParent->pPrimary;
pChild->pUp = pParent;
pChild->pszErrorTag = pszErrorTag;
AssertReturn(pParent->cbLeft >= cb, VERR_ASN1_INTERNAL_ERROR_3);
pParent->pbCur += cb;
pParent->cbLeft -= cb;
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1CursorInitSubFromCore(PRTASN1CURSOR pParent, PRTASN1CORE pAsn1Core,
PRTASN1CURSOR pChild, const char *pszErrorTag)
{
AssertReturn(pParent->pPrimary, VERR_ASN1_INTERNAL_ERROR_1);
AssertReturn(pParent->pbCur, VERR_ASN1_INTERNAL_ERROR_2);
pChild->pbCur = pAsn1Core->uData.pu8;
pChild->cbLeft = pAsn1Core->cb;
pChild->fFlags = pParent->fFlags;
pChild->cDepth = pParent->cDepth + 1;
AssertReturn(pChild->cDepth < RTASN1_MAX_NESTING, VERR_ASN1_TOO_DEEPLY_NESTED);
pChild->abReserved[0] = 0;
pChild->abReserved[1] = 0;
pChild->pPrimary = pParent->pPrimary;
pChild->pUp = pParent;
pChild->pszErrorTag = pszErrorTag;
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1CursorSetInfoV(PRTASN1CURSOR pCursor, int rc, const char *pszMsg, va_list va)
{
PRTERRINFO pErrInfo = pCursor->pPrimary->pErrInfo;
if (pErrInfo)
{
/* Format the message. */
RTErrInfoSetV(pErrInfo, rc, pszMsg, va);
/* Add the prefixes. This isn't the fastest way, but it's the one
which eats the least stack. */
char *pszBuf = pErrInfo->pszMsg;
size_t cbBuf = pErrInfo->cbMsg;
if (pszBuf && cbBuf > 32)
{
size_t cbMove = strlen(pszBuf) + 1;
/* Make sure there is a ': '. */
bool fFirst = false;
if (pszMsg[0] != '%' || pszMsg[1] != 's' || pszMsg[2] != ':')
{
if (cbMove + 2 < cbBuf)
{
memmove(pszBuf + 2, pszBuf, cbMove);
pszBuf[0] = ':';
pszBuf[1] = ' ';
cbMove += 2;
fFirst = true;
}
}
/* Add the prefixes from the cursor chain. */
while (pCursor)
{
if (pCursor->pszErrorTag)
{
size_t cchErrorTag = strlen(pCursor->pszErrorTag);
if (cchErrorTag + !fFirst + cbMove > cbBuf)
break;
memmove(pszBuf + cchErrorTag + !fFirst, pszBuf, cbMove);
memcpy(pszBuf, pCursor->pszErrorTag, cchErrorTag);
if (!fFirst)
pszBuf[cchErrorTag] = '.';
cbMove += cchErrorTag + !fFirst;
fFirst = false;
}
pCursor = pCursor->pUp;
}
}
}
return rc;
}
RTDECL(int) RTAsn1CursorSetInfo(PRTASN1CURSOR pCursor, int rc, const char *pszMsg, ...)
{
va_list va;
va_start(va, pszMsg);
rc = RTAsn1CursorSetInfoV(pCursor, rc, pszMsg, va);
va_end(va);
return rc;
}
RTDECL(int) RTAsn1CursorCheckEnd(PRTASN1CURSOR pCursor)
{
if (pCursor->cbLeft == 0)
return VINF_SUCCESS;
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END,
"%u (%#x) bytes left over", pCursor->cbLeft, pCursor->cbLeft);
}
RTDECL(PRTASN1ALLOCATION) RTAsn1CursorInitAllocation(PRTASN1CURSOR pCursor, PRTASN1ALLOCATION pAllocation)
{
pAllocation->cbAllocated = 0;
pAllocation->cReallocs = 0;
pAllocation->uReserved0 = 0;
pAllocation->pAllocator = pCursor->pPrimary->pAllocator;
return pAllocation;
}
RTDECL(int) RTAsn1CursorReadHdr(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core, const char *pszErrorTag)
{
/*
* Initialize the return structure in case of failure.
