/*
* Copyright (c) 2008, Oracle and/or its affiliates. All rights reserved.
*/
#ifndef __R300_REG_H_
#define __R300_REG_H_
#ifdef __cplusplus
extern "C" {
#endif
/*
* Copyright (C) 2004-2005 Nicolai Haehnle et al.
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#define R300_MC_INIT_MISC_LAT_TIMER 0x180
#define R300_MC_MISC__MC_CPR_INIT_LAT_SHIFT 0
#define R300_MC_MISC__MC_VF_INIT_LAT_SHIFT 4
#define R300_MC_MISC__MC_DISP0R_INIT_LAT_SHIFT 8
#define R300_MC_MISC__MC_DISP1R_INIT_LAT_SHIFT 12
#define R300_MC_MISC__MC_FIXED_INIT_LAT_SHIFT 16
#define R300_MC_MISC__MC_E2R_INIT_LAT_SHIFT 20
#define R300_MC_MISC__MC_SAME_PAGE_PRIO_SHIFT 24
#define R300_MC_MISC__MC_GLOBW_INIT_LAT_SHIFT 28
#define R300_MC_INIT_GFX_LAT_TIMER 0x154
#define R300_MC_MISC__MC_G3D0R_INIT_LAT_SHIFT 0
#define R300_MC_MISC__MC_G3D1R_INIT_LAT_SHIFT 4
#define R300_MC_MISC__MC_G3D2R_INIT_LAT_SHIFT 8
#define R300_MC_MISC__MC_G3D3R_INIT_LAT_SHIFT 12
#define R300_MC_MISC__MC_TX0R_INIT_LAT_SHIFT 16
#define R300_MC_MISC__MC_TX1R_INIT_LAT_SHIFT 20
#define R300_MC_MISC__MC_GLOBR_INIT_LAT_SHIFT 24
#define R300_MC_MISC__MC_GLOBW_FULL_LAT_SHIFT 28
/*
* This file contains registers and constants for the R300. They have been
* found mostly by examining command buffers captured using glxtest, as well
* as by extrapolating some known registers and constants from the R200.
*
* I am fairly certain that they are correct unless stated otherwise in
* comments.
*/
#define R300_SE_VPORT_XSCALE 0x1D98
#define R300_SE_VPORT_XOFFSET 0x1D9C
#define R300_SE_VPORT_YSCALE 0x1DA0
#define R300_SE_VPORT_YOFFSET 0x1DA4
#define R300_SE_VPORT_ZSCALE 0x1DA8
#define R300_SE_VPORT_ZOFFSET 0x1DAC
// This register is written directly and also starts data
// section in many 3d CP_PACKET3's
#define R300_VAP_VF_CNTL 0x2084
#define R300_VAP_VF_CNTL__PRIM_TYPE__SHIFT 0
#define R300_VAP_VF_CNTL__PRIM_NONE (0<<0)
#define R300_VAP_VF_CNTL__PRIM_POINTS (1<<0)
#define R300_VAP_VF_CNTL__PRIM_LINES (2<<0)
#define R300_VAP_VF_CNTL__PRIM_LINE_STRIP (3<<0)
#define R300_VAP_VF_CNTL__PRIM_TRIANGLES (4<<0)
#define R300_VAP_VF_CNTL__PRIM_TRIANGLE_FAN (5<<0)
#define R300_VAP_VF_CNTL__PRIM_TRIANGLE_STRIP (6<<0)
#define R300_VAP_VF_CNTL__PRIM_LINE_LOOP (12<<0)
#define R300_VAP_VF_CNTL__PRIM_QUADS (13<<0)
#define R300_VAP_VF_CNTL__PRIM_QUAD_STRIP (14<<0)
#define R300_VAP_VF_CNTL__PRIM_POLYGON (15<<0)
#define R300_VAP_VF_CNTL__PRIM_WALK__SHIFT 4
/* State based - direct writes to registers trigger vertex generation */
#define R300_VAP_VF_CNTL__PRIM_WALK_STATE_BASED (0<<4)
#define R300_VAP_VF_CNTL__PRIM_WALK_INDICES (1<<4)
#define R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_LIST (2<<4)
#define R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_EMBEDDED (3<<4)
/* I don't think I saw these three used.. */
#define R300_VAP_VF_CNTL__COLOR_ORDER__SHIFT 6
#define R300_VAP_VF_CNTL__TCL_OUTPUT_CTL_ENA__SHIFT 9
