/* $Id$ */
/** @file
* IPRT - An Offset Based Heap.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP RTLOGGROUP_DEFAULT
#include <iprt/heap.h>
#include "internal/iprt.h"
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include "internal/magics.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** Pointer to the heap anchor block. */
typedef struct RTHEAPOFFSETINTERNAL *PRTHEAPOFFSETINTERNAL;
/** Pointer to a heap block. */
typedef struct RTHEAPOFFSETBLOCK *PRTHEAPOFFSETBLOCK;
/** Pointer to a free heap block. */
typedef struct RTHEAPOFFSETFREE *PRTHEAPOFFSETFREE;
/**
* Structure describing a block in an offset based heap.
*
* If this block is allocated, it is followed by the user data.
* If this block is free, see RTHEAPOFFSETFREE.
*/
typedef struct RTHEAPOFFSETBLOCK
{
/** The next block in the global block list. */
uint32_t /*PRTHEAPOFFSETBLOCK*/ offNext;
/** The previous block in the global block list. */
uint32_t /*PRTHEAPOFFSETBLOCK*/ offPrev;
/** Offset into the heap of this block. Used to locate the anchor block. */
uint32_t /*PRTHEAPOFFSETINTERNAL*/ offSelf;
/** Flags + magic. */
uint32_t fFlags;
} RTHEAPOFFSETBLOCK;
AssertCompileSize(RTHEAPOFFSETBLOCK, 16);
/** The block is free if this flag is set. When cleared it's allocated. */
#define RTHEAPOFFSETBLOCK_FLAGS_FREE (RT_BIT_32(0))
/** The magic value. */
#define RTHEAPOFFSETBLOCK_FLAGS_MAGIC (UINT32_C(0xabcdef00))
/** The mask that needs to be applied to RTHEAPOFFSETBLOCK::fFlags to obtain the magic value. */
#define RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK (~RT_BIT_32(0))
/**
* Checks if the specified block is valid or not.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPOFFSETBLOCK structure.
*/
#define RTHEAPOFFSETBLOCK_IS_VALID(pBlock) \
( ((pBlock)->fFlags & RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK) == RTHEAPOFFSETBLOCK_FLAGS_MAGIC )
/**
* Checks if the specified block is valid and in use.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPOFFSETBLOCK structure.
*/
#define RTHEAPOFFSETBLOCK_IS_VALID_USED(pBlock) \
( ((pBlock)->fFlags & (RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK | RTHEAPOFFSETBLOCK_FLAGS_FREE)) \
== RTHEAPOFFSETBLOCK_FLAGS_MAGIC )
/**
* Checks if the specified block is valid and free.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPOFFSETBLOCK structure.
*/
#define RTHEAPOFFSETBLOCK_IS_VALID_FREE(pBlock) \
( ((pBlock)->fFlags & (RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK | RTHEAPOFFSETBLOCK_FLAGS_FREE)) \
== (RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE) )
/**
* Checks if the specified block is free or not.
* @returns boolean answer.
* @param pBlock Pointer to a valid RTHEAPOFFSETBLOCK structure.
*/
#define RTHEAPOFFSETBLOCK_IS_FREE(pBlock) (!!((pBlock)->fFlags & RTHEAPOFFSETBLOCK_FLAGS_FREE))
/**
* A free heap block.
* This is an extended version of RTHEAPOFFSETBLOCK that takes the unused
* user data to store free list pointers and a cached size value.
*/
typedef struct RTHEAPOFFSETFREE
{
/** Core stuff. */
RTHEAPOFFSETBLOCK Core;
/** Pointer to the next free block. */
uint32_t /*PRTHEAPOFFSETFREE*/ offNext;
/** Pointer to the previous free block. */
uint32_t /*PRTHEAPOFFSETFREE*/ offPrev;
/** The size of the block (excluding the RTHEAPOFFSETBLOCK part). */
uint32_t cb;
/** An alignment filler to make it a multiple of 16 bytes. */
uint32_t Alignment;
} RTHEAPOFFSETFREE;
AssertCompileSize(RTHEAPOFFSETFREE, 16+16);
/**
* The heap anchor block.
* This structure is placed at the head of the memory block specified to RTHeapOffsetInit(),
* which means that the first RTHEAPOFFSETBLOCK appears immediately after this structure.
