/* $Id$ */
/** @file
* DBGC - Debugger Console, CodeView / WinDbg Emulation.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DBGC
#include <VBox/dbg.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/cpum.h>
#include <VBox/dis.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/asm.h>
#include <iprt/mem.h>
#include <iprt/string.h>
#include <iprt/assert.h>
#include <iprt/ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include "DBGCInternal.h"
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static FNDBGCCMD dbgcCmdBrkAccess;
static FNDBGCCMD dbgcCmdBrkClear;
static FNDBGCCMD dbgcCmdBrkDisable;
static FNDBGCCMD dbgcCmdBrkEnable;
static FNDBGCCMD dbgcCmdBrkList;
static FNDBGCCMD dbgcCmdBrkSet;
static FNDBGCCMD dbgcCmdBrkREM;
static FNDBGCCMD dbgcCmdDumpMem;
static FNDBGCCMD dbgcCmdDumpDT;
static FNDBGCCMD dbgcCmdDumpIDT;
static FNDBGCCMD dbgcCmdDumpPageDir;
static FNDBGCCMD dbgcCmdDumpPageDirBoth;
static FNDBGCCMD dbgcCmdDumpPageHierarchy;
static FNDBGCCMD dbgcCmdDumpPageTable;
static FNDBGCCMD dbgcCmdDumpPageTableBoth;
static FNDBGCCMD dbgcCmdDumpTSS;
static FNDBGCCMD dbgcCmdEditMem;
static FNDBGCCMD dbgcCmdGo;
static FNDBGCCMD dbgcCmdListModules;
static FNDBGCCMD dbgcCmdListNear;
static FNDBGCCMD dbgcCmdListSource;
static FNDBGCCMD dbgcCmdMemoryInfo;
static FNDBGCCMD dbgcCmdReg;
static FNDBGCCMD dbgcCmdRegGuest;
static FNDBGCCMD dbgcCmdRegHyper;
static FNDBGCCMD dbgcCmdRegTerse;
static FNDBGCCMD dbgcCmdSearchMem;
static FNDBGCCMD dbgcCmdSearchMemType;
static FNDBGCCMD dbgcCmdStack;
static FNDBGCCMD dbgcCmdTrace;
static FNDBGCCMD dbgcCmdUnassemble;
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** 'ba' arguments. */
static const DBGCVARDESC g_aArgBrkAcc[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
{ 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
{ 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
{ 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
{ 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
{ 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
};
/** 'bc', 'bd', 'be' arguments. */
static const DBGCVARDESC g_aArgBrks[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
{ 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
};
/** 'bp' arguments. */
static const DBGCVARDESC g_aArgBrkSet[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
{ 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
{ 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
{ 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
};
/** 'br' arguments. */
static const DBGCVARDESC g_aArgBrkREM[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
{ 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
{ 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
{ 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
};
/** 'd?' arguments. */
static const DBGCVARDESC g_aArgDumpMem[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
};
/** 'dg', 'dga', 'dl', 'dla' arguments. */
static const DBGCVARDESC g_aArgDumpDT[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
{ 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
};
/** 'di', 'dia' arguments. */
static const DBGCVARDESC g_aArgDumpIDT[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
};
/** 'dpd*' arguments. */
static const DBGCVARDESC g_aArgDumpPD[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
{ 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
};
/** 'dpda' arguments. */
static const DBGCVARDESC g_aArgDumpPDAddr[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
};
/** 'dph*' arguments. */
static const DBGCVARDESC g_aArgDumpPH[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
{ 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
{ 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
};
/** 'dpt?' arguments. */
static const DBGCVARDESC g_aArgDumpPT[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
};
/** 'dpta' arguments. */
static const DBGCVARDESC g_aArgDumpPTAddr[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
};
/** 'dt' arguments. */
static const DBGCVARDESC g_aArgDumpTSS[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
{ 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
};
/** 'e?' arguments. */
static const DBGCVARDESC g_aArgEditMem[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
{ 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
};
/** 'lm' arguments. */
static const DBGCVARDESC g_aArgListMods[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
};
/** 'ln' arguments. */
static const DBGCVARDESC g_aArgListNear[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
{ 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
};
/** 'ls' arguments. */
static const DBGCVARDESC g_aArgListSource[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
};
/** 'm' argument. */
static const DBGCVARDESC g_aArgMemoryInfo[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
};
/** 'r' arguments. */
static const DBGCVARDESC g_aArgReg[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
{ 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
{ 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
};
/** 's' arguments. */
static const DBGCVARDESC g_aArgSearchMem[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
{ 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
{ 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
{ 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
{ 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
{ 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
{ 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
{ 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
{ 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
};
/** 's?' arguments. */
static const DBGCVARDESC g_aArgSearchMemType[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
{ 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
};
/** 'u' arguments. */
static const DBGCVARDESC g_aArgUnassemble[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
};
/** Command descriptors for the CodeView / WinDbg emulation.
* The emulation isn't attempting to be identical, only somewhat similar.
*/
const DBGCCMD g_aCmdsCodeView[] =
{
/* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
{ "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
"Sets a data access breakpoint." },
{ "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
{ "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
{ "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
{ "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
{ "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
"Sets a breakpoint (int 3)." },
{ "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
"Sets a recompiler specific breakpoint." },
{ "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size." },
{ "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
{ "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
{ "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
{ "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
{ "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
{ "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
{ "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
{ "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
{ "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
{ "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
{ "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
{ "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
{ "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
{ "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
{ "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
{ "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
{ "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
{ "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
{ "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
{ "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
{ "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
{ "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
{ "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
{ "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
{ "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
{ "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
{ "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
{ "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
{ "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
/** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
* dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
{ "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
{ "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
{ "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
{ "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
{ "g", 0, 0, NULL, 0, 0, dbgcCmdGo, "", "Continue execution." },
{ "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
{ "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
{ "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
{ "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
{ "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
{ "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
{ "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
{ "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
{ "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
{ "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
{ "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
{ "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
{ "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
{ "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
{ "rh", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegHyper, "[reg [[=] newval]]", "Show or set register(s) - hypervisor reg set." },
{ "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
{ "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
{ "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
{ "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
{ "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
{ "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
{ "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
{ "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
{ "t", 0, 0, NULL, 0, 0, dbgcCmdTrace, "", "Instruction trace (step into)." },
{ "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
{ "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
{ "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
{ "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
{ "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
};
/** The number of commands in the CodeView/WinDbg emulation. */
const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
/**
* @interface_method_impl{FNDBCCMD, The 'go' command.}
*/
static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Check if the VM is halted or not before trying to resume it.
*/
if (!DBGFR3IsHalted(pUVM))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
int rc = DBGFR3Resume(pUVM);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
NOREF(paArgs); NOREF(cArgs);
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'ba' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Interpret access type.
*/
if ( !strchr("xrwi", paArgs[0].u.pszString[0])
|| paArgs[0].u.pszString[1])
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
paArgs[0].u.pszString, pCmd->pszCmd);
uint8_t fType = 0;
switch (paArgs[0].u.pszString[0])
{
case 'x': fType = X86_DR7_RW_EO; break;
case 'r': fType = X86_DR7_RW_RW; break;
case 'w': fType = X86_DR7_RW_WO; break;
case 'i': fType = X86_DR7_RW_IO; break;
}
/*
* Validate size.
*/
if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
paArgs[1].u.u64Number, pCmd->pszCmd);
switch (paArgs[1].u.u64Number)
{
case 1:
case 2:
case 4:
break;
/*case 8: - later*/
default:
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
paArgs[1].u.u64Number, pCmd->pszCmd);
}
uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
/*
* Convert the pointer to a DBGF address.
*/
DBGFADDRESS Address;
int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
/*
* Pick out the optional arguments.
*/
uint64_t iHitTrigger = 0;
uint64_t iHitDisable = ~0;
const char *pszCmds = NULL;
unsigned iArg = 3;
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
{
iHitTrigger = paArgs[iArg].u.u64Number;
iArg++;
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
{
iHitDisable = paArgs[iArg].u.u64Number;
iArg++;
}
}
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
{
pszCmds = paArgs[iArg].u.pszString;
iArg++;
}
/*
* Try set the breakpoint.
*/
uint32_t iBp;
rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
if (RT_SUCCESS(rc))
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
if (rc == VERR_DBGC_BP_EXISTS)
{
rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
}
int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
AssertRC(rc2);
}
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
}
/**
* @interface_method_impl{FNDBCCMD, The 'bc' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Enumerate the arguments.
*/
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
int rc = VINF_SUCCESS;
for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
{
if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
{
/* one */
uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
if (iBp == paArgs[iArg].u.u64Number)
{
int rc2 = DBGFR3BpClear(pUVM, iBp);
if (RT_FAILURE(rc2))
rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
dbgcBpDelete(pDbgc, iBp);
}
else
rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
}
else if (!strcmp(paArgs[iArg].u.pszString, "all"))
{
/* all */
PDBGCBP pBp = pDbgc->pFirstBp;
while (pBp)
{
uint32_t iBp = pBp->iBp;
pBp = pBp->pNext;
int rc2 = DBGFR3BpClear(pUVM, iBp);
if (RT_FAILURE(rc2))
rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
dbgcBpDelete(pDbgc, iBp);
}
}
else
rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
}
return rc;
}
/**
* @interface_method_impl{FNDBCCMD, The 'bd' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Enumerate the arguments.
*/
int rc = VINF_SUCCESS;
for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
{
if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
{
/* one */
uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
if (iBp == paArgs[iArg].u.u64Number)
{
rc = DBGFR3BpDisable(pUVM, iBp);
if (RT_FAILURE(rc))
rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
}
else
rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
}
else if (!strcmp(paArgs[iArg].u.pszString, "all"))
{
/* all */
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
{
int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
if (RT_FAILURE(rc2))
rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
}
}
else
rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
}
return rc;
}
/**
* @interface_method_impl{FNDBCCMD, The 'be' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Enumerate the arguments.
*/
int rc = VINF_SUCCESS;
for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
{
if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
{
/* one */
uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
if (iBp == paArgs[iArg].u.u64Number)
{
rc = DBGFR3BpEnable(pUVM, iBp);
if (RT_FAILURE(rc))
rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
}
else
rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
}
else if (!strcmp(paArgs[iArg].u.pszString, "all"))
{
/* all */
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
{
int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
if (RT_FAILURE(rc2))
rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
}
}
else
rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
}
return rc;
}
/**
* Breakpoint enumeration callback function.
*
* @returns VBox status code. Any failure will stop the enumeration.
* @param pUVM The user mode VM handle.