#define R300_VAP_VF_CNTL__PROG_STREAM_ENA__SHIFT 10
/* index size - when not set the indices are assumed to be 16 bit */
#define R300_VAP_VF_CNTL__INDEX_SIZE_32bit (1<<11)
/* number of vertices */
#define R300_VAP_VF_CNTL__NUM_VERTICES__SHIFT 16
/* BEGIN: Wild guesses */
#define R300_VAP_OUTPUT_VTX_FMT_0 0x2090
#define R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT (1<<0)
#define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_PRESENT (1<<1)
#define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_1_PRESENT (1<<2) /* GUESS */
#define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_2_PRESENT (1<<3) /* GUESS */
#define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_3_PRESENT (1<<4) /* GUESS */
#define R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT (1<<16) /* GUESS */
#define R300_VAP_OUTPUT_VTX_FMT_1 0x2094
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_0_COMP_CNT_SHIFT 0
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_1_COMP_CNT_SHIFT 3
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_2_COMP_CNT_SHIFT 6
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_3_COMP_CNT_SHIFT 9
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_4_COMP_CNT_SHIFT 12
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_5_COMP_CNT_SHIFT 15
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_6_COMP_CNT_SHIFT 18
#define R300_VAP_OUTPUT_VTX_FMT_1__TEX_7_COMP_CNT_SHIFT 21
/* END */
#define R300_SE_VTE_CNTL 0x20b0
#define R300_VPORT_X_SCALE_ENA 0x00000001
#define R300_VPORT_X_OFFSET_ENA 0x00000002
#define R300_VPORT_Y_SCALE_ENA 0x00000004
#define R300_VPORT_Y_OFFSET_ENA 0x00000008
#define R300_VPORT_Z_SCALE_ENA 0x00000010
#define R300_VPORT_Z_OFFSET_ENA 0x00000020
#define R300_VTX_XY_FMT 0x00000100
#define R300_VTX_Z_FMT 0x00000200
#define R300_VTX_W0_FMT 0x00000400
#define R300_VTX_W0_NORMALIZE 0x00000800
#define R300_VTX_ST_DENORMALIZED 0x00001000
/* BEGIN: Vertex data assembly - lots of uncertainties */
/* gap */
// Where do we get our vertex data?
//
// Vertex data either comes either from immediate mode registers or from
// vertex arrays.
// There appears to be no mixed mode (though we can force the pitch of
// vertex arrays to 0, effectively reusing the same element over and over
// again).
//
// Immediate mode is controlled by the INPUT_CNTL registers. I am not sure
// if these registers influence vertex array processing.
//
// Vertex arrays are controlled via the 3D_LOAD_VBPNTR packet3.
//
// In both cases, vertex attributes are then passed through INPUT_ROUTE.
// Beginning with INPUT_ROUTE_0_0 is a list of WORDs that route vertex data
// into the vertex processor's input registers.
// The first word routes the first input, the second word the second, etc.
// The corresponding input is routed into the register with the given index.
// The list is ended by a word with INPUT_ROUTE_END set.
