/* $Id$ */
/** @file
* IPRT - ASN.1, Basic Operations.
*/
/*
* Copyright (C) 2006-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "internal/iprt.h"
#include <iprt/asn1.h>
#include <iprt/alloca.h>
#include <iprt/bignum.h>
#include <iprt/ctype.h>
#include <iprt/err.h>
#include <iprt/string.h>
#include <iprt/uni.h>
#include <iprt/formats/asn1.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* ASN.1 content/value allocation.
*
* The currently most frequent use of the RTAsn1 module is to decode ASN.1 byte
* streams. In that scenario we do not allocate memory for the raw content
* bytes, but share it with the byte stream. Also, a great number of RTASN1CORE
* structures will never need to have any content bytes allocated with this.
*
* So, in order to avoid adding an extra 16 (64-bit) or 8 (32-bit) bytes to each
* RTASN1CORE structure just to keep track of the occational content allocation,
* we put the allocator tracking structure inside the allocation. During
* allocator operations it lives temporarily on the stack.
*/
typedef struct RTASN1MEMCONTENT
{
/** The allocation tracker. */
RTASN1ALLOCATION Allocation;
#if ARCH_BITS == 32
uint32_t Padding; /**< Alignment padding. */
#endif
/** The content bytes, i.e. what RTASN1CORE::uData.pv points to. Use a 64-bit
* type here to emphasize that it's 8-byte aligned on all platforms. */
uint64_t au64Content[1];
} RTASN1MEMCONTENT;
AssertCompileMemberAlignment(RTASN1MEMCONTENT, au64Content, 8);
/** Pointer to a ASN.1 content allocation. */
typedef RTASN1MEMCONTENT *PRTASN1MEMCONTENT;
RTDECL(int) RTAsn1MemGrowArray(PRTASN1ALLOCATION pAllocation, void **ppvArray, size_t cbEntry,
uint32_t cCurrent, uint32_t cNew)
{
AssertReturn(pAllocation->pAllocator != NULL, VERR_WRONG_ORDER);
AssertReturn(cbEntry > 0, VERR_INVALID_PARAMETER);
AssertReturn(cNew > cCurrent, VERR_INVALID_PARAMETER);
AssertReturn(cNew < _1M, VERR_OUT_OF_RANGE);
pAllocation->cReallocs++;
void *pvOld = *ppvArray;
/* Initial allocation? */
if (cCurrent == 0)
{
AssertReturn(pvOld == NULL, VERR_INVALID_PARAMETER);
AssertReturn(cNew != 0, VERR_INVALID_PARAMETER);
return pAllocation->pAllocator->pfnAlloc(pAllocation->pAllocator, pAllocation, ppvArray, cNew * cbEntry);
}
/* Do we need to grow the allocation or did we already allocate sufficient memory in a previous call? */
size_t cbNew = cNew * cbEntry;
if (pAllocation->cbAllocated < cbNew)
{
/* Need to grow. Adjust the new size according to how many times we've been called. */
if (pAllocation->cReallocs > 2)
{
if (pAllocation->cReallocs > 8)
cNew += 8;
else if (pAllocation->cReallocs < 4)
cNew += 2;
else
cNew += 4;
cbNew += cNew * cbEntry;
}
int rc = pAllocation->pAllocator->pfnRealloc(pAllocation->pAllocator, pAllocation, pvOld, ppvArray, cbNew);
if (RT_FAILURE(rc))
return rc;
Assert(pAllocation->cbAllocated >= cbNew);
/* Clear the memory. */
size_t cbOld = cCurrent * cbEntry;
RT_BZERO((uint8_t *)*ppvArray + cbOld, pAllocation->cbAllocated - cbOld);
}
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1MemAllocZ(PRTASN1ALLOCATION pAllocation, void **ppvMem, size_t cbMem)
{