* @param pvUser The user argument.
* @param pBp Pointer to the breakpoint information. (readonly)
*/
static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, PCDBGFBP pBp)
{
PDBGC pDbgc = (PDBGC)pvUser;
PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, pBp->iBp);
/*
* BP type and size.
*/
char chType;
char cb = 1;
switch (pBp->enmType)
{
case DBGFBPTYPE_INT3:
chType = 'p';
break;
case DBGFBPTYPE_REG:
switch (pBp->u.Reg.fType)
{
case X86_DR7_RW_EO: chType = 'x'; break;
case X86_DR7_RW_WO: chType = 'w'; break;
case X86_DR7_RW_IO: chType = 'i'; break;
case X86_DR7_RW_RW: chType = 'r'; break;
default: chType = '?'; break;
}
cb = pBp->u.Reg.cb;
break;
case DBGFBPTYPE_REM:
chType = 'r';
break;
default:
chType = '?';
break;
}
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c %d %c %RGv %04RX64 (%04RX64 to ",
pBp->iBp, pBp->fEnabled ? 'e' : 'd', (int)cb, chType,
pBp->GCPtr, pBp->cHits, pBp->iHitTrigger);
if (pBp->iHitDisable == ~(uint64_t)0)
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "~0) ");
else
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%04RX64)", pBp->iHitDisable);
/*
* Try resolve the address.
*/
RTDBGSYMBOL Sym;
RTINTPTR off;
DBGFADDRESS Addr;
int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->GCPtr),
RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &off, &Sym, NULL);
if (RT_SUCCESS(rc))
{
if (!off)
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
else if (off > 0)
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
else
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
}
/*
* The commands.
*/
if (pDbgcBp)
{
if (pDbgcBp->cchCmd)
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
else
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
}
else
DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'bl' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
NOREF(paArgs);
/*
* Enumerate the breakpoints.
*/
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
return rc;
}
/**
* @interface_method_impl{FNDBCCMD, The 'bp' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Convert the pointer to a DBGF address.
*/
DBGFADDRESS Address;
int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
/*
* Pick out the optional arguments.
*/
uint64_t iHitTrigger = 0;
uint64_t iHitDisable = ~0;
const char *pszCmds = NULL;
unsigned iArg = 1;
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
{
iHitTrigger = paArgs[iArg].u.u64Number;
iArg++;
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
{
iHitDisable = paArgs[iArg].u.u64Number;
iArg++;
}
}
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
{
pszCmds = paArgs[iArg].u.pszString;
iArg++;
}
/*
* Try set the breakpoint.
*/
uint32_t iBp;
rc = DBGFR3BpSet(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
if (RT_SUCCESS(rc))
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
if (rc == VERR_DBGC_BP_EXISTS)
{
rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
}
int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
AssertRC(rc2);
}
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
}
/**
* @interface_method_impl{FNDBCCMD, The 'br' command.}
*/
static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Convert the pointer to a DBGF address.
*/
DBGFADDRESS Address;
int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
/*
* Pick out the optional arguments.
*/
uint64_t iHitTrigger = 0;
uint64_t iHitDisable = ~0;
const char *pszCmds = NULL;
unsigned iArg = 1;
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
{
iHitTrigger = paArgs[iArg].u.u64Number;
iArg++;
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
{
iHitDisable = paArgs[iArg].u.u64Number;
iArg++;
}
}
if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
{
pszCmds = paArgs[iArg].u.pszString;
iArg++;
}
/*
* Try set the breakpoint.
*/
uint32_t iBp;
rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
if (RT_SUCCESS(rc))
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
if (rc == VERR_DBGC_BP_EXISTS)
{
rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
}
int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
AssertRC(rc2);
}
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
}
/**
* Helps the unassmble ('u') command display symbols it starts at and passes.
*
* @param pUVM The user mode VM handle.
* @param pCmdHlp The command helpers for printing via.
* @param hDbgAs The address space to look up addresses in.
* @param pAddress The current address.
* @param pcbCallAgain Where to return the distance to the next check (in
* instruction bytes).
*/
static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
PRTUINTPTR pcbCallAgain)
{
RTDBGSYMBOL Symbol;
RTGCINTPTR offDispSym;
int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDispSym, &Symbol, NULL);
if (RT_FAILURE(rc) || offDispSym > _1G)
rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &offDispSym, &Symbol, NULL);
if (RT_SUCCESS(rc) && offDispSym < _1G)
{
if (!offDispSym)
{
DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
*pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
}
else if (offDispSym > 0)
{
DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
*pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
}
else
{
DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
*pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
}
}
else
*pcbCallAgain = UINT32_MAX;
}
/**
* @interface_method_impl{FNDBCCMD, The 'u' command.}
*/
static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Validate input.
*/
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
/*
* Check the desired mode.
*/
unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
switch (pCmd->pszCmd[1])
{
default: AssertFailed();
case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
}
/** @todo should use DBGFADDRESS for everything */
/*
* Find address.
*/
if (!cArgs)
{
if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
{
/** @todo Batch query CS, RIP, CPU mode and flags. */
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
if ( pDbgc->fRegCtxGuest
&& CPUMIsGuestIn64BitCode(pVCpu))
{
pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
}
else
{
pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
&& pDbgc->fRegCtxGuest
&& (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
{
fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
}
}
if (pDbgc->fRegCtxGuest)
fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
else
fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER;
}
else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
{
fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER);
}
pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
}
else
pDbgc->DisasmPos = paArgs[0];
pDbgc->pLastPos = &pDbgc->DisasmPos;
/*
* Range.
*/
switch (pDbgc->DisasmPos.enmRangeType)
{
case DBGCVAR_RANGE_NONE:
pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
pDbgc->DisasmPos.u64Range = 10;
break;
case DBGCVAR_RANGE_ELEMENTS:
if (pDbgc->DisasmPos.u64Range > 2048)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
break;
case DBGCVAR_RANGE_BYTES:
if (pDbgc->DisasmPos.u64Range > 65536)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
break;
default:
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
}
/*
* Convert physical and host addresses to guest addresses.
*/
RTDBGAS hDbgAs = pDbgc->hDbgAs;
int rc;
switch (pDbgc->DisasmPos.enmType)
{
case DBGCVAR_TYPE_GC_FLAT:
case DBGCVAR_TYPE_GC_FAR:
break;
case DBGCVAR_TYPE_GC_PHYS:
hDbgAs = DBGF_AS_PHYS;
case DBGCVAR_TYPE_HC_FLAT:
case DBGCVAR_TYPE_HC_PHYS:
{
DBGCVAR VarTmp;
rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
pDbgc->DisasmPos = VarTmp;
break;
}
default: AssertFailed(); break;
}
DBGFADDRESS CurAddr;
if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
&& pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
else
{
rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
}
if (CurAddr.fFlags & DBGFADDRESS_FLAGS_HMA)
fFlags |= DBGF_DISAS_FLAGS_HYPER; /* This crap is due to not using DBGFADDRESS as DBGFR3Disas* input. */
pDbgc->fDisasm = fFlags;
/*
* Figure out where we are and display it. Also calculate when we need to
* check for a new symbol if possible.
*/
RTGCUINTPTR cbCheckSymbol;
dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
/*
* Do the disassembling.
*/
unsigned cTries = 32;
int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
if (iRangeLeft == 0) /* kludge for 'r'. */
iRangeLeft = -1;
for (;;)
{
/*
* Disassemble the instruction.
*/
char szDis[256];
uint32_t cbInstr = 1;
if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
&szDis[0], sizeof(szDis), &cbInstr);
else
rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
&szDis[0], sizeof(szDis), &cbInstr);
if (RT_SUCCESS(rc))
{
/* print it */
rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
if (RT_FAILURE(rc))
return rc;
}
else
{
/* bitch. */
int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
if (RT_FAILURE(rc2))
return rc2;
if (cTries-- > 0)
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
cbInstr = 1;
}
/* advance */
if (iRangeLeft < 0) /* 'r' */
break;
if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
iRangeLeft--;
else
iRangeLeft -= cbInstr;
rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
if (iRangeLeft <= 0)
break;
fFlags &= ~(DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_CURRENT_HYPER);
/* Print next symbol? */
if (cbCheckSymbol <= cbInstr)
{
if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
&& pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
else
rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
if (RT_SUCCESS(rc))
dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
else
cbCheckSymbol = UINT32_MAX;
}
else
cbCheckSymbol -= cbInstr;
}
NOREF(pCmd);
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'ls' command.}
*/
static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Validate input.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
if (cArgs == 1)
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
/*
* Find address.
*/
if (!cArgs)
{
if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
{
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
}
pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
}
else
pDbgc->SourcePos = paArgs[0];
pDbgc->pLastPos = &pDbgc->SourcePos;
/*
* Ensure the source address is flat GC.
*/
switch (pDbgc->SourcePos.enmType)
{
case DBGCVAR_TYPE_GC_FLAT:
break;
case DBGCVAR_TYPE_GC_PHYS:
case DBGCVAR_TYPE_GC_FAR:
case DBGCVAR_TYPE_HC_FLAT:
case DBGCVAR_TYPE_HC_PHYS:
{
int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
if (RT_FAILURE(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
break;
}
default: AssertFailed(); break;
}
/*
* Range.
*/
switch (pDbgc->SourcePos.enmRangeType)
{
case DBGCVAR_RANGE_NONE:
pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
pDbgc->SourcePos.u64Range = 10;
break;
case DBGCVAR_RANGE_ELEMENTS:
if (pDbgc->SourcePos.u64Range > 2048)
return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
break;
case DBGCVAR_RANGE_BYTES:
if (pDbgc->SourcePos.u64Range > 65536)
return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
break;
default:
return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
}
/*
* Do the disassembling.
*/
bool fFirst = 1;
RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
if (iRangeLeft == 0) /* kludge for 'r'. */
iRangeLeft = -1;
for (;;)
{
/*
* Get line info.
*/
RTDBGLINE Line;
RTGCINTPTR off;
DBGFADDRESS SourcePosAddr;
int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
if (RT_FAILURE(rc))
return VINF_SUCCESS;
unsigned cLines = 0;
if (memcmp(&Line, &LinePrev, sizeof(Line)))
{
/*
* Print filenamename
*/
if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
fFirst = true;
if (fFirst)
{
rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
if (RT_FAILURE(rc))
return rc;
}
/*
* Try open the file and read the line.