//
// Always set COMPONENTS_4 in immediate mode. */
#define R300_VAP_INPUT_ROUTE_0_0 0x2150
#define R300_INPUT_ROUTE_COMPONENTS_1 (0 << 0)
#define R300_INPUT_ROUTE_COMPONENTS_2 (1 << 0)
#define R300_INPUT_ROUTE_COMPONENTS_3 (2 << 0)
#define R300_INPUT_ROUTE_COMPONENTS_4 (3 << 0)
#define R300_INPUT_ROUTE_COMPONENTS_RGBA (4 << 0) /* GUESS */
#define R300_VAP_INPUT_ROUTE_IDX_SHIFT 8
#define R300_VAP_INPUT_ROUTE_IDX_MASK (31 << 8) /* GUESS */
#define R300_VAP_INPUT_ROUTE_END (1 << 13)
#define R300_INPUT_ROUTE_IMMEDIATE_MODE (0 << 14) /* GUESS */
#define R300_INPUT_ROUTE_FLOAT (1 << 14) /* GUESS */
#define R300_INPUT_ROUTE_UNSIGNED_BYTE (2 << 14) /* GUESS */
#define R300_INPUT_ROUTE_FLOAT_COLOR (3 << 14) /* GUESS */
#define R300_VAP_INPUT_ROUTE_0_1 0x2154
#define R300_VAP_INPUT_ROUTE_0_2 0x2158
#define R300_VAP_INPUT_ROUTE_0_3 0x215C
#define R300_VAP_INPUT_ROUTE_0_4 0x2160
#define R300_VAP_INPUT_ROUTE_0_5 0x2164
#define R300_VAP_INPUT_ROUTE_0_6 0x2168
#define R300_VAP_INPUT_ROUTE_0_7 0x216C
/* gap */
// Notes:
// - always set up to produce at least two attributes:
// if vertex program uses only position, fglrx will set normal, too
// - INPUT_CNTL_0_COLOR and INPUT_CNTL_COLOR bits are always equal */
#define R300_VAP_INPUT_CNTL_0 0x2180
#define R300_INPUT_CNTL_0_COLOR 0x00000001
#define R300_VAP_INPUT_CNTL_1 0x2184
#define R300_INPUT_CNTL_POS 0x00000001
#define R300_INPUT_CNTL_NORMAL 0x00000002
#define R300_INPUT_CNTL_COLOR 0x00000004
#define R300_INPUT_CNTL_TC0 0x00000400
#define R300_INPUT_CNTL_TC1 0x00000800
#define R300_INPUT_CNTL_TC2 0x00001000 /* GUESS */
#define R300_INPUT_CNTL_TC3 0x00002000 /* GUESS */
#define R300_INPUT_CNTL_TC4 0x00004000 /* GUESS */
#define R300_INPUT_CNTL_TC5 0x00008000 /* GUESS */
#define R300_INPUT_CNTL_TC6 0x00010000 /* GUESS */
#define R300_INPUT_CNTL_TC7 0x00020000 /* GUESS */
/* gap */
// Words parallel to INPUT_ROUTE_0; All words that are active in INPUT_ROUTE_0
// are set to a swizzling bit pattern, other words are 0.
//
// In immediate mode, the pattern is always set to xyzw. In vertex array
// mode, the swizzling pattern is e.g. used to set zw components in texture
// coordinates with only tweo components
#define R300_VAP_INPUT_ROUTE_1_0 0x21E0
#define R300_INPUT_ROUTE_SELECT_X 0
#define R300_INPUT_ROUTE_SELECT_Y 1
#define R300_INPUT_ROUTE_SELECT_Z 2
#define R300_INPUT_ROUTE_SELECT_W 3
#define R300_INPUT_ROUTE_SELECT_ZERO 4
#define R300_INPUT_ROUTE_SELECT_ONE 5
#define R300_INPUT_ROUTE_SELECT_MASK 7
#define R300_INPUT_ROUTE_X_SHIFT 0
#define R300_INPUT_ROUTE_Y_SHIFT 3
#define R300_INPUT_ROUTE_Z_SHIFT 6
#define R300_INPUT_ROUTE_W_SHIFT 9
#define R300_INPUT_ROUTE_ENABLE (15 << 12)
#define R300_VAP_INPUT_ROUTE_1_1 0x21E4
#define R300_VAP_INPUT_ROUTE_1_2 0x21E8
#define R300_VAP_INPUT_ROUTE_1_3 0x21EC
#define R300_VAP_INPUT_ROUTE_1_4 0x21F0
#define R300_VAP_INPUT_ROUTE_1_5 0x21F4
#define R300_VAP_INPUT_ROUTE_1_6 0x21F8
#define R300_VAP_INPUT_ROUTE_1_7 0x21FC
/* END */
/* gap */
// BEGIN: Upload vertex program and data
// The programmable vertex shader unit has a memory bank of unknown size
// that can be written to in 16 byte units by writing the address into
// UPLOAD_ADDRESS, followed by data in UPLOAD_DATA (multiples of 4 DWORDs).