*/
typedef struct RTHEAPOFFSETINTERNAL
{
/** The typical magic (RTHEAPOFFSET_MAGIC). */
uint32_t u32Magic;
/** The heap size. (This structure is included!) */
uint32_t cbHeap;
/** The amount of free memory in the heap. */
uint32_t cbFree;
/** Free head pointer. */
uint32_t /*PRTHEAPOFFSETFREE*/ offFreeHead;
/** Free tail pointer. */
uint32_t /*PRTHEAPOFFSETFREE*/ offFreeTail;
/** Make the size of this structure 32 bytes. */
uint32_t au32Alignment[3];
} RTHEAPOFFSETINTERNAL;
AssertCompileSize(RTHEAPOFFSETINTERNAL, 32);
/** The minimum allocation size. */
#define RTHEAPOFFSET_MIN_BLOCK (sizeof(RTHEAPOFFSETBLOCK))
AssertCompile(RTHEAPOFFSET_MIN_BLOCK >= sizeof(RTHEAPOFFSETBLOCK));
AssertCompile(RTHEAPOFFSET_MIN_BLOCK >= sizeof(RTHEAPOFFSETFREE) - sizeof(RTHEAPOFFSETBLOCK));
/** The minimum and default alignment. */
#define RTHEAPOFFSET_ALIGNMENT (sizeof(RTHEAPOFFSETBLOCK))
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#ifdef RT_STRICT
# define RTHEAPOFFSET_STRICT 1
#endif
/**
* Converts RTHEAPOFFSETBLOCK::offSelf into a heap anchor block pointer.
*
* @returns Pointer of given type.
* @param pBlock The block to find the heap anchor block for.
*/
#define RTHEAPOFF_GET_ANCHOR(pBlock) ( (PRTHEAPOFFSETINTERNAL)((uint8_t *)(pBlock) - (pBlock)->offSelf ) )
/**
* Converts an offset to a pointer.
*
* All offsets are relative to the heap to make life simple.
*
* @returns Pointer of given type.
* @param pHeapInt Pointer to the heap anchor block.
* @param off The offset to convert.
* @param type The desired type.
*/
#ifdef RTHEAPOFFSET_STRICT
# define RTHEAPOFF_TO_PTR_N(pHeapInt, off, type) ( (type)rtHeapOffCheckedOffToPtr(pHeapInt, off, true /*fNull*/) )
#else
# define RTHEAPOFF_TO_PTR_N(pHeapInt, off, type) ( (type)((off) ? (uint8_t *)(pHeapInt) + (off) : NULL) )
#endif
/**
* Converts an offset to a pointer.
*
* All offsets are relative to the heap to make life simple.
*
* @returns Pointer of given type.
* @param pHeapInt Pointer to the heap anchor block.
* @param off The offset to convert.
* @param type The desired type.
*/
#ifdef RTHEAPOFFSET_STRICT
# define RTHEAPOFF_TO_PTR(pHeapInt, off, type) ( (type)rtHeapOffCheckedOffToPtr(pHeapInt, off, false /*fNull*/) )
#else
# define RTHEAPOFF_TO_PTR(pHeapInt, off, type) ( (type)((uint8_t *)(pHeapInt) + (off)) )
#endif
/**
* Converts a pointer to an offset.
*
* All offsets are relative to the heap to make life simple.
*
* @returns Offset into the heap.
* @param pHeapInt Pointer to the heap anchor block.
* @param ptr The pointer to convert.
*/
#ifdef RTHEAPOFFSET_STRICT
# define RTHEAPOFF_TO_OFF(pHeapInt, ptr) rtHeapOffCheckedPtrToOff(pHeapInt, ptr)
#else
# define RTHEAPOFF_TO_OFF(pHeapInt, ptr) ( (uint32_t)((ptr) ? (uintptr_t)(ptr) - (uintptr_t)(pHeapInt) : UINT32_C(0)) )
#endif
#define ASSERT_L(a, b) AssertMsg((a) < (b), ("a=%08x b=%08x\n", (a), (b)))
#define ASSERT_LE(a, b) AssertMsg((a) <= (b), ("a=%08x b=%08x\n", (a), (b)))
#define ASSERT_G(a, b) AssertMsg((a) > (b), ("a=%08x b=%08x\n", (a), (b)))
#define ASSERT_GE(a, b) AssertMsg((a) >= (b), ("a=%08x b=%08x\n", (a), (b)))
#define ASSERT_ALIGN(a) AssertMsg(!((uintptr_t)(a) & (RTHEAPOFFSET_ALIGNMENT - 1)), ("a=%p\n", (uintptr_t)(a)))
#define ASSERT_PREV(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->offPrev); \
if ((pBlock)->offPrev) \
{ \
ASSERT_L((pBlock)->offPrev, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \
ASSERT_GE((pBlock)->offPrev, sizeof(RTHEAPOFFSETINTERNAL)); \
} \
else \
Assert((pBlock) == (PRTHEAPOFFSETBLOCK)((pHeapInt) + 1)); \
} while (0)
#define ASSERT_NEXT(pHeap, pBlock) \
do { ASSERT_ALIGN((pBlock)->offNext); \
if ((pBlock)->offNext) \
{ \
ASSERT_L((pBlock)->offNext, (pHeapInt)->cbHeap); \
ASSERT_G((pBlock)->offNext, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \
} \
} while (0)
#define ASSERT_BLOCK(pHeapInt, pBlock) \
do { AssertMsg(RTHEAPOFFSETBLOCK_IS_VALID(pBlock), ("%#x\n", (pBlock)->fFlags)); \
AssertMsg(RTHEAPOFF_GET_ANCHOR(pBlock) == (pHeapInt), ("%p != %p\n", RTHEAPOFF_GET_ANCHOR(pBlock), (pHeapInt))); \
ASSERT_GE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), sizeof(RTHEAPOFFSETINTERNAL)); \