*/
FILE *phFile = fopen(Line.szFilename, "r");
if (phFile)
{
/* Skip ahead to the desired line. */
char szLine[4096];
unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
if (cBefore > 7)
cBefore = 0;
unsigned cLeft = Line.uLineNo - cBefore;
while (cLeft > 0)
{
szLine[0] = '\0';
if (!fgets(szLine, sizeof(szLine), phFile))
break;
cLeft--;
}
if (!cLeft)
{
/* print the before lines */
for (;;)
{
size_t cch = strlen(szLine);
while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
szLine[--cch] = '\0';
if (cBefore-- <= 0)
break;
rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
szLine[0] = '\0';
(void)fgets(szLine, sizeof(szLine), phFile);
cLines++;
}
/* print the actual line */
rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
}
fclose(phFile);
if (RT_FAILURE(rc))
return rc;
fFirst = false;
}
else
return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
LinePrev = Line;
}
/*
* Advance
*/
if (iRangeLeft < 0) /* 'r' */
break;
if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
iRangeLeft -= cLines;
else
iRangeLeft -= 1;
rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
if (iRangeLeft <= 0)
break;
}
NOREF(pCmd);
return 0;
}
/**
* @interface_method_impl{FNDBCCMD, The 'r' command.}
*/
static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
if (!pDbgc->fRegCtxGuest)
return dbgcCmdRegHyper(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
}
/**
* @interface_method_impl{FNDBCCMD, Common worker for the dbgcCmdReg*()
* commands.}
*/
static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
const char *pszPrefix)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
|| paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
/*
* Parse the register name and kind.
*/
const char *pszReg = paArgs[0].u.pszString;
if (*pszReg == '@')
pszReg++;
VMCPUID idCpu = pDbgc->idCpu;
if (*pszPrefix)
idCpu |= DBGFREG_HYPER_VMCPUID;
if (*pszReg == '.')
{
pszReg++;
idCpu |= DBGFREG_HYPER_VMCPUID;
}
const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
/*
* Query the register type & value (the setter needs the type).
*/
DBGFREGVALTYPE enmType;
DBGFREGVAL Value;
int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
if (RT_FAILURE(rc))
{
if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
pszActualPrefix, pszReg);
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
pszActualPrefix, pszReg, rc);
}
if (cArgs == 1)
{
/*
* Show the register.
*/
char szValue[160];
rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
if (RT_SUCCESS(rc))
rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
else
rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
}
else
{
DBGCVAR NewValueTmp;
PCDBGCVAR pNewValue;
if (cArgs == 3)
{
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
if (strcmp(paArgs[1].u.pszString, "="))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
pNewValue = &paArgs[2];
}
else
{
/* Not possible to convince the parser to support both codeview and
windbg syntax and make the equal sign optional. Try help it. */
/** @todo make DBGCCmdHlpConvert do more with strings. */
rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
if (RT_FAILURE(rc))
return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
pNewValue = &NewValueTmp;
}
/*
* Modify the register.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
if (enmType != DBGFREGVALTYPE_DTR)
{
enmType = DBGFREGVALTYPE_U64;
rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
}
else
{
enmType = DBGFREGVALTYPE_DTR;
rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
}
if (RT_SUCCESS(rc))
{
rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
if (RT_FAILURE(rc))
rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
pszActualPrefix, pszReg, rc);
if (rc != VINF_SUCCESS)
DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
}
else
rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
}
return rc;
}
/**
* @interface_method_impl{FNDBCCMD,
* The 'rg', 'rg64' and 'rg32' commands, worker for 'r'.}
*/
static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Show all registers our selves.
*/
if (cArgs == 0)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
|| ( strcmp(pCmd->pszCmd, "rg32") != 0
&& DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
char szDisAndRegs[8192];
int rc;
if (pDbgc->fRegTerse)
{
if (f64BitMode)
rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
"u %016VR{rip} L 0\n"
"rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
"rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
"r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
"r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
"rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
"cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} rflags=%08VR{rflags}\n");
else
rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
"u %04VR{cs}:%08VR{eip} L 0\n"
"eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
"eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
"cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} eflags=%08VR{eflags}\n");
}
else
{
if (f64BitMode)
rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
"u %016VR{rip} L 0\n"
"rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
"rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
"r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
"r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
"rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
"cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
"ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
"es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
"fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
"gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
"ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
"dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
"dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
"gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
"ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
"tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
" sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
" efer=%016VR{efer}\n"
" pat=%016VR{pat}\n"
" sf_mask=%016VR{sf_mask}\n"
"krnl_gs_base=%016VR{krnl_gs_base}\n"
" lstar=%016VR{lstar}\n"
" star=%016VR{star} cstar=%016VR{cstar}\n"
"fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
);
else
rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
"u %04VR{cs}:%08VR{eip} L 0\n"
"eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
"eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
"cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} dr0=%08VR{dr0} dr1=%08VR{dr1}\n"
"ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} dr2=%08VR{dr2} dr3=%08VR{dr3}\n"
"es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} dr6=%08VR{dr6} dr7=%08VR{dr7}\n"
"fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr0=%08VR{cr0} cr2=%08VR{cr2}\n"
"gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr3=%08VR{cr3} cr4=%08VR{cr4}\n"
"ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}} cr8=%08VR{cr8}\n"
"gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} idtr=%08VR{idtr_base}:%04VR{idtr_lim} eflags=%08VR{eflags}\n"
"ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
"tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
"sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
"fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
);
}
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
char *pszRegs = strchr(szDisAndRegs, '\n');
*pszRegs++ = '\0';
rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
/*
* Disassemble one instruction at cs:[r|e]ip.
*/
if (!f64BitMode && strstr(pszRegs, " vm ")) /* a big ugly... */
return pCmdHlp->pfnExec(pCmdHlp, "uv86 %s", szDisAndRegs + 2);
return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
}
return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
}
/**
* @interface_method_impl{FNDBCCMD, The 'rh' command.}
*/
static DECLCALLBACK(int) dbgcCmdRegHyper(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Show all registers our selves.
*/
if (cArgs == 0)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
char szDisAndRegs[8192];
int rc;
if (pDbgc->fRegTerse)
rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
"u %VR{cs}:%VR{eip} L 0\n"
".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
".cs=%04VR{cs} .ds=%04VR{ds} .es=%04VR{es} .fs=%04VR{fs} .gs=%04VR{gs} .ss=%04VR{ss} .eflags=%08VR{eflags}\n");
else
rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
"u %04VR{cs}:%08VR{eip} L 0\n"
".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
".cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} .dr0=%08VR{dr0} .dr1=%08VR{dr1}\n"
".ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} .dr2=%08VR{dr2} .dr3=%08VR{dr3}\n"
".es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} .dr6=%08VR{dr6} .dr6=%08VR{dr6}\n"
".fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} .cr3=%016VR{cr3}\n"
".gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}}\n"
".ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
".gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} .idtr=%08VR{idtr_base}:%04VR{idtr_lim} .eflags=%08VR{eflags}\n"
".ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
".tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
char *pszRegs = strchr(szDisAndRegs, '\n');
*pszRegs++ = '\0';
rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
/*
* Disassemble one instruction at cs:[r|e]ip.
*/
return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
}
return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ".");
}
/**
* @interface_method_impl{FNDBCCMD, The 'rt' command.}
*/
static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
pDbgc->fRegTerse = !pDbgc->fRegTerse;
return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
}
/**
* @interface_method_impl{FNDBCCMD, The 't' command.}
*/
static DECLCALLBACK(int) dbgcCmdTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
int rc = DBGFR3Step(pUVM, pDbgc->idCpu);
if (RT_SUCCESS(rc))
pDbgc->fReady = false;
else
rc = pDbgc->CmdHlp.pfnVBoxError(&pDbgc->CmdHlp, rc, "When trying to single step VM %p\n", pDbgc->pVM);
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
return rc;
}
/**
* @interface_method_impl{FNDBCCMD, The 'k', 'kg' and 'kh' commands.}
*/
static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Figure which context we're called for and start walking that stack.
*/
int rc;
PCDBGFSTACKFRAME pFirstFrame;
bool const fGuest = pCmd->pszCmd[1] == 'g'
|| (!pCmd->pszCmd[1] && pDbgc->fRegCtxGuest);
rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
if (RT_FAILURE(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
/*
* Print header.