//
// Pointers into the memory bank are always in multiples of 16 bytes.
//
// The memory bank is divided into areas with fixed meaning.
//
// Starting at address UPLOAD_PROGRAM: Vertex program instructions.
// Native limits reported by drivers from ATI suggest size 256 (i.e. 4KB),
// whereas the difference between known addresses suggests size 512.
//
// Starting at address UPLOAD_PARAMETERS: Vertex program parameters.
// Native reported limits and the VPI layout suggest size 256, whereas
// difference between known addresses suggests size 512.
//
// At address UPLOAD_POINTSIZE is a vector (0, 0, ps, 0), where ps is the
// floating point pointsize. The exact purpose of this state is uncertain,
// as there is also the R300_RE_POINTSIZE register.
//
// Multiple vertex programs and parameter sets can be loaded at once,
// which could explain the size discrepancy.
#define R300_VAP_PVS_UPLOAD_ADDRESS 0x2200
#define R300_PVS_UPLOAD_PROGRAM 0x00000000
#define R300_PVS_UPLOAD_PARAMETERS 0x00000200
#define R300_PVS_UPLOAD_POINTSIZE 0x00000406
/* gap */
#define R300_VAP_PVS_UPLOAD_DATA 0x2208
/* END */
/* gap */
/*
* I do not know the purpose of this register. However, I do know that
* it is set to 221C_CLEAR for clear operations and to 221C_NORMAL
* for normal rendering.
*/
#define R300_VAP_UNKNOWN_221C 0x221C
#define R300_221C_NORMAL 0x00000000
#define R300_221C_CLEAR 0x0001C000
/* gap */
/*
* Sometimes, END_OF_PKT and 0x2284=0 are the only commands sent between
* rendering commands and overwriting vertex program parameters.
* Therefore, I suspect writing zero to 0x2284 synchronizes the engine and
* avoids bugs caused by still running shaders reading bad data from memory.
*/
#define R300_VAP_PVS_WAITIDLE 0x2284 /* GUESS */
/* Absolutely no clue what this register is about. */
#define R300_VAP_UNKNOWN_2288 0x2288
#define R300_2288_R300 0x00750000 /* -- nh */
#define R300_2288_RV350 0x0000FFFF /* -- Vladimir */
/* gap */
/*
* Addresses are relative to the vertex program instruction area of the
* memory bank. PROGRAM_END points to the last instruction of the active
* program
*
* The meaning of the two UNKNOWN fields is obviously not known. However,
* experiments so far have shown that both *must* point to an instruction
* inside the vertex program, otherwise the GPU locks up.
* fglrx usually sets CNTL_3_UNKNOWN to the end of the program and
* CNTL_1_UNKNOWN points to instruction where last write to position
* takes place. Most likely this is used to ignore rest of the program
* in cases where group of verts arent visible.
* For some reason this "section" is sometimes accepted other instruction
* that have no relationship with position calculations.