*/
pAsn1Core->uTag = 0;
pAsn1Core->fClass = 0;
pAsn1Core->uRealTag = 0;
pAsn1Core->fRealClass = 0;
pAsn1Core->cbHdr = 0;
pAsn1Core->cb = 0;
pAsn1Core->fFlags = 0;
pAsn1Core->uData.pv = NULL;
pAsn1Core->pOps = NULL;
/*
* The header has at least two bytes: Type & length.
*/
if (pCursor->cbLeft >= 2)
{
uint32_t uTag = pCursor->pbCur[0];
uint32_t cb = pCursor->pbCur[1];
pCursor->cbLeft -= 2;
pCursor->pbCur += 2;
pAsn1Core->uRealTag = pAsn1Core->uTag = uTag & ASN1_TAG_MASK;
pAsn1Core->fRealClass = pAsn1Core->fClass = uTag & ~ASN1_TAG_MASK;
pAsn1Core->cbHdr = 2;
if ((uTag & ASN1_TAG_MASK) == ASN1_TAG_USE_LONG_FORM)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_LONG_TAG,
"%s: Implement parsing of tags > 30: %#x (length=%#x)", pszErrorTag, uTag, cb);
/* Extended length field? */
if (cb & RT_BIT(7))
{
if (cb != RT_BIT(7))
{
/* Definite form. */
uint8_t cbEnc = cb & 0x7f;
if (cbEnc > pCursor->cbLeft)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING,
"%s: Extended BER length field longer than available data: %#x vs %#x (uTag=%#x)",
pszErrorTag, cbEnc, pCursor->cbLeft, uTag);
switch (cbEnc)
{
case 1:
cb = pCursor->pbCur[0];
break;
case 2:
cb = RT_MAKE_U16(pCursor->pbCur[1], pCursor->pbCur[0]);
break;
case 3:
cb = RT_MAKE_U32_FROM_U8(pCursor->pbCur[2], pCursor->pbCur[1], pCursor->pbCur[0], 0);
break;
case 4:
cb = RT_MAKE_U32_FROM_U8(pCursor->pbCur[3], pCursor->pbCur[2], pCursor->pbCur[1], pCursor->pbCur[0]);
break;
default:
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING,
"%s: Too long/short extended BER length field: %#x (uTag=%#x)",
pszErrorTag, cbEnc, uTag);
}
pCursor->cbLeft -= cbEnc;
pCursor->pbCur += cbEnc;
pAsn1Core->cbHdr += cbEnc;
/* Check the length encoding efficiency (T-REC-X.690-200811 10.1, 9.1). */
if (pCursor->fFlags & (RTASN1CURSOR_FLAGS_DER | RTASN1CURSOR_FLAGS_CER))
{
if (cb <= 0x7f)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING,
"%s: Invalid DER/CER length encoding: cbEnc=%u cb=%#x uTag=%#x",
pszErrorTag, cbEnc, cb, uTag);
uint8_t cbNeeded;
if (cb <= 0x000000ff) cbNeeded = 1;
else if (cb <= 0x0000ffff) cbNeeded = 2;
else if (cb <= 0x00ffffff) cbNeeded = 3;
else cbNeeded = 4;
if (cbNeeded != cbEnc)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING,
"%s: Invalid DER/CER length encoding: cb=%#x uTag=%#x cbEnc=%u cbNeeded=%u",
pszErrorTag, cb, uTag, cbEnc, cbNeeded);
}
}
/* Indefinite form. */
else if (pCursor->fFlags & RTASN1CURSOR_FLAGS_DER)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_IDEFINITE_LENGTH,
"%s: Indefinite length form not allowed in DER mode (uTag=%#x).", pszErrorTag, uTag);
else
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_IDEFINITE_LENGTH_NOT_SUP,
"%s: Indefinite BER/CER length not supported (uTag=%#x)", pszErrorTag, uTag);
}
/* Check if the length makes sense. */
if (cb > pCursor->cbLeft)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH,
"%s: BER value length out of bounds: %#x (max=%#x uTag=%#x)",
pszErrorTag, cb, pCursor->cbLeft, uTag);
pAsn1Core->fFlags |= RTASN1CORE_F_PRESENT | RTASN1CORE_F_DECODED_CONTENT;
pAsn1Core->cb = cb;
pAsn1Core->uData.pv = (void *)pCursor->pbCur;
return VINF_SUCCESS;
}
if (pCursor->cbLeft)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TOO_LITTLE_DATA_LEFT,
"%s: Too little data left to form a valid BER header", pszErrorTag);
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NO_MORE_DATA,
"%s: No more data reading BER header", pszErrorTag);
}