ASSERT_L( RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->cbHeap); \
ASSERT_NEXT(pHeapInt, pBlock); \
ASSERT_PREV(pHeapInt, pBlock); \
} while (0)
#define ASSERT_BLOCK_USED(pHeapInt, pBlock) \
do { AssertMsg(RTHEAPOFFSETBLOCK_IS_VALID_USED((pBlock)), ("%#x\n", (pBlock)->fFlags)); \
AssertMsg(RTHEAPOFF_GET_ANCHOR(pBlock) == (pHeapInt), ("%p != %p\n", RTHEAPOFF_GET_ANCHOR(pBlock), (pHeapInt))); \
ASSERT_GE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), sizeof(RTHEAPOFFSETINTERNAL)); \
ASSERT_L( RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->cbHeap); \
ASSERT_NEXT(pHeapInt, pBlock); \
ASSERT_PREV(pHeapInt, pBlock); \
} while (0)
#define ASSERT_FREE_PREV(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->offPrev); \
if ((pBlock)->offPrev) \
{ \
ASSERT_GE((pBlock)->offPrev, (pHeapInt)->offFreeHead); \
ASSERT_L((pBlock)->offPrev, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \
ASSERT_LE((pBlock)->offPrev, (pBlock)->Core.offPrev); \
} \
else \
Assert((pBlock) == RTHEAPOFF_TO_PTR(pHeapInt, (pHeapInt)->offFreeHead, PRTHEAPOFFSETFREE) ); \
} while (0)
#define ASSERT_FREE_NEXT(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->offNext); \
if ((pBlock)->offNext) \
{ \
ASSERT_LE((pBlock)->offNext, (pHeapInt)->offFreeTail); \
ASSERT_G((pBlock)->offNext, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \
ASSERT_GE((pBlock)->offNext, (pBlock)->Core.offNext); \
} \
else \
Assert((pBlock) == RTHEAPOFF_TO_PTR(pHeapInt, (pHeapInt)->offFreeTail, PRTHEAPOFFSETFREE)); \
} while (0)
#ifdef RTHEAPOFFSET_STRICT
# define ASSERT_FREE_CB(pHeapInt, pBlock) \
do { size_t cbCalc = ((pBlock)->Core.offNext ? (pBlock)->Core.offNext : (pHeapInt)->cbHeap) \
- RTHEAPOFF_TO_OFF((pHeapInt), (pBlock)) - sizeof(RTHEAPOFFSETBLOCK); \
AssertMsg((pBlock)->cb == cbCalc, ("cb=%#zx cbCalc=%#zx\n", (pBlock)->cb, cbCalc)); \
} while (0)
#else
# define ASSERT_FREE_CB(pHeapInt, pBlock) do {} while (0)
#endif
/** Asserts that a free block is valid. */
#define ASSERT_BLOCK_FREE(pHeapInt, pBlock) \
do { ASSERT_BLOCK(pHeapInt, &(pBlock)->Core); \
Assert(RTHEAPOFFSETBLOCK_IS_VALID_FREE(&(pBlock)->Core)); \
ASSERT_GE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->offFreeHead); \
ASSERT_LE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->offFreeTail); \
ASSERT_FREE_NEXT(pHeapInt, pBlock); \
ASSERT_FREE_PREV(pHeapInt, pBlock); \
ASSERT_FREE_CB(pHeapInt, pBlock); \
} while (0)
/** Asserts that the heap anchor block is ok. */
#define ASSERT_ANCHOR(pHeapInt) \
do { AssertPtr(pHeapInt);\
Assert((pHeapInt)->u32Magic == RTHEAPOFFSET_MAGIC); \
} while (0)
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
#ifdef RTHEAPOFFSET_STRICT
static void rtHeapOffsetAssertAll(PRTHEAPOFFSETINTERNAL pHeapInt);
#endif
static PRTHEAPOFFSETBLOCK rtHeapOffsetAllocBlock(PRTHEAPOFFSETINTERNAL pHeapInt, size_t cb, size_t uAlignment);
static void rtHeapOffsetFreeBlock(PRTHEAPOFFSETINTERNAL pHeapInt, PRTHEAPOFFSETBLOCK pBlock);
#ifdef RTHEAPOFFSET_STRICT
/** Checked version of RTHEAPOFF_TO_PTR and RTHEAPOFF_TO_PTR_N. */
DECLINLINE(void *) rtHeapOffCheckedOffToPtr(PRTHEAPOFFSETINTERNAL pHeapInt, uint32_t off, bool fNull)
{
Assert(off || fNull);
if (!off)
return NULL;
AssertMsg(off < pHeapInt->cbHeap, ("%#x %#x\n", off, pHeapInt->cbHeap));
AssertMsg(off >= sizeof(*pHeapInt), ("%#x %#x\n", off, sizeof(*pHeapInt)));
return (uint8_t *)pHeapInt + off;
}
/** Checked version of RTHEAPOFF_TO_OFF. */
DECLINLINE(uint32_t) rtHeapOffCheckedPtrToOff(PRTHEAPOFFSETINTERNAL pHeapInt, void *pv)
{
if (!pv)
return 0;
uintptr_t off = (uintptr_t)pv - (uintptr_t)pHeapInt;
AssertMsg(off < pHeapInt->cbHeap, ("%#x %#x\n", off, pHeapInt->cbHeap));
AssertMsg(off >= sizeof(*pHeapInt), ("%#x %#x\n", off, sizeof(*pHeapInt)));
return (uint32_t)off;
}
#endif /* RTHEAPOFFSET_STRICT */
RTDECL(int) RTHeapOffsetInit(PRTHEAPOFFSET phHeap, void *pvMemory, size_t cbMemory)
{
PRTHEAPOFFSETINTERNAL pHeapInt;
PRTHEAPOFFSETFREE pFree;
unsigned i;
/*
* Validate input. The imposed minimum heap size is just a convenient value.