*/
#define R300_VAP_PVS_CNTL_1 0x22D0
#define R300_PVS_CNTL_1_PROGRAM_START_SHIFT 0
#define R300_PVS_CNTL_1_POS_END_SHIFT 10
#define R300_PVS_CNTL_1_PROGRAM_END_SHIFT 20
/* Addresses are relative the the vertex program parameters area. */
#define R300_VAP_PVS_CNTL_2 0x22D4
#define R300_PVS_CNTL_2_PARAM_OFFSET_SHIFT 0
#define R300_PVS_CNTL_2_PARAM_COUNT_SHIFT 16
#define R300_VAP_PVS_CNTL_3 0x22D8
#define R300_PVS_CNTL_3_PROGRAM_UNKNOWN_SHIFT 10
#define R300_PVS_CNTL_3_PROGRAM_UNKNOWN2_SHIFT 0
// The entire range from 0x2300 to 0x2AC inclusive seems to be used for
// immediate vertices
#define R300_VAP_VTX_COLOR_R 0x2464
#define R300_VAP_VTX_COLOR_G 0x2468
#define R300_VAP_VTX_COLOR_B 0x246C
#define R300_VAP_VTX_POS_0_X_1 0x2490
#define R300_VAP_VTX_POS_0_Y_1 0x2494
#define R300_VAP_VTX_COLOR_PKD 0x249C /* RGBA */
#define R300_VAP_VTX_POS_0_X_2 0x24A0
#define R300_VAP_VTX_POS_0_Y_2 0x24A4
#define R300_VAP_VTX_POS_0_Z_2 0x24A8
#define R300_VAP_VTX_END_OF_PKT 0x24AC
/* gap */
/*
* These are values from r300_reg/r300_reg.h - they are known to
* be correct and are here so we can use one register file instead
* of several
* - Vladimir
*/
#define R300_GB_VAP_RASTER_VTX_FMT_0 0x4000
#define R300_GB_VAP_RASTER_VTX_FMT_0__POS_PRESENT (1<<0)
#define R300_GB_VAP_RASTER_VTX_FMT_0__COLOR_0_PRESENT (1<<1)
#define R300_GB_VAP_RASTER_VTX_FMT_0__COLOR_1_PRESENT (1<<2)
#define R300_GB_VAP_RASTER_VTX_FMT_0__COLOR_2_PRESENT (1<<3)
#define R300_GB_VAP_RASTER_VTX_FMT_0__COLOR_3_PRESENT (1<<4)
#define R300_GB_VAP_RASTER_VTX_FMT_0__COLOR_SPACE (0xf<<5)
#define R300_GB_VAP_RASTER_VTX_FMT_0__PT_SIZE_PRESENT (0x1<<16)
#define R300_GB_VAP_RASTER_VTX_FMT_1 0x4004
// each of the following is 3 bits wide, specifies number
// of components
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_0_COMP_CNT_SHIFT 0
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_1_COMP_CNT_SHIFT 3
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_2_COMP_CNT_SHIFT 6
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_3_COMP_CNT_SHIFT 9
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_4_COMP_CNT_SHIFT 12
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_5_COMP_CNT_SHIFT 15
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_6_COMP_CNT_SHIFT 18
#define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_7_COMP_CNT_SHIFT 21
/*
* UNK30 seems to enables point to quad transformation on
* textures (or something closely related to that).This bit
* is rather fatal at the time being due to lackings at pixel
* shader side
*/
#define R300_GB_ENABLE 0x4008
#define R300_GB_POINT_STUFF_ENABLE (1<<0)
#define R300_GB_LINE_STUFF_ENABLE (1<<1)
#define R300_GB_TRIANGLE_STUFF_ENABLE (1<<2)
#define R300_GB_STENCIL_AUTO_ENABLE (1<<4)
#define R300_GB_UNK30 (1<<30)
/* each of the following is 2 bits wide */
#define R300_GB_TEX_REPLICATE 0
#define R300_GB_TEX_ST 1
#define R300_GB_TEX_STR 2