AssertReturn(pAllocation->pAllocator != NULL, VERR_WRONG_ORDER);
AssertPtr(ppvMem);
Assert(cbMem > 0);
int rc = pAllocation->pAllocator->pfnAlloc(pAllocation->pAllocator, pAllocation, ppvMem, cbMem);
Assert(pAllocation->cbAllocated >= cbMem || RT_FAILURE_NP(rc));
return rc;
}
RTDECL(int) RTAsn1MemDup(PRTASN1ALLOCATION pAllocation, void **ppvMem, const void *pvSrc, size_t cbMem)
{
AssertReturn(pAllocation->pAllocator != NULL, VERR_WRONG_ORDER);
AssertPtr(ppvMem);
AssertPtr(pvSrc);
Assert(cbMem > 0);
int rc = pAllocation->pAllocator->pfnAlloc(pAllocation->pAllocator, pAllocation, ppvMem, cbMem);
if (RT_SUCCESS(rc))
{
Assert(pAllocation->cbAllocated >= cbMem);
memcpy(*ppvMem, pvSrc, cbMem);
return VINF_SUCCESS;
}
return rc;
}
RTDECL(void) RTAsn1MemFree(PRTASN1ALLOCATION pAllocation, void *pv)
{
Assert(pAllocation->pAllocator != NULL);
if (pv)
{
pAllocation->pAllocator->pfnFree(pAllocation->pAllocator, pAllocation, pv);
Assert(pAllocation->cbAllocated == 0);
}
}
RTDECL(PRTASN1ALLOCATION) RTAsn1MemInitAllocation(PRTASN1ALLOCATION pAllocation, PCRTASN1ALLOCATORVTABLE pAllocator)
{
pAllocation->cbAllocated = 0;
pAllocation->cReallocs = 0;
pAllocation->uReserved0 = 0;
pAllocation->pAllocator = pAllocator;
return pAllocation;
}
RTDECL(int) RTAsn1ContentAllocZ(PRTASN1CORE pAsn1Core, size_t cb, PCRTASN1ALLOCATORVTABLE pAllocator)
{
AssertReturn(pAllocator != NULL, VERR_WRONG_ORDER);
AssertReturn(cb > 0 && cb < _1G, VERR_INVALID_PARAMETER);
AssertPtr(pAsn1Core);
AssertReturn(!(pAsn1Core->fFlags & RTASN1CORE_F_ALLOCATED_CONTENT), VERR_INVALID_STATE);
/* Initialize the temporary allocation tracker. */
RTASN1ALLOCATION Allocation;
Allocation.cbAllocated = 0;
Allocation.cReallocs = 0;
Allocation.uReserved0 = 0;
Allocation.pAllocator = pAllocator;
/* Make the allocation. */
uint32_t cbAlloc = RT_OFFSETOF(RTASN1MEMCONTENT, au64Content) + (uint32_t)cb;
PRTASN1MEMCONTENT pHdr;
int rc = pAllocator->pfnAlloc(pAllocator, &Allocation, (void **)&pHdr, cbAlloc);
if (RT_SUCCESS(rc))
{
Assert(Allocation.cbAllocated >= cbAlloc);
pHdr->Allocation = Allocation;
pAsn1Core->cb = (uint32_t)cb;
pAsn1Core->uData.pv = &pHdr->au64Content[0];
pAsn1Core->fFlags |= RTASN1CORE_F_ALLOCATED_CONTENT;
}
return rc;
}
RTDECL(int) RTAsn1ContentDup(PRTASN1CORE pAsn1Core, void const *pvSrc, size_t cbSrc, PCRTASN1ALLOCATORVTABLE pAllocator)
{
int rc = RTAsn1ContentAllocZ(pAsn1Core, cbSrc, pAllocator);
if (RT_SUCCESS(rc))
memcpy((void *)pAsn1Core->uData.pv, pvSrc, cbSrc);
return rc;
}
RTDECL(int) RTAsn1ContentReallocZ(PRTASN1CORE pAsn1Core, size_t cb, PCRTASN1ALLOCATORVTABLE pAllocator)
{
/* Validate input. */
AssertPtr(pAsn1Core);
AssertReturn(cb < _1G, VERR_INVALID_PARAMETER);
if (cb > 0)
{
/*
* Case 1 - Initial allocation.
*/
uint32_t cbNeeded = RT_OFFSETOF(RTASN1MEMCONTENT, au64Content) + (uint32_t)cb;
if (!(pAsn1Core->fFlags & RTASN1CORE_F_ALLOCATED_CONTENT))
return RTAsn1ContentAllocZ(pAsn1Core, cb, pAllocator);
/* Locate the header. */
PRTASN1MEMCONTENT pHdr = RT_FROM_MEMBER(pAsn1Core->uData.pv, RTASN1MEMCONTENT, au64Content);
/*
* Case 2 - Reallocation using the same allocator.