*/
AssertReturn(cbMemory >= PAGE_SIZE, VERR_INVALID_PARAMETER);
AssertReturn(cbMemory < UINT32_MAX, VERR_INVALID_PARAMETER);
AssertPtrReturn(pvMemory, VERR_INVALID_POINTER);
AssertReturn((uintptr_t)pvMemory + (cbMemory - 1) > (uintptr_t)cbMemory, VERR_INVALID_PARAMETER);
/*
* Place the heap anchor block at the start of the heap memory,
* enforce 32 byte alignment of it. Also align the heap size correctly.
*/
pHeapInt = (PRTHEAPOFFSETINTERNAL)pvMemory;
if ((uintptr_t)pvMemory & 31)
{
const uintptr_t off = 32 - ((uintptr_t)pvMemory & 31);
cbMemory -= off;
pHeapInt = (PRTHEAPOFFSETINTERNAL)((uintptr_t)pvMemory + off);
}
cbMemory &= ~(RTHEAPOFFSET_ALIGNMENT - 1);
/* Init the heap anchor block. */
pHeapInt->u32Magic = RTHEAPOFFSET_MAGIC;
pHeapInt->cbHeap = (uint32_t)cbMemory;
pHeapInt->cbFree = (uint32_t)cbMemory
- sizeof(RTHEAPOFFSETBLOCK)
- sizeof(RTHEAPOFFSETINTERNAL);
pHeapInt->offFreeTail = pHeapInt->offFreeHead = sizeof(*pHeapInt);
for (i = 0; i < RT_ELEMENTS(pHeapInt->au32Alignment); i++)
pHeapInt->au32Alignment[i] = UINT32_MAX;
/* Init the single free block. */
pFree = RTHEAPOFF_TO_PTR(pHeapInt, pHeapInt->offFreeHead, PRTHEAPOFFSETFREE);
pFree->Core.offNext = 0;
pFree->Core.offPrev = 0;
pFree->Core.offSelf = pHeapInt->offFreeHead;
pFree->Core.fFlags = RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE;
pFree->offNext = 0;
pFree->offPrev = 0;
pFree->cb = pHeapInt->cbFree;
*phHeap = pHeapInt;
#ifdef RTHEAPOFFSET_STRICT
rtHeapOffsetAssertAll(pHeapInt);
#endif
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTHeapOffsetInit);
RTDECL(void *) RTHeapOffsetAlloc(RTHEAPOFFSET hHeap, size_t cb, size_t cbAlignment)
{
PRTHEAPOFFSETINTERNAL pHeapInt = hHeap;
PRTHEAPOFFSETBLOCK pBlock;
/*
* Validate and adjust the input.
*/
AssertPtrReturn(pHeapInt, NULL);
if (cb < RTHEAPOFFSET_MIN_BLOCK)
cb = RTHEAPOFFSET_MIN_BLOCK;
else
cb = RT_ALIGN_Z(cb, RTHEAPOFFSET_ALIGNMENT);
if (!cbAlignment)
cbAlignment = RTHEAPOFFSET_ALIGNMENT;
else
{
Assert(!(cbAlignment & (cbAlignment - 1)));
Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment);
if (cbAlignment < RTHEAPOFFSET_ALIGNMENT)
cbAlignment = RTHEAPOFFSET_ALIGNMENT;
}
/*
* Do the allocation.