* 12345678 12345678 0023:87654321 12345678 87654321 12345678 87654321 symbol
*/
uint32_t fBitFlags = 0;
for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
pFrame;
pFrame = DBGFR3StackWalkNext(pFrame))
{
uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
{
if (fCurBitFlags != fBitFlags)
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
pFrame->AddrFrame.Sel,
(uint16_t)pFrame->AddrFrame.off,
pFrame->AddrReturnFrame.Sel,
(uint16_t)pFrame->AddrReturnFrame.off,
(uint32_t)pFrame->AddrReturnPC.Sel,
(uint32_t)pFrame->AddrReturnPC.off,
pFrame->Args.au32[0],
pFrame->Args.au32[1],
pFrame->Args.au32[2],
pFrame->Args.au32[3]);
}
else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
{
if (fCurBitFlags != fBitFlags)
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
rc = DBGCCmdHlpPrintf(pCmdHlp, "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
(uint32_t)pFrame->AddrFrame.off,
(uint32_t)pFrame->AddrReturnFrame.off,
(uint32_t)pFrame->AddrReturnPC.Sel,
(uint32_t)pFrame->AddrReturnPC.off,
pFrame->Args.au32[0],
pFrame->Args.au32[1],
pFrame->Args.au32[2],
pFrame->Args.au32[3]);
}
else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
{
if (fCurBitFlags != fBitFlags)
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
rc = DBGCCmdHlpPrintf(pCmdHlp, "%016RX64 %04RX16:%016RX64 %016RX64",
(uint64_t)pFrame->AddrFrame.off,
pFrame->AddrReturnFrame.Sel,
(uint64_t)pFrame->AddrReturnFrame.off,
(uint64_t)pFrame->AddrReturnPC.off);
}
if (RT_FAILURE(rc))
break;
if (!pFrame->pSymPC)
rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
? " %RTsel:%016RGv"
: fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
? " %RTsel:%08RGv"
: " %RTsel:%04RGv"
, pFrame->AddrPC.Sel, pFrame->AddrPC.off);
else
{
RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
if (offDisp > 0)
rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
else if (offDisp < 0)
rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
else
rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
}
if (RT_SUCCESS(rc) && pFrame->pLinePC)
rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
if (RT_SUCCESS(rc))
rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
if (RT_FAILURE(rc))
break;
fBitFlags = fCurBitFlags;
}
DBGFR3StackWalkEnd(pFirstFrame);
NOREF(paArgs); NOREF(cArgs);
return rc;
}
static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, bool *pfDblEntry)
{
/* GUEST64 */
int rc;
const char *pszHyper = fHyper ? " HYPER" : "";
const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
if (pDesc->Gen.u1DescType)
{
static const char * const s_apszTypes[] =
{
"DataRO", /* 0 Read-Only */
"DataRO", /* 1 Read-Only - Accessed */
"DataRW", /* 2 Read/Write */
"DataRW", /* 3 Read/Write - Accessed */
"DownRO", /* 4 Expand-down, Read-Only */
"DownRO", /* 5 Expand-down, Read-Only - Accessed */
"DownRW", /* 6 Expand-down, Read/Write */
"DownRW", /* 7 Expand-down, Read/Write - Accessed */
"CodeEO", /* 8 Execute-Only */
"CodeEO", /* 9 Execute-Only - Accessed */
"CodeER", /* A Execute/Readable */
"CodeER", /* B Execute/Readable - Accessed */
"ConfE0", /* C Conforming, Execute-Only */
"ConfE0", /* D Conforming, Execute-Only - Accessed */
"ConfER", /* E Conforming, Execute/Readable */
"ConfER" /* F Conforming, Execute/Readable - Accessed */
};
const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
uint32_t u32Base = X86DESC_BASE(pDesc);
uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
}
else
{
static const char * const s_apszTypes[] =
{
"Ill-0 ", /* 0 0000 Reserved (Illegal) */
"Ill-1 ", /* 1 0001 Available 16-bit TSS */
"LDT ", /* 2 0010 LDT */
"Ill-3 ", /* 3 0011 Busy 16-bit TSS */
"Ill-4 ", /* 4 0100 16-bit Call Gate */
"Ill-5 ", /* 5 0101 Task Gate */
"Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
"Ill-7 ", /* 7 0111 16-bit Trap Gate */
"Ill-8 ", /* 8 1000 Reserved (Illegal) */
"Tss64A", /* 9 1001 Available 32-bit TSS */
"Ill-A ", /* A 1010 Reserved (Illegal) */
"Tss64B", /* B 1011 Busy 32-bit TSS */
"Call64", /* C 1100 32-bit Call Gate */
"Ill-D ", /* D 1101 Reserved (Illegal) */
"Int64 ", /* E 1110 32-bit Interrupt Gate */
"Trap64" /* F 1111 32-bit Trap Gate */
};
switch (pDesc->Gen.u4Type)
{
/* raw */
case X86_SEL_TYPE_SYS_UNDEFINED:
case X86_SEL_TYPE_SYS_UNDEFINED2:
case X86_SEL_TYPE_SYS_UNDEFINED4:
case X86_SEL_TYPE_SYS_UNDEFINED3:
case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
case X86_SEL_TYPE_SYS_286_TSS_BUSY:
case X86_SEL_TYPE_SYS_286_CALL_GATE:
case X86_SEL_TYPE_SYS_286_INT_GATE:
case X86_SEL_TYPE_SYS_286_TRAP_GATE:
case X86_SEL_TYPE_SYS_TASK_GATE:
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
pDesc->Gen.u2Dpl, pszPresent, pszHyper);
break;
case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
case X86_SEL_TYPE_SYS_386_TSS_BUSY:
case X86_SEL_TYPE_SYS_LDT:
{
const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
uint64_t u64Base = X86DESC64_BASE(pDesc);
uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
pszHyper);
if (pfDblEntry)
*pfDblEntry = true;
break;
}
case X86_SEL_TYPE_SYS_386_CALL_GATE:
{
unsigned cParams = pDesc->au8[4] & 0x1f;
const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
RTSEL sel = pDesc->au16[1];
uint64_t off = pDesc->au16[0]
| ((uint64_t)pDesc->au16[3] << 16)
| ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
if (pfDblEntry)
*pfDblEntry = true;
break;
}
case X86_SEL_TYPE_SYS_386_INT_GATE:
case X86_SEL_TYPE_SYS_386_TRAP_GATE:
{
RTSEL sel = pDesc->au16[1];
uint64_t off = pDesc->au16[0]
| ((uint64_t)pDesc->au16[3] << 16)
| ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
pDesc->Gen.u2Dpl, pszPresent, pszHyper);
if (pfDblEntry)
*pfDblEntry = true;
break;
}
/* impossible, just it's necessary to keep gcc happy. */
default:
return VINF_SUCCESS;
}
}
return VINF_SUCCESS;
}
/**
* Worker function that displays one descriptor entry (GDT, LDT, IDT).
*
* @returns pfnPrintf status code.
* @param pCmdHlp The DBGC command helpers.
* @param pDesc The descriptor to display.
* @param iEntry The descriptor entry number.
* @param fHyper Whether the selector belongs to the hypervisor or not.
*/
static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper)
{
int rc;
const char *pszHyper = fHyper ? " HYPER" : "";
const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
if (pDesc->Gen.u1DescType)
{
static const char * const s_apszTypes[] =
{
"DataRO", /* 0 Read-Only */
"DataRO", /* 1 Read-Only - Accessed */
"DataRW", /* 2 Read/Write */
"DataRW", /* 3 Read/Write - Accessed */
"DownRO", /* 4 Expand-down, Read-Only */
"DownRO", /* 5 Expand-down, Read-Only - Accessed */
"DownRW", /* 6 Expand-down, Read/Write */
"DownRW", /* 7 Expand-down, Read/Write - Accessed */
"CodeEO", /* 8 Execute-Only */
"CodeEO", /* 9 Execute-Only - Accessed */
"CodeER", /* A Execute/Readable */
"CodeER", /* B Execute/Readable - Accessed */
"ConfE0", /* C Conforming, Execute-Only */
"ConfE0", /* D Conforming, Execute-Only - Accessed */
"ConfER", /* E Conforming, Execute/Readable */
"ConfER" /* F Conforming, Execute/Readable - Accessed */
};
const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
uint32_t u32Base = pDesc->Gen.u16BaseLow
| ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
| ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
if (pDesc->Gen.u1Granularity)
cbLimit <<= PAGE_SHIFT;
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
}
else
{
static const char * const s_apszTypes[] =
{
"Ill-0 ", /* 0 0000 Reserved (Illegal) */
"Tss16A", /* 1 0001 Available 16-bit TSS */
"LDT ", /* 2 0010 LDT */
"Tss16B", /* 3 0011 Busy 16-bit TSS */
"Call16", /* 4 0100 16-bit Call Gate */
"TaskG ", /* 5 0101 Task Gate */
"Int16 ", /* 6 0110 16-bit Interrupt Gate */
"Trap16", /* 7 0111 16-bit Trap Gate */
"Ill-8 ", /* 8 1000 Reserved (Illegal) */
"Tss32A", /* 9 1001 Available 32-bit TSS */
"Ill-A ", /* A 1010 Reserved (Illegal) */
"Tss32B", /* B 1011 Busy 32-bit TSS */
"Call32", /* C 1100 32-bit Call Gate */
"Ill-D ", /* D 1101 Reserved (Illegal) */
"Int32 ", /* E 1110 32-bit Interrupt Gate */
"Trap32" /* F 1111 32-bit Trap Gate */
};
switch (pDesc->Gen.u4Type)
{
/* raw */
case X86_SEL_TYPE_SYS_UNDEFINED:
case X86_SEL_TYPE_SYS_UNDEFINED2:
case X86_SEL_TYPE_SYS_UNDEFINED4:
case X86_SEL_TYPE_SYS_UNDEFINED3:
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
pDesc->Gen.u2Dpl, pszPresent, pszHyper);
break;
case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
case X86_SEL_TYPE_SYS_286_TSS_BUSY:
case X86_SEL_TYPE_SYS_386_TSS_BUSY:
case X86_SEL_TYPE_SYS_LDT:
{
const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
uint32_t u32Base = pDesc->Gen.u16BaseLow
| ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
| ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
if (pDesc->Gen.u1Granularity)
cbLimit <<= PAGE_SHIFT;
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
pszHyper);
break;
}
case X86_SEL_TYPE_SYS_TASK_GATE:
{
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
pDesc->Gen.u2Dpl, pszPresent, pszHyper);
break;
}
case X86_SEL_TYPE_SYS_286_CALL_GATE:
case X86_SEL_TYPE_SYS_386_CALL_GATE:
{
unsigned cParams = pDesc->au8[4] & 0x1f;
const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
RTSEL sel = pDesc->au16[1];
uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
break;
}
case X86_SEL_TYPE_SYS_286_INT_GATE:
case X86_SEL_TYPE_SYS_386_INT_GATE:
case X86_SEL_TYPE_SYS_286_TRAP_GATE:
case X86_SEL_TYPE_SYS_386_TRAP_GATE:
{
RTSEL sel = pDesc->au16[1];
uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s\n",
iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
pDesc->Gen.u2Dpl, pszPresent, pszHyper);
break;
}
/* impossible, just it's necessary to keep gcc happy. */
default:
return VINF_SUCCESS;
}
}
return rc;
}
/**
* @interface_method_impl{FNDBCCMD, The 'dg', 'dga', 'dl' and 'dla' commands.}
*/
static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Get the CPU mode, check which command variation this is
* and fix a default parameter if needed.
*/
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
bool fGdt = pCmd->pszCmd[1] == 'g';
bool fAll = pCmd->pszCmd[2] == 'a';
RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
DBGCVAR Var;
if (!cArgs)
{
cArgs = 1;
paArgs = &Var;
Var.enmType = DBGCVAR_TYPE_NUMBER;
Var.u.u64Number = 0;
Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
Var.u64Range = 1024;
}
/*
* Process the arguments.
*/
for (unsigned i = 0; i < cArgs; i++)
{
/*
* Retrieve the selector value from the argument.
* The parser may confuse pointers and numbers if more than one
* argument is given, that that into account.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
uint64_t u64;
unsigned cSels = 1;
switch (paArgs[i].enmType)
{
case DBGCVAR_TYPE_NUMBER:
u64 = paArgs[i].u.u64Number;
if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
cSels = RT_MIN(paArgs[i].u64Range, 1024);
break;
case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
default: u64 = _64K; break;
}
if (u64 < _64K)
{
unsigned Sel = (RTSEL)u64;
/*
* Dump the specified range.