*/
if ( pHdr->Allocation.pAllocator == pAllocator
|| !pAllocator)
{
pHdr->Allocation.cReallocs++;
/* Modify the allocation if necessary. */
if (pHdr->Allocation.cbAllocated < cbNeeded)
{
RTASN1ALLOCATION Allocation = pHdr->Allocation;
int rc = Allocation.pAllocator->pfnRealloc(Allocation.pAllocator, &Allocation, pHdr, (void **)&pHdr, cbNeeded);
if (RT_FAILURE(rc))
return rc;
Assert(Allocation.cbAllocated >= cbNeeded);
pAsn1Core->uData.pv = &pHdr->au64Content[0];
pHdr->Allocation = Allocation;
}
/* Clear any additional memory we're letting the user use and
update the content size. */
if (pAsn1Core->cb < cb)
RT_BZERO((uint8_t *)&pAsn1Core->uData.pu8[pAsn1Core->cb], cb - pAsn1Core->cb);
pAsn1Core->cb = (uint32_t)cb;
}
/*
* Case 3 - Reallocation using a different allocator.
*/
else
{
/* Initialize the temporary allocation tracker. */
RTASN1ALLOCATION Allocation;
Allocation.cbAllocated = 0;
Allocation.cReallocs = pHdr->Allocation.cReallocs + 1;
Allocation.uReserved0 = 0;
Allocation.pAllocator = pAllocator;
/* Make the allocation. */
PRTASN1MEMCONTENT pHdrNew;
int rc = pAllocator->pfnAlloc(pAllocator, &Allocation, (void **)&pHdrNew, cbNeeded);
if (RT_FAILURE(rc))
return rc;
Assert(Allocation.cbAllocated >= cbNeeded);
/* Duplicate the old content and zero any new memory we might've added. */
if (pAsn1Core->cb >= cb)
memcpy(&pHdrNew->au64Content[0], &pHdr->au64Content[0], cb);
else
{
memcpy(&pHdrNew->au64Content[0], &pHdr->au64Content[0], pAsn1Core->cb);
RT_BZERO((uint8_t *)&pHdrNew->au64Content[0] + pAsn1Core->cb, cb - pAsn1Core->cb);
}
/* Update the core. */
pHdrNew->Allocation = Allocation;
pAsn1Core->uData.pv = &pHdrNew->au64Content[0];
pAsn1Core->fFlags |= RTASN1CORE_F_ALLOCATED_CONTENT; /* free cleared it. */
pAsn1Core->cb = (uint32_t)cb;
/* Free the old content. */
Allocation = pHdr->Allocation;
Allocation.pAllocator->pfnFree(Allocation.pAllocator, &Allocation, pHdr);
Assert(Allocation.cbAllocated == 0);
}
}
/*
* Case 4 - It's a request to free the memory.
*/
else
RTAsn1ContentFree(pAsn1Core);
return VINF_SUCCESS;
}
RTDECL(void) RTAsn1ContentFree(PRTASN1CORE pAsn1Core)
{
if (pAsn1Core)
{
pAsn1Core->cb = 0;
if (pAsn1Core->fFlags & RTASN1CORE_F_ALLOCATED_CONTENT)
{
pAsn1Core->fFlags &= ~RTASN1CORE_F_ALLOCATED_CONTENT;
AssertReturnVoid(pAsn1Core->uData.pv);
PRTASN1MEMCONTENT pHdr = RT_FROM_MEMBER(pAsn1Core->uData.pv, RTASN1MEMCONTENT, au64Content);
RTASN1ALLOCATION Allocation = pHdr->Allocation;
Allocation.pAllocator->pfnFree(Allocation.pAllocator, &Allocation, pHdr);
Assert(Allocation.cbAllocated == 0);
}
pAsn1Core->uData.pv = NULL;
}
}
/*
* Virtual method table based API.
*/
RTDECL(void) RTAsn1VtDelete(PRTASN1CORE pAsn1Core)
{
if (pAsn1Core)
{
PCRTASN1COREVTABLE pOps = pAsn1Core->pOps;
if (pOps)
pOps->pfnDtor(pAsn1Core);
}
}
/**
* Context data passed by RTAsn1VtDeepEnum to it's worker callbacks.