RTDECL(int) RTAsn1CursorMatchTagClassFlagsEx(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core, uint32_t uTag, uint32_t fClass,
bool fString, uint32_t fFlags, const char *pszErrorTag, const char *pszWhat)
{
if (pAsn1Core->uTag == uTag)
{
if (pAsn1Core->fClass == fClass)
return VINF_SUCCESS;
if ( fString
&& pAsn1Core->fClass == (fClass | ASN1_TAGFLAG_CONSTRUCTED))
{
if (!(pCursor->fFlags & (RTASN1CURSOR_FLAGS_DER | RTASN1CURSOR_FLAGS_CER)))
return VINF_SUCCESS;
if (pCursor->fFlags & RTASN1CURSOR_FLAGS_CER)
{
if (pAsn1Core->cb > 1000)
return VINF_SUCCESS;
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_CONSTRUCTED_STRING,
"%s: Constructed %s only allowed for >1000 byte in CER encoding: cb=%#x uTag=%#x fClass=%#x",
pszErrorTag, pszWhat, pAsn1Core->cb, pAsn1Core->uTag, pAsn1Core->fClass);
}
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_CONSTRUCTED_STRING,
"%s: DER encoding does not allow constructed %s (cb=%#x uTag=%#x fClass=%#x)",
pszErrorTag, pszWhat, pAsn1Core->cb, pAsn1Core->uTag, pAsn1Core->fClass);
}
}
if (fFlags & RTASN1CURSOR_GET_F_IMPLICIT)
{
pAsn1Core->fFlags |= RTASN1CORE_F_TAG_IMPLICIT;
pAsn1Core->uRealTag = uTag;
pAsn1Core->fRealClass = fClass;
return VINF_SUCCESS;
}
return RTAsn1CursorSetInfo(pCursor, pAsn1Core->uTag != uTag ? VERR_ASN1_CURSOR_TAG_MISMATCH : VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH,
"%s: Unexpected %s type/flags: %#x/%#x (expected %#x/%#x)",
pszErrorTag, pszWhat, pAsn1Core->uTag, pAsn1Core->fClass, uTag, fClass);
}
static int rtAsn1CursorGetXxxxCursor(PRTASN1CURSOR pCursor, uint32_t fFlags, uint32_t uTag, uint8_t fClass,
PRTASN1CORE pAsn1Core, PRTASN1CURSOR pRetCursor,
const char *pszErrorTag, const char *pszWhat)
{
int rc = RTAsn1CursorReadHdr(pCursor, pAsn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
if ( pAsn1Core->uTag == uTag
&& pAsn1Core->fClass == fClass)
rc = VINF_SUCCESS;
else if (fFlags & RTASN1CURSOR_GET_F_IMPLICIT)
{
pAsn1Core->fFlags |= RTASN1CORE_F_TAG_IMPLICIT;
pAsn1Core->uRealTag = uTag;
pAsn1Core->fRealClass = fClass;
rc = VINF_SUCCESS;
}
else
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_CONSTRUCTED_STRING,
"%s: Unexpected %s type/flags: %#x/%#x (expected %#x/%#x)",
pszErrorTag, pszWhat, pAsn1Core->uTag, pAsn1Core->fClass, uTag, fClass);
rc = RTAsn1CursorInitSub(pCursor, pAsn1Core->cb, pRetCursor, pszErrorTag);
if (RT_SUCCESS(rc))
{
pAsn1Core->fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return VINF_SUCCESS;
}
}
return rc;
}
RTDECL(int) RTAsn1CursorGetSequenceCursor(PRTASN1CURSOR pCursor, uint32_t fFlags,
PRTASN1SEQUENCECORE pSeqCore, PRTASN1CURSOR pSeqCursor, const char *pszErrorTag)
{
return rtAsn1CursorGetXxxxCursor(pCursor, fFlags, ASN1_TAG_SEQUENCE, ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED,
&pSeqCore->Asn1Core, pSeqCursor, pszErrorTag, "sequence");
}
RTDECL(int) RTAsn1CursorGetSetCursor(PRTASN1CURSOR pCursor, uint32_t fFlags,
PRTASN1SETCORE pSetCore, PRTASN1CURSOR pSetCursor, const char *pszErrorTag)
{
return rtAsn1CursorGetXxxxCursor(pCursor, fFlags, ASN1_TAG_SET, ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED,
&pSetCore->Asn1Core, pSetCursor, pszErrorTag, "set");
}
RTDECL(int) RTAsn1CursorGetContextTagNCursor(PRTASN1CURSOR pCursor, uint32_t fFlags, uint32_t uExpectedTag,
PRTASN1CONTEXTTAG pCtxTag, PRTASN1CURSOR pCtxTagCursor, const char *pszErrorTag)
{
return rtAsn1CursorGetXxxxCursor(pCursor, fFlags, uExpectedTag, ASN1_TAGCLASS_CONTEXT | ASN1_TAGFLAG_CONSTRUCTED,
&pCtxTag->Asn1Core, pCtxTagCursor, pszErrorTag, "ctx tag");
}