*/
bool fSingle = cSels == 1;
while ( cSels-- > 0
&& Sel < _64K)
{
DBGFSELINFO SelInfo;
int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
if (RT_SUCCESS(rc))
{
if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
else if ( fAll
|| fSingle
|| SelInfo.u.Raw.Gen.u1Present)
{
if (enmMode == CPUMMODE_PROTECTED)
rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER));
else
{
bool fDblSkip = false;
rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), &fDblSkip);
if (fDblSkip)
Sel += 4;
}
}
}
else
{
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
if (!fAll)
return rc;
}
if (RT_FAILURE(rc))
return rc;
/* next */
Sel += 8;
}
}
else
DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
}
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'di' and 'dia' commands.}
*/
static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Establish some stuff like the current IDTR and CPU mode,
* and fix a default parameter.
*/
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
uint16_t cbLimit;
RTGCUINTPTR GCPtrBase = CPUMGetGuestIDTR(pVCpu, &cbLimit);
CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
unsigned cbEntry;
switch (enmMode)
{
case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
default:
return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
}
bool fAll = pCmd->pszCmd[2] == 'a';
DBGCVAR Var;
if (!cArgs)
{
cArgs = 1;
paArgs = &Var;
Var.enmType = DBGCVAR_TYPE_NUMBER;
Var.u.u64Number = 0;
Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
Var.u64Range = 256;
}
/*
* Process the arguments.
*/
for (unsigned i = 0; i < cArgs; i++)
{
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
if (paArgs[i].u.u64Number < 256)
{
RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
? paArgs[i].u64Range
: 1;
bool fSingle = cInts == 1;
while ( cInts-- > 0
&& iInt < 256)
{
/*
* Try read it.
*/
union
{
RTFAR16 Real;
X86DESC Prot;
X86DESC64 Long;
} u;
if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
{
DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
if (!fAll && !fSingle)
return VINF_SUCCESS;
}
DBGCVAR AddrVar;
AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
AddrVar.u.GCFlat = GCPtrBase + iInt * cbEntry;
AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
int rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
/*
* Display it.
*/
switch (enmMode)
{
case CPUMMODE_REAL:
rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16\n", (unsigned)iInt, u.Real);
/** @todo resolve 16:16 IDTE to a symbol */
break;
case CPUMMODE_PROTECTED:
if (fAll || fSingle || u.Prot.Gen.u1Present)
rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false);
break;
case CPUMMODE_LONG:
if (fAll || fSingle || u.Long.Gen.u1Present)
rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, NULL);
break;
default: break; /* to shut up gcc */
}
if (RT_FAILURE(rc))
return rc;
/* next */
iInt++;
}
}
else
DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
}
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'da', 'dq', 'dd', 'dw' and 'db'
* commands.}
*/
static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Validate input.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
if (cArgs == 1)
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Figure out the element size.
*/
unsigned cbElement;
bool fAscii = false;
switch (pCmd->pszCmd[1])
{
default:
case 'b': cbElement = 1; break;
case 'w': cbElement = 2; break;
case 'd': cbElement = 4; break;
case 'q': cbElement = 8; break;
case 'a':
cbElement = 1;
fAscii = true;
break;
case '\0':
fAscii = !!(pDbgc->cbDumpElement & 0x80000000);
cbElement = pDbgc->cbDumpElement & 0x7fffffff;
if (!cbElement)
cbElement = 1;
break;
}
/*
* Find address.
*/
if (!cArgs)
pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
else
pDbgc->DumpPos = paArgs[0];
/*
* Range.
*/
switch (pDbgc->DumpPos.enmRangeType)
{
case DBGCVAR_RANGE_NONE:
pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
pDbgc->DumpPos.u64Range = 0x60;
break;
case DBGCVAR_RANGE_ELEMENTS:
if (pDbgc->DumpPos.u64Range > 2048)
return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
break;
case DBGCVAR_RANGE_BYTES:
if (pDbgc->DumpPos.u64Range > 65536)
return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
break;
default:
return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
}
pDbgc->pLastPos = &pDbgc->DumpPos;
/*
* Do the dumping.
*/
pDbgc->cbDumpElement = cbElement | (fAscii << 31);
int cbLeft = (int)pDbgc->DumpPos.u64Range;
uint8_t u8Prev = '\0';
for (;;)
{
/*
* Read memory.
*/
char achBuffer[16];
size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
if (RT_FAILURE(rc))
{
if (u8Prev && u8Prev != '\n')
DBGCCmdHlpPrintf(pCmdHlp, "\n");
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
}
/*
* Display it.
*/
memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
if (!fAscii)
{
DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
unsigned i;
for (i = 0; i < cb; i += cbElement)
{
const char *pszSpace = " ";
if (cbElement <= 2 && i == 8 && !fAscii)
pszSpace = "-";
switch (cbElement)
{
case 1: DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]); break;
case 2: DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]); break;
case 4: DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]); break;
case 8: DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]); break;
}
}
/* chars column */
if (pDbgc->cbDumpElement == 1)
{
while (i++ < sizeof(achBuffer))
DBGCCmdHlpPrintf(pCmdHlp, " ");
DBGCCmdHlpPrintf(pCmdHlp, " ");
for (i = 0; i < cb; i += cbElement)
{
uint8_t u8 = *(uint8_t *)&achBuffer[i];
if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
else
DBGCCmdHlpPrintf(pCmdHlp, ".");
}
}
rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
}
else
{
/*
* We print up to the first zero and stop there.
* Only printables + '\t' and '\n' are printed.
*/
if (!u8Prev)
DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
uint8_t u8 = '\0';
unsigned i;
for (i = 0; i < cb; i++)
{
u8Prev = u8;
u8 = *(uint8_t *)&achBuffer[i];
if ( u8 < 127
&& ( (RT_C_IS_PRINT(u8) && u8 >= 32)
|| u8 == '\t'
|| u8 == '\n'))
DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
else if (!u8)
break;
else
DBGCCmdHlpPrintf(pCmdHlp, "\\x%x", u8);
}
if (u8 == '\0')
cb = cbLeft = i + 1;
if (cbLeft - cb <= 0 && u8Prev != '\n')
DBGCCmdHlpPrintf(pCmdHlp, "\n");
}
/*
* Advance
*/
cbLeft -= (int)cb;
rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
if (cbLeft <= 0)
break;
}
NOREF(pCmd);
return VINF_SUCCESS;
}
/**
* Best guess at which paging mode currently applies to the guest
* paging structures.
*
* This have to come up with a decent answer even when the guest
* is in non-paged protected mode or real mode.
*
* @returns cr3.
* @param pDbgc The DBGC instance.
* @param pfPAE Where to store the page address extension indicator.
* @param pfLME Where to store the long mode enabled indicator.
* @param pfPSE Where to store the page size extension indicator.
* @param pfPGE Where to store the page global enabled indicator.
* @param pfNXE Where to store the no-execution enabled indicator.
*/
static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
{
PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
*pfPSE = !!(cr4 & X86_CR4_PSE);
*pfPGE = !!(cr4 & X86_CR4_PGE);
if (cr4 & X86_CR4_PAE)
{
*pfPSE = true;
*pfPAE = true;
}
else
*pfPAE = false;
*pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
*pfNXE = false; /* GUEST64 GUESTNX */
return CPUMGetGuestCR3(pVCpu);
}
/**
* Determine the shadow paging mode.
*
* @returns cr3.
* @param pDbgc The DBGC instance.
* @param pfPAE Where to store the page address extension indicator.
* @param pfLME Where to store the long mode enabled indicator.
* @param pfPSE Where to store the page size extension indicator.
* @param pfPGE Where to store the page global enabled indicator.
* @param pfNXE Where to store the no-execution enabled indicator.
*/
static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
{
PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
*pfPSE = true;
*pfPGE = false;
switch (PGMGetShadowMode(pVCpu))
{
default:
case PGMMODE_32_BIT:
*pfPAE = *pfLME = *pfNXE = false;
break;
case PGMMODE_PAE:
*pfLME = *pfNXE = false;
*pfPAE = true;
break;
case PGMMODE_PAE_NX:
*pfLME = false;
*pfPAE = *pfNXE = true;
break;
case PGMMODE_AMD64:
*pfNXE = false;
*pfPAE = *pfLME = true;
break;
case PGMMODE_AMD64_NX:
*pfPAE = *pfLME = *pfNXE = true;
break;
}
return PGMGetHyperCR3(pVCpu);
}
/**
* @interface_method_impl{FNDBCCMD, The 'dpd', 'dpda', 'dpdb', 'dpdg' and 'dpdh'
* commands.}
*/
static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Validate input.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
|| DBGCVAR_ISPOINTER(paArgs[0].enmType));
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Guest or shadow page directories? Get the paging parameters.
*/
bool fGuest = pCmd->pszCmd[3] != 'h';
if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
? pDbgc->fRegCtxGuest
: DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
bool fPAE, fLME, fPSE, fPGE, fNXE;
uint64_t cr3 = fGuest
? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
: dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
/*
* Setup default argument if none was specified.
* Fix address / index confusion.
*/
DBGCVAR VarDefault;
if (!cArgs)
{
if (pCmd->pszCmd[3] == 'a')
{
if (fLME || fPAE)
return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
if (fGuest)
DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
else
DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
}
else
DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
paArgs = &VarDefault;
cArgs = 1;
}
else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
{
/* If it's a number (not an address), it's an index, so convert it to an address. */
Assert(pCmd->pszCmd[3] != 'a');
VarDefault = paArgs[0];
if (fPAE)
return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
VarDefault.u.u64Number <<= X86_PD_SHIFT;
VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
paArgs = &VarDefault;
}
/*
* Locate the PDE to start displaying at.
*
* The 'dpda' command takes the address of a PDE, while the others are guest
* virtual address which PDEs should be displayed. So, 'dpda' is rather simple
* while the others require us to do all the tedious walking thru the paging
* hierarchy to find the intended PDE.
*/
unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
DBGCVAR VarGCPtr; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
DBGCVAR VarPDEAddr; /* The address of the current PDE. */
unsigned cEntries; /* The number of entries to display. */
unsigned cEntriesMax; /* The max number of entries to display. */
int rc;
if (pCmd->pszCmd[3] == 'a')
{
VarPDEAddr = paArgs[0];
switch (VarPDEAddr.enmRangeType)
{
case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
default: cEntries = 10; break;
}
cEntriesMax = PAGE_SIZE / cbEntry;
}
else
{
/*
* Determine the range.
*/
switch (paArgs[0].enmRangeType)
{
case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
default: cEntries = 10; break;
}
/*
* Normalize the input address, it must be a flat GC address.
*/
rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
{
VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
}
if (fPAE)
VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
else
VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
/*
* Do the paging walk until we get to the page directory.