*/
typedef struct RTASN1DEEPENUMCTX
{
PFNRTASN1ENUMCALLBACK pfnCallback;
void *pvUser;
} RTASN1DEEPENUMCTX;
static DECLCALLBACK(int) rtAsn1VtDeepEnumDepthFirst(PRTASN1CORE pAsn1Core, const char *pszName, uint32_t uDepth, void *pvUser)
{
AssertReturn(pAsn1Core, VINF_SUCCESS);
if (pAsn1Core->pOps && pAsn1Core->pOps->pfnEnum)
{
int rc = pAsn1Core->pOps->pfnEnum(pAsn1Core, rtAsn1VtDeepEnumDepthFirst, uDepth, pvUser);
if (rc != VINF_SUCCESS)
return rc;
}
RTASN1DEEPENUMCTX *pCtx = (RTASN1DEEPENUMCTX *)pvUser;
return pCtx->pfnCallback(pAsn1Core, pszName, uDepth, pCtx->pvUser);
}
static DECLCALLBACK(int) rtAsn1VtDeepEnumDepthLast(PRTASN1CORE pAsn1Core, const char *pszName, uint32_t uDepth, void *pvUser)
{
AssertReturn(pAsn1Core, VINF_SUCCESS);
RTASN1DEEPENUMCTX *pCtx = (RTASN1DEEPENUMCTX *)pvUser;
int rc = pCtx->pfnCallback(pAsn1Core, pszName, uDepth, pCtx->pvUser);
if (rc == VINF_SUCCESS)
{
if (pAsn1Core->pOps && pAsn1Core->pOps->pfnEnum)
rc = pAsn1Core->pOps->pfnEnum(pAsn1Core, rtAsn1VtDeepEnumDepthFirst, uDepth, pvUser);
}
return rc;
}
RTDECL(int) RTAsn1VtDeepEnum(PRTASN1CORE pThisCore, bool fDepthFirst, uint32_t uDepth,
PFNRTASN1ENUMCALLBACK pfnCallback, void *pvUser)
{
int rc;
if (RTAsn1Core_IsPresent(pThisCore))
{
PCRTASN1COREVTABLE pOps = pThisCore->pOps;
if (pOps && pOps->pfnEnum)
{
RTASN1DEEPENUMCTX Ctx;
Ctx.pfnCallback = pfnCallback;
Ctx.pvUser = pvUser;
rc = pOps->pfnEnum(pThisCore, fDepthFirst ? rtAsn1VtDeepEnumDepthFirst : rtAsn1VtDeepEnumDepthLast, uDepth, &Ctx);
}
else
rc = VINF_SUCCESS;
}
else
rc = VINF_SUCCESS;
return rc;
}
RTDECL(int) RTAsn1VtClone(PRTASN1CORE pThisCore, PRTASN1CORE pSrcCore, PCRTASN1ALLOCATORVTABLE pAllocator)
{
AssertPtrReturn(pThisCore, VERR_INVALID_POINTER);
AssertPtrReturn(pSrcCore, VERR_INVALID_POINTER);
AssertPtrReturn(pAllocator, VERR_INVALID_POINTER);
if (RTAsn1Core_IsPresent(pSrcCore))
{
AssertPtrReturn(pSrcCore->pOps, VERR_INVALID_POINTER);
AssertPtr(pSrcCore->pOps->pfnClone);
return pSrcCore->pOps->pfnClone(pThisCore, pSrcCore, pAllocator);
}
RT_ZERO(*pThisCore);
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1VtCompare(PCRTASN1CORE pLeftCore, PCRTASN1CORE pRightCore)
{
int iDiff;
if (RTAsn1Core_IsPresent(pLeftCore))
{
if (RTAsn1Core_IsPresent(pRightCore))
{
PCRTASN1COREVTABLE pOps = pLeftCore->pOps;
if (pOps == pRightCore->pOps)
{
AssertPtr(pOps->pfnCompare);
iDiff = pOps->pfnCompare(pLeftCore, pRightCore);
}
else
iDiff = (uintptr_t)pOps < (uintptr_t)pRightCore->pOps ? -1 : 1;
}
else
iDiff = 1;
}
else
iDiff = 0 - (int)RTAsn1Core_IsPresent(pRightCore);
return iDiff;
}
RTDECL(int) RTAsn1VtCheckSanity(PCRTASN1CORE pThisCore, uint32_t fFlags,
PRTERRINFO pErrInfo, const char *pszErrorTag)
{
int rc;
if (RTAsn1Core_IsPresent(pThisCore))
{
PCRTASN1COREVTABLE pOps = pThisCore->pOps;
if (pOps && pOps->pfnCheckSanity)
rc = pOps->pfnCheckSanity(pThisCore, fFlags, pErrInfo, pszErrorTag);
else if (pOps)
rc = RTErrInfoSetF(pErrInfo, VERR_ASN1_NO_CHECK_SANITY_METHOD,
"%s: Has no pfnCheckSanity function.", pszErrorTag);
else
rc = RTErrInfoSetF(pErrInfo, VERR_ASN1_NO_VTABLE, "%s: Has no Vtable function.", pszErrorTag);
}
else
rc = RTErrInfoSetF(pErrInfo, VERR_ASN1_NOT_PRESENT, "%s: Not present.", pszErrorTag);
return rc;
}
/*
* Dummy ASN.1 object.