*/
pBlock = rtHeapOffsetAllocBlock(pHeapInt, cb, cbAlignment);
if (RT_LIKELY(pBlock))
{
void *pv = pBlock + 1;
return pv;
}
return NULL;
}
RT_EXPORT_SYMBOL(RTHeapOffsetAlloc);
RTDECL(void *) RTHeapOffsetAllocZ(RTHEAPOFFSET hHeap, size_t cb, size_t cbAlignment)
{
PRTHEAPOFFSETINTERNAL pHeapInt = hHeap;
PRTHEAPOFFSETBLOCK pBlock;
/*
* Validate and adjust the input.
*/
AssertPtrReturn(pHeapInt, NULL);
if (cb < RTHEAPOFFSET_MIN_BLOCK)
cb = RTHEAPOFFSET_MIN_BLOCK;
else
cb = RT_ALIGN_Z(cb, RTHEAPOFFSET_ALIGNMENT);
if (!cbAlignment)
cbAlignment = RTHEAPOFFSET_ALIGNMENT;
else
{
Assert(!(cbAlignment & (cbAlignment - 1)));
Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment);
if (cbAlignment < RTHEAPOFFSET_ALIGNMENT)
cbAlignment = RTHEAPOFFSET_ALIGNMENT;
}
/*
* Do the allocation.
*/
pBlock = rtHeapOffsetAllocBlock(pHeapInt, cb, cbAlignment);
if (RT_LIKELY(pBlock))
{
void *pv = pBlock + 1;
memset(pv, 0, cb);
return pv;
}
return NULL;
}
RT_EXPORT_SYMBOL(RTHeapOffsetAllocZ);
/**
* Allocates a block of memory from the specified heap.
*
* No parameter validation or adjustment is performed.
*
* @returns Pointer to the allocated block.
* @returns NULL on failure.
*
* @param pHeapInt The heap.
* @param cb Size of the memory block to allocate.
* @param uAlignment The alignment specifications for the allocated block.
*/
static PRTHEAPOFFSETBLOCK rtHeapOffsetAllocBlock(PRTHEAPOFFSETINTERNAL pHeapInt, size_t cb, size_t uAlignment)
{
PRTHEAPOFFSETBLOCK pRet = NULL;
PRTHEAPOFFSETFREE pFree;
AssertReturn((pHeapInt)->u32Magic == RTHEAPOFFSET_MAGIC, NULL);
#ifdef RTHEAPOFFSET_STRICT
rtHeapOffsetAssertAll(pHeapInt);
#endif
/*
* Search for a fitting block from the lower end of the heap.
*/
for (pFree = RTHEAPOFF_TO_PTR_N(pHeapInt, pHeapInt->offFreeHead, PRTHEAPOFFSETFREE);
pFree;
pFree = RTHEAPOFF_TO_PTR_N(pHeapInt, pFree->offNext, PRTHEAPOFFSETFREE))
{
uintptr_t offAlign;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
/*
* Match for size and alignment.
*/
if (pFree->cb < cb)
continue;
offAlign = (uintptr_t)(&pFree->Core + 1) & (uAlignment - 1);
if (offAlign)
{
PRTHEAPOFFSETFREE pPrev;
offAlign = (uintptr_t)(&pFree[1].Core + 1) & (uAlignment - 1);
offAlign = uAlignment - offAlign;
if (pFree->cb < cb + offAlign + sizeof(RTHEAPOFFSETFREE))
continue;
/*
* Split up the free block into two, so that the 2nd is aligned as
* per specification.
*/
pPrev = pFree;
pFree = (PRTHEAPOFFSETFREE)((uintptr_t)(pFree + 1) + offAlign);
pFree->Core.offPrev = pPrev->Core.offSelf;
pFree->Core.offNext = pPrev->Core.offNext;
pFree->Core.offSelf = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
pFree->Core.fFlags = RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE;
pFree->offPrev = pPrev->Core.offSelf;
pFree->offNext = pPrev->offNext;
pFree->cb = (pFree->Core.offNext ? pFree->Core.offNext : pHeapInt->cbHeap)
- pFree->Core.offSelf - sizeof(RTHEAPOFFSETBLOCK);
pPrev->Core.offNext = pFree->Core.offSelf;
pPrev->offNext = pFree->Core.offSelf;
pPrev->cb = pFree->Core.offSelf - pPrev->Core.offSelf - sizeof(RTHEAPOFFSETBLOCK);
if (pFree->Core.offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = pFree->Core.offSelf;
if (pFree->offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETFREE)->offPrev = pFree->Core.offSelf;
else
pHeapInt->offFreeTail = pFree->Core.offSelf;
pHeapInt->cbFree -= sizeof(RTHEAPOFFSETBLOCK);
ASSERT_BLOCK_FREE(pHeapInt, pPrev);
ASSERT_BLOCK_FREE(pHeapInt, pFree);
}
/*
* Split off a new FREE block?
*/
if (pFree->cb >= cb + RT_ALIGN_Z(sizeof(RTHEAPOFFSETFREE), RTHEAPOFFSET_ALIGNMENT))
{
/*
* Create a new FREE block at then end of this one.