*/
DBGCVAR VarCur;
if (fGuest)
DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
else
DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
if (fLME)
{
/* Page Map Level 4 Lookup. */
/* Check if it's a valid address first? */
VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
X86PML4E Pml4e;
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
if (!Pml4e.n.u1Present)
return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
Assert(fPAE);
}
if (fPAE)
{
/* Page directory pointer table. */
X86PDPE Pdpe;
VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
if (!Pdpe.n.u1Present)
return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
VarPDEAddr = VarCur;
VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
}
else
{
/* 32-bit legacy - CR3 == page directory. */
iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
VarPDEAddr = VarCur;
VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
}
cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
}
/* adjust cEntries */
cEntries = RT_MAX(1, cEntries);
cEntries = RT_MIN(cEntries, cEntriesMax);
/*
* The display loop.
*/
DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
&VarPDEAddr, iEntry);
do
{
/*
* Read.
*/
X86PDEPAE Pde;
Pde.u = 0;
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
/*
* Display.
*/
if (iEntry != ~0U)
{
DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
iEntry++;
}
if (fPSE && Pde.b.u1Size)
DBGCCmdHlpPrintf(pCmdHlp,
fPAE
? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
: "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
Pde.u,
Pde.u & X86_PDE_PAE_PG_MASK,
Pde.b.u1Present ? "p " : "np",
Pde.b.u1Write ? "w" : "r",
Pde.b.u1User ? "u" : "s",
Pde.b.u1Accessed ? "a " : "na",
Pde.b.u1Dirty ? "d " : "nd",
Pde.b.u3Available,
Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
Pde.b.u1WriteThru ? "pwt" : " ",
Pde.b.u1CacheDisable ? "pcd" : " ",
Pde.b.u1PAT ? "pat" : "",
Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
else
DBGCCmdHlpPrintf(pCmdHlp,
fPAE
? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
: "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
Pde.u,
Pde.u & X86_PDE_PAE_PG_MASK,
Pde.n.u1Present ? "p " : "np",
Pde.n.u1Write ? "w" : "r",
Pde.n.u1User ? "u" : "s",
Pde.n.u1Accessed ? "a " : "na",
Pde.u & RT_BIT(6) ? "6 " : " ",
Pde.n.u3Available,
Pde.u & RT_BIT(8) ? "8" : " ",
Pde.n.u1WriteThru ? "pwt" : " ",
Pde.n.u1CacheDisable ? "pcd" : " ",
Pde.u & RT_BIT(7) ? "7" : "",
Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
if (Pde.u & UINT64_C(0x7fff000000000000))
DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
if (RT_FAILURE(rc))
return rc;
/*
* Advance.
*/
VarPDEAddr.u.u64Number += cbEntry;
if (iEntry != ~0U)
VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
} while (cEntries-- > 0);
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'dpdb' command.}
*/
static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
if (RT_FAILURE(rc1))
return rc1;
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
return rc2;
}
/**
* @interface_method_impl{FNDBCCMD, The 'dph*' commands and main part of 'm'.}
*/
static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Figure the context and base flags.
*/
uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
if (pCmd->pszCmd[0] == 'm')
fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
else if (pCmd->pszCmd[3] == '\0')
fFlags |= pDbgc->fRegCtxGuest ? DBGFPGDMP_FLAGS_GUEST : DBGFPGDMP_FLAGS_SHADOW;
else if (pCmd->pszCmd[3] == 'g')
fFlags |= DBGFPGDMP_FLAGS_GUEST;
else if (pCmd->pszCmd[3] == 'h')
fFlags |= DBGFPGDMP_FLAGS_SHADOW;
else
AssertFailed();
if (pDbgc->cPagingHierarchyDumps == 0)
fFlags |= DBGFPGDMP_FLAGS_HEADER;
pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
/*
* Get the range.
*/
PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
RTGCPTR GCPtrFirst = NIL_RTGCPTR;
int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
uint64_t cbRange;
rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
if (cbRange >= GCPtrLast)
GCPtrLast = RTGCPTR_MAX;
else if (!cbRange)
GCPtrLast = GCPtrFirst;
else
GCPtrLast = GCPtrFirst + cbRange - 1;
/*
* Do we have a CR3?
*/
uint64_t cr3 = 0;
if (cArgs > 1)
{
if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
cr3 = paArgs[1].u.u64Number;
}
else
fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
/*
* Do we have a mode?
*/
if (cArgs > 2)
{
if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
static const struct MODETOFLAGS
{
const char *pszName;
uint32_t fFlags;
} s_aModeToFlags[] =
{
{ "ept", DBGFPGDMP_FLAGS_EPT },
{ "legacy", 0 },
{ "legacy-np", DBGFPGDMP_FLAGS_NP },
{ "pse", DBGFPGDMP_FLAGS_PSE },
{ "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
{ "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
{ "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
{ "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
{ "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
{ "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
{ "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
{ "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
{ "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
};
int i = RT_ELEMENTS(s_aModeToFlags);
while (i-- > 0)
if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
{
fFlags |= s_aModeToFlags[i].fFlags;
break;
}
if (i < 0)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
}
else
fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
/*
* Call the worker.
*/
rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'dpg*' commands.}
*/
static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Validate input.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
if (pCmd->pszCmd[3] == 'a')
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
else
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
|| DBGCVAR_ISPOINTER(paArgs[0].enmType));
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Guest or shadow page tables? Get the paging parameters.
*/
bool fGuest = pCmd->pszCmd[3] != 'h';
if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
? pDbgc->fRegCtxGuest
: DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
bool fPAE, fLME, fPSE, fPGE, fNXE;
uint64_t cr3 = fGuest
? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
: dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
/*
* Locate the PTE to start displaying at.
*
* The 'dpta' command takes the address of a PTE, while the others are guest
* virtual address which PTEs should be displayed. So, 'pdta' is rather simple
* while the others require us to do all the tedious walking thru the paging
* hierarchy to find the intended PTE.
*/
unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
DBGCVAR VarPTEAddr; /* The address of the current PTE. */
unsigned cEntries; /* The number of entries to display. */
unsigned cEntriesMax; /* The max number of entries to display. */
int rc;
if (pCmd->pszCmd[3] == 'a')
{
VarPTEAddr = paArgs[0];
switch (VarPTEAddr.enmRangeType)
{
case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
default: cEntries = 10; break;
}
cEntriesMax = PAGE_SIZE / cbEntry;
}
else
{
/*
* Determine the range.
*/
switch (paArgs[0].enmRangeType)
{
case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
default: cEntries = 10; break;
}
/*
* Normalize the input address, it must be a flat GC address.
*/
rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
{
VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
}
VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
/*
* Do the paging walk until we get to the page table.
*/
DBGCVAR VarCur;
if (fGuest)
DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
else
DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
if (fLME)
{
/* Page Map Level 4 Lookup. */
/* Check if it's a valid address first? */
VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
X86PML4E Pml4e;
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
if (!Pml4e.n.u1Present)
return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
Assert(fPAE);
}
if (fPAE)
{
/* Page directory pointer table. */
X86PDPE Pdpe;
VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
if (!Pdpe.n.u1Present)
return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
/* Page directory (PAE). */
X86PDEPAE Pde;
VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
if (!Pde.n.u1Present)
return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
if (fPSE && Pde.n.u1Size)
return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
VarPTEAddr = VarCur;
VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
}
else
{
/* Page directory (legacy). */
X86PDE Pde;
VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
if (!Pde.n.u1Present)
return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
if (fPSE && Pde.n.u1Size)
return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
VarPTEAddr = VarCur;
VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
}
cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
}
/* adjust cEntries */
cEntries = RT_MAX(1, cEntries);
cEntries = RT_MIN(cEntries, cEntriesMax);
/*
* The display loop.
*/
DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
&VarPTEAddr, &VarGCPtr, iEntry);
do
{
/*
* Read.
*/
X86PTEPAE Pte;
Pte.u = 0;
rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
/*
* Display.
*/
if (iEntry != ~0U)
{
DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
iEntry++;
}
DBGCCmdHlpPrintf(pCmdHlp,
fPAE
? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
: "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
Pte.u,
Pte.u & X86_PTE_PAE_PG_MASK,
Pte.n.u1Present ? "p " : "np",
Pte.n.u1Write ? "w" : "r",
Pte.n.u1User ? "u" : "s",
Pte.n.u1Accessed ? "a " : "na",
Pte.n.u1Dirty ? "d " : "nd",
Pte.n.u3Available,
Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
Pte.n.u1WriteThru ? "pwt" : " ",
Pte.n.u1CacheDisable ? "pcd" : " ",
Pte.n.u1PAT ? "pat" : " ",
Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
);
if (Pte.u & UINT64_C(0x7fff000000000000))
DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
if (RT_FAILURE(rc))
return rc;
/*
* Advance.
*/
VarPTEAddr.u.u64Number += cbEntry;
if (iEntry != ~0U)
VarGCPtr.u.GCFlat += PAGE_SIZE;
} while (cEntries-- > 0);
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'dptb' command.}
*/
static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
if (RT_FAILURE(rc1))
return rc1;
NOREF(pCmd); NOREF(cArgs);
return rc2;
}
/**
* @interface_method_impl{FNDBCCMD, The 'dt' command.}
*/
static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
int rc;
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
if (cArgs == 1)
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
&& paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
/*
* Check if the command indicates the type.
*/
enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
if (!strcmp(pCmd->pszCmd, "dt16"))
enmTssType = kTss16;
else if (!strcmp(pCmd->pszCmd, "dt32"))
enmTssType = kTss32;
else if (!strcmp(pCmd->pszCmd, "dt64"))
enmTssType = kTss64;
/*
* We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
*/
uint32_t SelTss = UINT32_MAX;
DBGCVAR VarTssAddr;
if (cArgs == 0)
{
/** @todo consider querying the hidden bits instead (missing API). */
uint16_t SelTR;
rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
SelTss = SelTR;
}
else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
{
if (paArgs[0].u.u64Number < 0xffff)
DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
else
{
if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
{
VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
VarTssAddr.u64Range = paArgs[0].u64Range;
}
}
}
else
VarTssAddr = paArgs[0];
/*
* Deal with TSS:ign by means of the GDT.
*/
if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
{
SelTss = VarTssAddr.u.GCFar.sel;
DBGFSELINFO SelInfo;
rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
if (SelInfo.u.Raw.Gen.u1DescType)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
switch (SelInfo.u.Raw.Gen.u4Type)
{
case X86_SEL_TYPE_SYS_286_TSS_BUSY:
case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
if (enmTssType == kTssToBeDetermined)
enmTssType = kTss16;
break;
case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
if (enmTssType == kTssToBeDetermined)
enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
break;
default:
return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
}
DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
}
/*
* Determine the TSS type if none is currently given.