*/
RTDECL(int) RTAsn1Dummy_InitEx(PRTASN1DUMMY pThis)
{
return RTAsn1Core_InitEx(&pThis->Asn1Core,
UINT32_MAX,
ASN1_TAGCLASS_PRIVATE | ASN1_TAGFLAG_CONSTRUCTED,
NULL,
RTASN1CORE_F_DUMMY);
}
/*
* ASN.1 SEQUENCE OF object.
*/
RTDECL(int) RTAsn1SeqOfCore_Init(PRTASN1SEQOFCORE pThis, PCRTASN1COREVTABLE pVtable)
{
return RTAsn1Core_InitEx(&pThis->Asn1Core,
ASN1_TAG_SEQUENCE,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED,
pVtable,
RTASN1CORE_F_PRESENT);
}
RTDECL(int) RTAsn1SeqOfCore_Clone(PRTASN1SEQOFCORE pThis, PCRTASN1COREVTABLE pVtable, PCRTASN1SEQOFCORE pSrc)
{
AssertReturn(pSrc->Asn1Core.pOps == pVtable, VERR_ASN1_INTERNAL_ERROR_5);
return RTAsn1Core_CloneNoContent(&pThis->Asn1Core, &pSrc->Asn1Core);
}
/*
* ASN.1 SET OF object.
*/
RTDECL(int) RTAsn1SetOfCore_Init(PRTASN1SETOFCORE pThis, PCRTASN1COREVTABLE pVtable)
{
return RTAsn1Core_InitEx(&pThis->Asn1Core,
ASN1_TAG_SET,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED,
pVtable,
RTASN1CORE_F_PRESENT);
}
RTDECL(int) RTAsn1SetOfCore_Clone(PRTASN1SETOFCORE pThis, PCRTASN1COREVTABLE pVtable, PCRTASN1SETOFCORE pSrc)
{
AssertReturn(pSrc->Asn1Core.pOps == pVtable, VERR_ASN1_INTERNAL_ERROR_5);
return RTAsn1Core_CloneNoContent(&pThis->Asn1Core, &pSrc->Asn1Core);
}
/*
* ASN.1 SEQUENCE object.
*/
RTDECL(int) RTAsn1SequenceCore_Init(PRTASN1SEQUENCECORE pThis, PCRTASN1COREVTABLE pVtable)
{
return RTAsn1Core_InitEx(&pThis->Asn1Core,
ASN1_TAG_SEQUENCE,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED,
pVtable,
RTASN1CORE_F_PRESENT);
}
RTDECL(int) RTAsn1SequenceCore_Clone(PRTASN1SEQUENCECORE pThis, PCRTASN1COREVTABLE pVtable, PCRTASN1SEQUENCECORE pSrc)
{
AssertReturn(pSrc->Asn1Core.pOps == pVtable, VERR_ASN1_INTERNAL_ERROR_5);
return RTAsn1Core_CloneNoContent(&pThis->Asn1Core, &pSrc->Asn1Core);
}
/*
* ASN.1 SEQUENCE object - only used by SPC, so probably doing something wrong there.
*/
RTDECL(int) RTAsn1SetCore_Init(PRTASN1SETCORE pThis, PCRTASN1COREVTABLE pVtable)
{
return RTAsn1Core_InitEx(&pThis->Asn1Core,
ASN1_TAG_SET,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED,
pVtable,
RTASN1CORE_F_PRESENT);
}
RTDECL(int) RTAsn1SetCore_Clone(PRTASN1SETCORE pThis, PCRTASN1COREVTABLE pVtable, PCRTASN1SETCORE pSrc)
{
AssertReturn(pSrc->Asn1Core.pOps == pVtable, VERR_ASN1_INTERNAL_ERROR_5);
return RTAsn1Core_CloneNoContent(&pThis->Asn1Core, &pSrc->Asn1Core);
}
/*
* ASN.1 Context Tag object.
*/
RTDECL(int) RTAsn1ContextTagN_Init(PRTASN1CONTEXTTAG pThis, uint32_t uTag)
{
return RTAsn1Core_InitEx(&pThis->Asn1Core,
uTag,
ASN1_TAGCLASS_CONTEXT | ASN1_TAGFLAG_CONSTRUCTED,
NULL,
RTASN1CORE_F_PRESENT);
}
RTDECL(int) RTAsn1ContextTagN_Clone(PRTASN1CONTEXTTAG pThis, PCRTASN1CONTEXTTAG pSrc, uint32_t uTag)
{
Assert(pSrc->Asn1Core.uTag == uTag || !RTASN1CORE_IS_PRESENT(&pSrc->Asn1Core));
return RTAsn1Core_CloneNoContent(&pThis->Asn1Core, &pSrc->Asn1Core);
}