*/
PRTHEAPOFFSETFREE pNew = (PRTHEAPOFFSETFREE)((uintptr_t)&pFree->Core + cb + sizeof(RTHEAPOFFSETBLOCK));
pNew->Core.offSelf = RTHEAPOFF_TO_OFF(pHeapInt, pNew);
pNew->Core.offNext = pFree->Core.offNext;
if (pFree->Core.offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = pNew->Core.offSelf;
pNew->Core.offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
pNew->Core.fFlags = RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE;
pNew->offNext = pFree->offNext;
if (pNew->offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pNew->offNext, PRTHEAPOFFSETFREE)->offPrev = pNew->Core.offSelf;
else
pHeapInt->offFreeTail = pNew->Core.offSelf;
pNew->offPrev = pFree->offPrev;
if (pNew->offPrev)
RTHEAPOFF_TO_PTR(pHeapInt, pNew->offPrev, PRTHEAPOFFSETFREE)->offNext = pNew->Core.offSelf;
else
pHeapInt->offFreeHead = pNew->Core.offSelf;
pNew->cb = (pNew->Core.offNext ? pNew->Core.offNext : pHeapInt->cbHeap) \
- pNew->Core.offSelf - sizeof(RTHEAPOFFSETBLOCK);
ASSERT_BLOCK_FREE(pHeapInt, pNew);
/*
* Adjust and convert the old FREE node into a USED node.
*/
pFree->Core.fFlags &= ~RTHEAPOFFSETBLOCK_FLAGS_FREE;
pFree->Core.offNext = pNew->Core.offSelf;
pHeapInt->cbFree -= pFree->cb;
pHeapInt->cbFree += pNew->cb;
pRet = &pFree->Core;
ASSERT_BLOCK_USED(pHeapInt, pRet);
}
else
{
/*
* Link it out of the free list.
*/
if (pFree->offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pFree->offNext, PRTHEAPOFFSETFREE)->offPrev = pFree->offPrev;
else
pHeapInt->offFreeTail = pFree->offPrev;
if (pFree->offPrev)
RTHEAPOFF_TO_PTR(pHeapInt, pFree->offPrev, PRTHEAPOFFSETFREE)->offNext = pFree->offNext;
else
pHeapInt->offFreeHead = pFree->offNext;
/*
* Convert it to a used block.
*/
pHeapInt->cbFree -= pFree->cb;
pFree->Core.fFlags &= ~RTHEAPOFFSETBLOCK_FLAGS_FREE;
pRet = &pFree->Core;
ASSERT_BLOCK_USED(pHeapInt, pRet);
}
break;
}
#ifdef RTHEAPOFFSET_STRICT
rtHeapOffsetAssertAll(pHeapInt);
#endif
return pRet;
}
RTDECL(void) RTHeapOffsetFree(RTHEAPOFFSET hHeap, void *pv)
{
PRTHEAPOFFSETINTERNAL pHeapInt;
PRTHEAPOFFSETBLOCK pBlock;
/*
* Validate input.
*/
if (!pv)
return;
AssertPtr(pv);
Assert(RT_ALIGN_P(pv, RTHEAPOFFSET_ALIGNMENT) == pv);
/*
* Get the block and heap. If in strict mode, validate these.
*/
pBlock = (PRTHEAPOFFSETBLOCK)pv - 1;
pHeapInt = RTHEAPOFF_GET_ANCHOR(pBlock);
ASSERT_BLOCK_USED(pHeapInt, pBlock);
ASSERT_ANCHOR(pHeapInt);
Assert(pHeapInt == (PRTHEAPOFFSETINTERNAL)hHeap || !hHeap);
#ifdef RTHEAPOFFSET_FREE_POISON
/*
* Poison the block.
*/
const size_t cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock - sizeof(RTHEAPOFFSETBLOCK);
memset(pBlock + 1, RTHEAPOFFSET_FREE_POISON, cbBlock);
#endif
/*
* Call worker which does the actual job.
*/
rtHeapOffsetFreeBlock(pHeapInt, pBlock);
}
RT_EXPORT_SYMBOL(RTHeapOffsetFree);
/**
* Free a memory block.
*
* @param pHeapInt The heap.
* @param pBlock The memory block to free.
*/
static void rtHeapOffsetFreeBlock(PRTHEAPOFFSETINTERNAL pHeapInt, PRTHEAPOFFSETBLOCK pBlock)
{
PRTHEAPOFFSETFREE pFree = (PRTHEAPOFFSETFREE)pBlock;
PRTHEAPOFFSETFREE pLeft;
PRTHEAPOFFSETFREE pRight;
#ifdef RTHEAPOFFSET_STRICT
rtHeapOffsetAssertAll(pHeapInt);
#endif
/*
* Look for the closest free list blocks by walking the blocks right
* of us (both lists are sorted by address).