*/
if (enmTssType == kTssToBeDetermined)
{
if ( VarTssAddr.u64Range > 0
&& VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
enmTssType = kTss16;
else
{
uint64_t uEfer;
rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
if ( RT_FAILURE(rc)
|| !(uEfer & MSR_K6_EFER_LMA) )
enmTssType = kTss32;
else
enmTssType = kTss64;
}
}
/*
* Figure the min/max sizes.
* ASSUMES max TSS size is 64 KB.
*/
uint32_t cbTssMin;
uint32_t cbTssMax;
switch (enmTssType)
{
case kTss16:
cbTssMin = cbTssMax = sizeof(X86TSS16);
break;
case kTss32:
cbTssMin = RT_OFFSETOF(X86TSS32, IntRedirBitmap);
cbTssMax = _64K;
break;
case kTss64:
cbTssMin = RT_OFFSETOF(X86TSS64, IntRedirBitmap);
cbTssMax = _64K;
break;
default:
AssertFailedReturn(VERR_INTERNAL_ERROR);
}
uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
if (cbTss == 0)
cbTss = cbTssMin;
else if (cbTss < cbTssMin)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
else if (cbTss > cbTssMax)
cbTss = cbTssMax;
DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
/*
* Read the TSS into a temporary buffer.
*/
uint8_t abBuf[_64K];
size_t cbTssRead;
rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
if (cbTssRead < cbTssMin)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
cbTssRead, cbTssMin);
if (cbTssRead < cbTss)
memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
/*
* Format the TSS.
*/
uint16_t offIoBitmap;
switch (enmTssType)
{
case kTss16:
{
PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
if (SelTss != UINT32_MAX)
DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
else
DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
DBGCCmdHlpPrintf(pCmdHlp,
"ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
"ip=%04x sp=%04x bp=%04x\n"
"cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
"ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
"prev=%04x ldtr=%04x\n"
,
pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
pTss->ip, pTss->sp, pTss->bp,
pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
pTss->selPrev, pTss->selLdt);
if (pTss->cs != 0)
pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
offIoBitmap = 0;
break;
}
case kTss32:
{
PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
if (SelTss != UINT32_MAX)
DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
else
DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
DBGCCmdHlpPrintf(pCmdHlp,
"eax=%08x bx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
"eip=%08x esp=%08x ebp=%08x\n"
"cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
"ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
"prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
,
pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
pTss->eip, pTss->esp, pTss->ebp,
pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
if (pTss->cs != 0)
pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
offIoBitmap = pTss->offIoBitmap;
break;
}
case kTss64:
{
PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
if (SelTss != UINT32_MAX)
DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
else
DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
DBGCCmdHlpPrintf(pCmdHlp,
"rsp0=%016RX16 rsp1=%016RX16 rsp2=%016RX16\n"
"ist1=%016RX16 ist2=%016RX16\n"
"ist3=%016RX16 ist4=%016RX16\n"
"ist5=%016RX16 ist6=%016RX16\n"
"ist7=%016RX16 iomap=%04x\n"
,
pTss->rsp0, pTss->rsp1, pTss->rsp2,
pTss->ist1, pTss->ist2,
pTss->ist3, pTss->ist4,
pTss->ist5, pTss->ist6,
pTss->ist7, pTss->offIoBitmap);
offIoBitmap = pTss->offIoBitmap;
break;
}
default:
AssertFailedReturn(VERR_INTERNAL_ERROR);
}
/*
* Dump the interrupt redirection bitmap.
*/
if (enmTssType != kTss16)
{
if ( offIoBitmap > cbTssMin
&& offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
{
if (offIoBitmap - cbTssMin >= 32)
{
DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
uint32_t iStart = 0;
bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
for (uint32_t i = 0; i < 256; i++)
{
bool fThis = ASMBitTest(pbIntRedirBitmap, i);
if (fThis != fPrev)
{
DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
fPrev = fThis;
iStart = i;
}
}
if (iStart != 255)
DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
}
else
DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
}
else if (offIoBitmap > 0)
DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
else
DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
}
/*
* Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x64
* (that applies to both 32-bit and 64-bit TSSs since their size is the same).
*/
if (enmTssType != kTss16)
{
if (offIoBitmap < cbTss && offIoBitmap >= 0x64)
{
uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
DBGCVAR VarAddr;
DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
uint32_t iStart = 0;
bool fPrev = ASMBitTest(pbIoBitmap, 0);
uint32_t cLine = 0;
for (uint32_t i = 1; i < cPorts; i++)
{
bool fThis = ASMBitTest(pbIoBitmap, i);
if (fThis != fPrev)
{
cLine++;
DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
fPrev = fThis;
iStart = i;
}
}
if (iStart != _64K-1)
DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
}
else if (offIoBitmap > 0)
DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
else
DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
}
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'm' command.}
*/
static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
}
/**
* Converts one or more variables into a byte buffer for a
* given unit size.
*
* @returns VBox status codes:
* @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
* @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
* @retval VINF_SUCCESS on success.
*
* @param pvBuf The buffer to convert into.
* @param pcbBuf The buffer size on input. The size of the result on output.
* @param cbUnit The unit size to apply when converting.
* The high bit is used to indicate unicode string.
* @param paVars The array of variables to convert.
* @param cVars The number of variables.
*/
int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
{
union
{
uint8_t *pu8;
uint16_t *pu16;
uint32_t *pu32;
uint64_t *pu64;
} u, uEnd;
u.pu8 = (uint8_t *)pvBuf;
uEnd.pu8 = u.pu8 + *pcbBuf;
unsigned i;
for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
{
switch (paVars[i].enmType)
{
case DBGCVAR_TYPE_GC_FAR:
case DBGCVAR_TYPE_GC_FLAT:
case DBGCVAR_TYPE_GC_PHYS:
case DBGCVAR_TYPE_HC_FLAT:
case DBGCVAR_TYPE_HC_PHYS:
case DBGCVAR_TYPE_NUMBER:
{
uint64_t u64 = paVars[i].u.u64Number;
switch (cbUnit & 0x1f)
{
case 1:
do
{
*u.pu8++ = u64;
u64 >>= 8;
} while (u64);
break;
case 2:
do
{
*u.pu16++ = u64;
u64 >>= 16;
} while (u64);
break;
case 4:
*u.pu32++ = u64;
u64 >>= 32;
if (u64)
*u.pu32++ = u64;
break;
case 8:
*u.pu64++ = u64;
break;
}
break;
}
case DBGCVAR_TYPE_STRING:
case DBGCVAR_TYPE_SYMBOL:
{
const char *psz = paVars[i].u.pszString;
size_t cbString = strlen(psz);
if (cbUnit & RT_BIT_32(31))
{
/* Explode char to unit. */
if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
{
pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
return VERR_TOO_MUCH_DATA;
}
while (*psz)
{
switch (cbUnit & 0x1f)
{
case 1: *u.pu8++ = *psz; break;
case 2: *u.pu16++ = *psz; break;
case 4: *u.pu32++ = *psz; break;
case 8: *u.pu64++ = *psz; break;
}
psz++;
}
}
else
{
/* Raw copy with zero padding if the size isn't aligned. */
if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
{
pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
return VERR_TOO_MUCH_DATA;
}
size_t cbCopy = cbString & ~(cbUnit - 1);
memcpy(u.pu8, psz, cbCopy);
u.pu8 += cbCopy;
psz += cbCopy;
size_t cbReminder = cbString & (cbUnit - 1);
if (cbReminder)
{
memcpy(u.pu8, psz, cbString & (cbUnit - 1));
memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
u.pu8 += cbUnit;
}
}
break;
}
default:
*pcbBuf = u.pu8 - (uint8_t *)pvBuf;
pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
"i=%d enmType=%d\n", i, paVars[i].enmType);
return VERR_INTERNAL_ERROR;
}
}
*pcbBuf = u.pu8 - (uint8_t *)pvBuf;
if (i != cVars)
{
pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
return VERR_TOO_MUCH_DATA;
}
return VINF_SUCCESS;
}
/**
* @interface_method_impl{FNDBCCMD, The 'eb', 'ew', 'ed' and 'eq' commands.}
*/
static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
unsigned iArg;
/*
* Validate input.
*/
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
for (iArg = 1; iArg < cArgs; iArg++)
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
/*
* Figure out the element size.
*/
unsigned cbElement;
switch (pCmd->pszCmd[1])
{
default:
case 'b': cbElement = 1; break;
case 'w': cbElement = 2; break;
case 'd': cbElement = 4; break;
case 'q': cbElement = 8; break;
}
/*
* Do setting.
*/
DBGCVAR Addr = paArgs[0];
for (iArg = 1;;)
{
size_t cbWritten;
int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
if (cbWritten != cbElement)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
/* advance. */
iArg++;
if (iArg >= cArgs)
break;
rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
}
return VINF_SUCCESS;
}
/**
* Executes the search.
*
* @returns VBox status code.
* @param pCmdHlp The command helpers.
* @param pUVM The user mode VM handle.
* @param pAddress The address to start searching from. (undefined on output)
* @param cbRange The address range to search. Must not wrap.
* @param pabBytes The byte pattern to search for.
* @param cbBytes The size of the pattern.
* @param cbUnit The search unit.
* @param cMaxHits The max number of hits.
* @param pResult Where to store the result if it's a function invocation.
*/
static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
const uint8_t *pabBytes, uint32_t cbBytes,
uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Do the search.
*/
uint64_t cHits = 0;
for (;;)
{
/* search */
DBGFADDRESS HitAddress;
int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
if (RT_FAILURE(rc))
{
if (rc != VERR_DBGF_MEM_NOT_FOUND)
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
/* update the current address so we can save it (later). */
pAddress->off += cbRange;
pAddress->FlatPtr += cbRange;
cbRange = 0;
break;
}
/* report result */
DBGCVAR VarCur;
rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
if (RT_FAILURE(rc))
return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
if (!pResult)
pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
else
DBGCVAR_ASSIGN(pResult, &VarCur);
/* advance */
cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
*pAddress = HitAddress;
pAddress->FlatPtr += cbBytes;
pAddress->off += cbBytes;
if (cbRange <= cbBytes)
{
cbRange = 0;
break;
}
cbRange -= cbBytes;
if (++cHits >= cMaxHits)
{
/// @todo save the search.
break;
}
}
/*
* Save the search so we can resume it...
*/
if (pDbgc->abSearch != pabBytes)
{
memcpy(pDbgc->abSearch, pabBytes, cbBytes);
pDbgc->cbSearch = cbBytes;
pDbgc->cbSearchUnit = cbUnit;
}
pDbgc->cMaxSearchHits = cMaxHits;
pDbgc->SearchAddr = *pAddress;
pDbgc->cbSearchRange = cbRange;
return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
}
/**
* Resumes the previous search.