RTDECL(int) RTAsn1CursorPeek(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core)
{
uint32_t cbSavedLeft = pCursor->cbLeft;
uint8_t const *pbSavedCur = pCursor->pbCur;
PRTERRINFO pErrInfo = pCursor->pPrimary->pErrInfo;
pCursor->pPrimary->pErrInfo = NULL;
int rc = RTAsn1CursorReadHdr(pCursor, pAsn1Core, "peek");
pCursor->pPrimary->pErrInfo = pErrInfo;
pCursor->pbCur = pbSavedCur;
pCursor->cbLeft = cbSavedLeft;
return rc;
}
RTDECL(bool) RTAsn1CursorIsNextEx(PRTASN1CURSOR pCursor, uint32_t uTag, uint8_t fClass)
{
RTASN1CORE Asn1Core;
int rc = RTAsn1CursorPeek(pCursor, &Asn1Core);
if (RT_SUCCESS(rc))
return uTag == Asn1Core.uTag
&& fClass == Asn1Core.fClass;
return false;
}
/** @name Legacy Interfaces.
* @{ */
RTDECL(int) RTAsn1CursorGetCore(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1CORE pAsn1Core, const char *pszErrorTag)
{
return RTAsn1Core_DecodeAsn1(pCursor, fFlags, pAsn1Core, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetNull(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1NULL pNull, const char *pszErrorTag)
{
return RTAsn1Null_DecodeAsn1(pCursor, fFlags, pNull, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetInteger(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1INTEGER pInteger, const char *pszErrorTag)
{
return RTAsn1Integer_DecodeAsn1(pCursor, fFlags, pInteger, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetBoolean(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1BOOLEAN pBoolean, const char *pszErrorTag)
{
return RTAsn1Boolean_DecodeAsn1(pCursor, fFlags, pBoolean, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetObjId(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1OBJID pObjId, const char *pszErrorTag)
{
return RTAsn1ObjId_DecodeAsn1(pCursor, fFlags, pObjId, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetTime(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pTime, const char *pszErrorTag)
{
return RTAsn1Time_DecodeAsn1(pCursor, fFlags, pTime, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetBitStringEx(PRTASN1CURSOR pCursor, uint32_t fFlags, uint32_t cMaxBits, PRTASN1BITSTRING pBitString,
const char *pszErrorTag)
{
return RTAsn1BitString_DecodeAsn1Ex(pCursor, fFlags, cMaxBits, pBitString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetBitString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1BITSTRING pBitString, const char *pszErrorTag)
{
return RTAsn1BitString_DecodeAsn1(pCursor, fFlags, pBitString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetOctetString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1OCTETSTRING pOctetString,
const char *pszErrorTag)
{
return RTAsn1OctetString_DecodeAsn1(pCursor, fFlags, pOctetString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag)
{
return RTAsn1String_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetIa5String(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag)
{
return RTAsn1Ia5String_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetUtf8String(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag)
{
return RTAsn1Utf8String_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetBmpString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag)
{
return RTAsn1BmpString_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag);
}
RTDECL(int) RTAsn1CursorGetDynType(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1DYNTYPE pDynType, const char *pszErrorTag)
{
return RTAsn1DynType_DecodeAsn1(pCursor, fFlags, pDynType, pszErrorTag);
}
/** @} */