*/
pLeft = NULL;
pRight = NULL;
if (pHeapInt->offFreeTail)
{
pRight = RTHEAPOFF_TO_PTR_N(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETFREE);
while (pRight && !RTHEAPOFFSETBLOCK_IS_FREE(&pRight->Core))
{
ASSERT_BLOCK(pHeapInt, &pRight->Core);
pRight = RTHEAPOFF_TO_PTR_N(pHeapInt, pRight->Core.offNext, PRTHEAPOFFSETFREE);
}
if (!pRight)
pLeft = RTHEAPOFF_TO_PTR_N(pHeapInt, pHeapInt->offFreeTail, PRTHEAPOFFSETFREE);
else
{
ASSERT_BLOCK_FREE(pHeapInt, pRight);
pLeft = RTHEAPOFF_TO_PTR_N(pHeapInt, pRight->offPrev, PRTHEAPOFFSETFREE);
}
if (pLeft)
ASSERT_BLOCK_FREE(pHeapInt, pLeft);
}
AssertMsgReturnVoid(pLeft != pFree, ("Freed twice! pv=%p (pBlock=%p)\n", pBlock + 1, pBlock));
ASSERT_L(RTHEAPOFF_TO_OFF(pHeapInt, pLeft), RTHEAPOFF_TO_OFF(pHeapInt, pFree));
Assert(!pRight || (uintptr_t)pRight > (uintptr_t)pFree);
Assert(!pLeft || RTHEAPOFF_TO_PTR_N(pHeapInt, pLeft->offNext, PRTHEAPOFFSETFREE) == pRight);
/*
* Insert at the head of the free block list?
*/
if (!pLeft)
{
Assert(pRight == RTHEAPOFF_TO_PTR_N(pHeapInt, pHeapInt->offFreeHead, PRTHEAPOFFSETFREE));
pFree->Core.fFlags |= RTHEAPOFFSETBLOCK_FLAGS_FREE;
pFree->offPrev = 0;
pFree->offNext = RTHEAPOFF_TO_OFF(pHeapInt, pRight);
if (pRight)
pRight->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
else
pHeapInt->offFreeTail = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
pHeapInt->offFreeHead = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
}
else
{
/*
* Can we merge with left hand free block?
*/
if (pLeft->Core.offNext == RTHEAPOFF_TO_OFF(pHeapInt, pFree))
{
pLeft->Core.offNext = pFree->Core.offNext;
if (pFree->Core.offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pLeft);
pHeapInt->cbFree -= pLeft->cb;
pFree = pLeft;
}
/*
* No, just link it into the free list then.
*/
else
{
pFree->Core.fFlags |= RTHEAPOFFSETBLOCK_FLAGS_FREE;
pFree->offNext = RTHEAPOFF_TO_OFF(pHeapInt, pRight);
pFree->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pLeft);
pLeft->offNext = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
if (pRight)
pRight->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
else
pHeapInt->offFreeTail = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
}
}
/*
* Can we merge with right hand free block?
*/
if ( pRight
&& pRight->Core.offPrev == RTHEAPOFF_TO_OFF(pHeapInt, pFree))
{
/* core */
pFree->Core.offNext = pRight->Core.offNext;
if (pRight->Core.offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pRight->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
/* free */
pFree->offNext = pRight->offNext;
if (pRight->offNext)
RTHEAPOFF_TO_PTR(pHeapInt, pRight->offNext, PRTHEAPOFFSETFREE)->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
else
pHeapInt->offFreeTail = RTHEAPOFF_TO_OFF(pHeapInt, pFree);
pHeapInt->cbFree -= pRight->cb;
}
/*
* Calculate the size and update free stats.
*/
pFree->cb = (pFree->Core.offNext ? pFree->Core.offNext : pHeapInt->cbHeap)
- RTHEAPOFF_TO_OFF(pHeapInt, pFree) - sizeof(RTHEAPOFFSETBLOCK);
pHeapInt->cbFree += pFree->cb;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
#ifdef RTHEAPOFFSET_STRICT
rtHeapOffsetAssertAll(pHeapInt);
#endif
}
#ifdef RTHEAPOFFSET_STRICT
/**
* Internal consistency check (relying on assertions).