*
* @returns VBox status code.
* @param pCmdHlp Pointer to the command helper functions.
* @param pUVM The user mode VM handle.
* @param pResult Where to store the result of a function invocation.
*/
static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Make sure there is a previous command.
*/
if (!pDbgc->cbSearch)
{
DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
return VERR_DBGC_COMMAND_FAILED;
}
/*
* Make range and address adjustments.
*/
DBGFADDRESS Address = pDbgc->SearchAddr;
if (Address.FlatPtr == ~(RTGCUINTPTR)0)
{
Address.FlatPtr -= Address.off;
Address.off = 0;
}
RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
if (!cbRange)
cbRange = ~(RTGCUINTPTR)0;
if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
}
/**
* Search memory, worker for the 's' and 's?' functions.
*
* @returns VBox status.
* @param pCmdHlp Pointer to the command helper functions.
* @param pUVM The user mode VM handle.
* @param pAddress Where to start searching. If no range, search till end of address space.
* @param cMaxHits The maximum number of hits.
* @param chType The search type.
* @param paPatArgs The pattern variable array.
* @param cPatArgs Number of pattern variables.
* @param pResult Where to store the result of a function invocation.
*/
static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
{
if (pResult)
DBGCVAR_INIT_GC_FLAT(pResult, 0);
/*
* Convert the search pattern into bytes and DBGFR3MemScan can deal with.
*/
uint32_t cbUnit;
switch (chType)
{
case 'a':
case 'b': cbUnit = 1; break;
case 'u': cbUnit = 2 | RT_BIT_32(31); break;
case 'w': cbUnit = 2; break;
case 'd': cbUnit = 4; break;
case 'q': cbUnit = 8; break;
default:
return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
}
uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
uint32_t cbBytes = sizeof(abBytes);
int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
if (RT_FAILURE(rc))
return VERR_DBGC_COMMAND_FAILED;
/*
* Make DBGF address and fix the range.
*/
DBGFADDRESS Address;
rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
RTGCUINTPTR cbRange;
switch (pAddress->enmRangeType)
{
case DBGCVAR_RANGE_BYTES:
cbRange = pAddress->u64Range;
if (cbRange != pAddress->u64Range)
cbRange = ~(RTGCUINTPTR)0;
break;
case DBGCVAR_RANGE_ELEMENTS:
cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
if ( cbRange != pAddress->u64Range * cbUnit
|| cbRange < pAddress->u64Range)
cbRange = ~(RTGCUINTPTR)0;
break;
default:
cbRange = ~(RTGCUINTPTR)0;
break;
}
if (Address.FlatPtr + cbRange < Address.FlatPtr)
cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
/*
* Ok, do it.
*/
return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
}
/**
* @interface_method_impl{FNDBCCMD, The 's' command.}
*/
static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/* check that the parser did what it's supposed to do. */
//if ( cArgs <= 2
// && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
// return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
/*
* Repeat previous search?
*/
if (cArgs == 0)
return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
/*
* Parse arguments.
*/
return -1;
}
/**
* @interface_method_impl{FNDBCCMD, The 's?' command.}
*/
static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/* check that the parser did what it's supposed to do. */
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
}
/**
* List near symbol.
*
* @returns VBox status code.
* @param pCmdHlp Pointer to command helper functions.
* @param pUVM The user mode VM handle.
* @param pArg Pointer to the address or symbol to lookup.
*/
static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
RTDBGSYMBOL Symbol;
int rc;
if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
{
/*
* Lookup the symbol address.
*/
rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
}
else
{
/*
* Convert it to a flat GC address and lookup that address.
*/
DBGCVAR AddrVar;
rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
RTINTPTR offDisp;
DBGFADDRESS Addr;
rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDisp, &Symbol, NULL);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3ASymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
if (!offDisp)
rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
else if (offDisp > 0)
rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
else
rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
if (Symbol.cb > 0)
rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
else
rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
}
return rc;
}
/**
* @interface_method_impl{FNDBCCMD, The 'ln' (listnear) command.}
*/
static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
if (!cArgs)
{
/*
* Current cs:eip symbol.
*/
DBGCVAR AddrVar;
const char *pszFmtExpr = pDbgc->fRegCtxGuest ? "%%(cs:eip)" : "%%(.cs:.eip)";
int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
}
/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
/*
* Iterate arguments.
*/
for (unsigned iArg = 0; iArg < cArgs; iArg++)
{
int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
if (RT_FAILURE(rc))
return rc;
}
NOREF(pCmd);
return VINF_SUCCESS;
}
/**
* Matches the module patters against a module name.
*
* @returns true if matching, otherwise false.
* @param pszName The module name.
* @param paArgs The module pattern argument list.
* @param cArgs Number of arguments.
*/
static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
{
for (uint32_t i = 0; i < cArgs; i++)
if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
return true;
return false;
}
/**
* @interface_method_impl{FNDBCCMD, The 'ln' (list near) command.}
*/
static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
bool const fMappings = pCmd->pszCmd[2] == 'o';
bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
/*
* Iterate the modules in the current address space and print info about
* those matching the input.
*/
RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, pDbgc->hDbgAs);
uint32_t cMods = RTDbgAsModuleCount(hAs);
for (uint32_t iMod = 0; iMod < cMods; iMod++)
{
RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
if (hMod != NIL_RTDBGMOD)
{
bool const fDeferred = RTDbgModIsDeferred(hMod);
bool const fExports = RTDbgModIsExports(hMod);
uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
const char * const pszName = RTDbgModName(hMod);
const char * const pszImgFile = RTDbgModImageFile(hMod);
const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
const char * const pszDbgFile = RTDbgModDebugFile(hMod);
if ( cArgs == 0
|| dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
{
/*
* Find the mapping with the lower address, preferring a full
* image mapping, for the main line.
*/
RTDBGASMAPINFO aMappings[128];
uint32_t cMappings = RT_ELEMENTS(aMappings);
int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
if (RT_SUCCESS(rc))
{
bool fFull = false;
RTUINTPTR uMin = RTUINTPTR_MAX;
for (uint32_t iMap = 0; iMap < cMappings; iMap++)
if ( aMappings[iMap].Address < uMin
&& ( !fFull
|| aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
uMin = aMappings[iMap].Address;
if (!fVerbose || !pszImgFile)
DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
else
DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
if (fVerbose && pszImgFileUsed)
DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
if (fVerbose && pszDbgFile)
DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
if (fMappings)
{
/* sort by address first - not very efficient. */
for (uint32_t i = 0; i + 1 < cMappings; i++)
for (uint32_t j = i + 1; j < cMappings; j++)
if (aMappings[j].Address < aMappings[i].Address)
{
RTDBGASMAPINFO Tmp = aMappings[j];
aMappings[j] = aMappings[i];
aMappings[i] = Tmp;
}
/* print */
if ( cMappings == 1
&& aMappings[0].iSeg == NIL_RTDBGSEGIDX
&& !fDeferred)
{
for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
{
RTDBGSEGMENT SegInfo;
rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
if (RT_SUCCESS(rc))
{
if (SegInfo.uRva != RTUINTPTR_MAX)
DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
(RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
(RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
else
DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
sizeof(RTGCUINTPTR)*2, "noload",
(RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
}
else
DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
}
}
else
{
for (uint32_t iMap = 0; iMap < cMappings; iMap++)
if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
(RTGCUINTPTR)aMappings[iMap].Address,
(RTGCUINTPTR)RTDbgModImageSize(hMod));
else if (!fDeferred)
{
RTDBGSEGMENT SegInfo;
rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
if (RT_FAILURE(rc))
{
RT_ZERO(SegInfo);
strcpy(SegInfo.szName, "error");
}
DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
(RTGCUINTPTR)aMappings[iMap].Address,
(RTGCUINTPTR)SegInfo.cb,
aMappings[iMap].iSeg, SegInfo.szName);
}
else
DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
(RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
}
}
}
else
DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
/** @todo missing address space API for enumerating the mappings. */
}
RTDbgModRelease(hMod);
}
}
RTDbgAsRelease(hAs);
NOREF(pCmd);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{Reads a unsigned 8-bit value.}
*/
static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
uint8_t b;
int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
if (RT_FAILURE(rc))
return rc;
DBGCVAR_INIT_NUMBER(pResult, b);
NOREF(pFunc);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{Reads a unsigned 16-bit value.}
*/
static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
uint16_t u16;
int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
if (RT_FAILURE(rc))
return rc;
DBGCVAR_INIT_NUMBER(pResult, u16);
NOREF(pFunc);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{Reads a unsigned 32-bit value.}
*/
static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
uint32_t u32;
int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
if (RT_FAILURE(rc))
return rc;
DBGCVAR_INIT_NUMBER(pResult, u32);
NOREF(pFunc);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{Reads a unsigned 64-bit value.}
*/
static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
uint64_t u64;
int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
if (RT_FAILURE(rc))
return rc;
DBGCVAR_INIT_NUMBER(pResult, u64);
NOREF(pFunc);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{Reads a unsigned pointer-sized value.}
*/
static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
if (enmMode == CPUMMODE_LONG)
return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
}
/**
* @callback_method_impl{The hi(value) function implementation.}
*/
static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
uint16_t uHi;
switch (paArgs[0].enmType)
{
case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
default:
AssertFailedReturn(VERR_DBGC_PARSE_BUG);
}
DBGCVAR_INIT_NUMBER(pResult, uHi);
DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{The low(value) function implementation.}
*/
static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
uint16_t uLow;
switch (paArgs[0].enmType)
{
case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
default:
AssertFailedReturn(VERR_DBGC_PARSE_BUG);
}
DBGCVAR_INIT_NUMBER(pResult, uLow);
DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{The low(value) function implementation.}
*/
static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
PDBGCVAR pResult)
{
AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
}
/** Generic pointer argument wo/ range. */
static const DBGCVARDESC g_aArgPointerWoRange[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
};
/** Generic pointer or number argument. */
static const DBGCVARDESC g_aArgPointerNumber[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
};
/** Function descriptors for the CodeView / WinDbg emulation.
* The emulation isn't attempting to be identical, only somewhat similar.
*/
const DBGCFUNC g_aFuncsCodeView[] =
{
{ "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
{ "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
{ "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
{ "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
{ "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
{ "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
{ "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
{ "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
};
/** The number of functions in the CodeView/WinDbg emulation. */
const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);