* @param pHeapInt
*/
static void rtHeapOffsetAssertAll(PRTHEAPOFFSETINTERNAL pHeapInt)
{
PRTHEAPOFFSETFREE pPrev = NULL;
PRTHEAPOFFSETFREE pPrevFree = NULL;
PRTHEAPOFFSETFREE pBlock;
for (pBlock = (PRTHEAPOFFSETFREE)(pHeapInt + 1);
pBlock;
pBlock = RTHEAPOFF_TO_PTR_N(pHeapInt, pBlock->Core.offNext, PRTHEAPOFFSETFREE))
{
if (RTHEAPOFFSETBLOCK_IS_FREE(&pBlock->Core))
{
ASSERT_BLOCK_FREE(pHeapInt, pBlock);
Assert(pBlock->offPrev == RTHEAPOFF_TO_OFF(pHeapInt, pPrevFree));
Assert(pPrevFree || pHeapInt->offFreeHead == RTHEAPOFF_TO_OFF(pHeapInt, pBlock));
pPrevFree = pBlock;
}
else
ASSERT_BLOCK_USED(pHeapInt, &pBlock->Core);
Assert(!pPrev || RTHEAPOFF_TO_OFF(pHeapInt, pPrev) == pBlock->Core.offPrev);
pPrev = pBlock;
}
Assert(pHeapInt->offFreeTail == RTHEAPOFF_TO_OFF(pHeapInt, pPrevFree));
}
#endif
RTDECL(size_t) RTHeapOffsetSize(RTHEAPOFFSET hHeap, void *pv)
{
PRTHEAPOFFSETINTERNAL pHeapInt;
PRTHEAPOFFSETBLOCK pBlock;
size_t cbBlock;
/*
* Validate input.
*/
if (!pv)
return 0;
AssertPtrReturn(pv, 0);
AssertReturn(RT_ALIGN_P(pv, RTHEAPOFFSET_ALIGNMENT) == pv, 0);
/*
* Get the block and heap. If in strict mode, validate these.
*/
pBlock = (PRTHEAPOFFSETBLOCK)pv - 1;
pHeapInt = RTHEAPOFF_GET_ANCHOR(pBlock);
ASSERT_BLOCK_USED(pHeapInt, pBlock);
ASSERT_ANCHOR(pHeapInt);
Assert(pHeapInt == (PRTHEAPOFFSETINTERNAL)hHeap || !hHeap);
/*
* Calculate the block size.
*/
cbBlock = (pBlock->offNext ? pBlock->offNext : pHeapInt->cbHeap)
- RTHEAPOFF_TO_OFF(pHeapInt, pBlock) - sizeof(RTHEAPOFFSETBLOCK);
return cbBlock;
}
RT_EXPORT_SYMBOL(RTHeapOffsetSize);
RTDECL(size_t) RTHeapOffsetGetHeapSize(RTHEAPOFFSET hHeap)
{
PRTHEAPOFFSETINTERNAL pHeapInt;
if (hHeap == NIL_RTHEAPOFFSET)
return 0;
pHeapInt = hHeap;
AssertPtrReturn(pHeapInt, 0);
ASSERT_ANCHOR(pHeapInt);
return pHeapInt->cbHeap;
}
RT_EXPORT_SYMBOL(RTHeapOffsetGetHeapSize);
RTDECL(size_t) RTHeapOffsetGetFreeSize(RTHEAPOFFSET hHeap)
{
PRTHEAPOFFSETINTERNAL pHeapInt;
if (hHeap == NIL_RTHEAPOFFSET)
return 0;
pHeapInt = hHeap;
AssertPtrReturn(pHeapInt, 0);
ASSERT_ANCHOR(pHeapInt);
return pHeapInt->cbFree;
}
RT_EXPORT_SYMBOL(RTHeapOffsetGetFreeSize);
RTDECL(void) RTHeapOffsetDump(RTHEAPOFFSET hHeap, PFNRTHEAPOFFSETPRINTF pfnPrintf)
{
PRTHEAPOFFSETINTERNAL pHeapInt = (PRTHEAPOFFSETINTERNAL)hHeap;
PRTHEAPOFFSETFREE pBlock;
pfnPrintf("**** Dumping Heap %p - cbHeap=%x cbFree=%x ****\n",
hHeap, pHeapInt->cbHeap, pHeapInt->cbFree);
for (pBlock = (PRTHEAPOFFSETFREE)(pHeapInt + 1);
pBlock;
pBlock = RTHEAPOFF_TO_PTR_N(pHeapInt, pBlock->Core.offNext, PRTHEAPOFFSETFREE))
{
size_t cb = (pBlock->offNext ? pBlock->Core.offNext : pHeapInt->cbHeap)
- RTHEAPOFF_TO_OFF(pHeapInt, pBlock) - sizeof(RTHEAPOFFSETBLOCK);
if (RTHEAPOFFSETBLOCK_IS_FREE(&pBlock->Core))
pfnPrintf("%p %06x FREE offNext=%06x offPrev=%06x fFlags=%#x cb=%#06x : cb=%#06x offNext=%06x offPrev=%06x\n",
pBlock, pBlock->Core.offSelf, pBlock->Core.offNext, pBlock->Core.offPrev, pBlock->Core.fFlags, cb,
pBlock->cb, pBlock->offNext, pBlock->offPrev);
else
pfnPrintf("%p %06x USED offNext=%06x offPrev=%06x fFlags=%#x cb=%#06x\n",
pBlock, pBlock->Core.offSelf, pBlock->Core.offNext, pBlock->Core.offPrev, pBlock->Core.fFlags, cb);
}
pfnPrintf("**** Done dumping Heap %p ****\n", hHeap);
}
RT_EXPORT_SYMBOL(RTHeapOffsetDump);