#define R300_GB_TEX0_SOURCE_SHIFT 16
#define R300_GB_TEX1_SOURCE_SHIFT 18
#define R300_GB_TEX2_SOURCE_SHIFT 20
#define R300_GB_TEX3_SOURCE_SHIFT 22
#define R300_GB_TEX4_SOURCE_SHIFT 24
#define R300_GB_TEX5_SOURCE_SHIFT 26
#define R300_GB_TEX6_SOURCE_SHIFT 28
#define R300_GB_TEX7_SOURCE_SHIFT 30
/* MSPOS - positions for multisample antialiasing (?) */
#define R300_GB_MSPOS0 0x4010
/* shifts - each of the fields is 4 bits */
#define R300_GB_MSPOS0__MS_X0_SHIFT 0
#define R300_GB_MSPOS0__MS_Y0_SHIFT 4
#define R300_GB_MSPOS0__MS_X1_SHIFT 8
#define R300_GB_MSPOS0__MS_Y1_SHIFT 12
#define R300_GB_MSPOS0__MS_X2_SHIFT 16
#define R300_GB_MSPOS0__MS_Y2_SHIFT 20
#define R300_GB_MSPOS0__MSBD0_Y 24
#define R300_GB_MSPOS0__MSBD0_X 28
#define R300_GB_MSPOS1 0x4014
#define R300_GB_MSPOS1__MS_X3_SHIFT 0
#define R300_GB_MSPOS1__MS_Y3_SHIFT 4
#define R300_GB_MSPOS1__MS_X4_SHIFT 8
#define R300_GB_MSPOS1__MS_Y4_SHIFT 12
#define R300_GB_MSPOS1__MS_X5_SHIFT 16
#define R300_GB_MSPOS1__MS_Y5_SHIFT 20
#define R300_GB_MSPOS1__MSBD1 24
#define R300_GB_TILE_CONFIG 0x4018
#define R300_GB_TILE_ENABLE (1<<0)
#define R300_GB_TILE_PIPE_COUNT_RV300 0
#define R300_GB_TILE_PIPE_COUNT_R300 (3<<1)
#define R300_GB_TILE_PIPE_COUNT_R420 (7<<1)
#define R300_GB_TILE_SIZE_8 0
#define R300_GB_TILE_SIZE_16 (1<<4)
#define R300_GB_TILE_SIZE_32 (2<<4)
#define R300_GB_SUPER_SIZE_1 (0<<6)
#define R300_GB_SUPER_SIZE_2 (1<<6)
#define R300_GB_SUPER_SIZE_4 (2<<6)
#define R300_GB_SUPER_SIZE_8 (3<<6)
#define R300_GB_SUPER_SIZE_16 (4<<6)
#define R300_GB_SUPER_SIZE_32 (5<<6)
#define R300_GB_SUPER_SIZE_64 (6<<6)
#define R300_GB_SUPER_SIZE_128 (7<<6)
#define R300_GB_SUPER_X_SHIFT 9 /* 3 bits wide */
#define R300_GB_SUPER_Y_SHIFT 12 /* 3 bits wide */
#define R300_GB_SUPER_TILE_A 0
#define R300_GB_SUPER_TILE_B (1<<15)
#define R300_GB_SUBPIXEL_1_12 0
#define R300_GB_SUBPIXEL_1_16 (1<<16)
#define R300_GB_FIFO_SIZE 0x4024
/* each of the following is 2 bits wide */
#define R300_GB_FIFO_SIZE_32 0
#define R300_GB_FIFO_SIZE_64 1
#define R300_GB_FIFO_SIZE_128 2
#define R300_GB_FIFO_SIZE_256 3
#define R300_SC_IFIFO_SIZE_SHIFT 0
#define R300_SC_TZFIFO_SIZE_SHIFT 2
#define R300_SC_BFIFO_SIZE_SHIFT 4
#define R300_US_OFIFO_SIZE_SHIFT 12
#define R300_US_WFIFO_SIZE_SHIFT 14
// the following use the same constants as above, but meaning is
// is times 2 (i.e. instead of 32 words it means 64 */
#define R300_RS_TFIFO_SIZE_SHIFT 6
#define R300_RS_CFIFO_SIZE_SHIFT 8
#define R300_US_RAM_SIZE_SHIFT 10
/* watermarks, 3 bits wide */
#define R300_RS_HIGHWATER_COL_SHIFT 16
#define R300_RS_HIGHWATER_TEX_SHIFT 19
#define R300_OFIFO_HIGHWATER_SHIFT 22 /* two bits only */
#define R300_CUBE_FIFO_HIGHWATER_COL_SHIFT 24
#define R300_GB_SELECT 0x401C
#define R300_GB_FOG_SELECT_C0A 0
#define R300_GB_FOG_SELECT_C1A 1
#define R300_GB_FOG_SELECT_C2A 2
#define R300_GB_FOG_SELECT_C3A 3
#define R300_GB_FOG_SELECT_1_1_W 4
#define R300_GB_FOG_SELECT_Z 5
#define R300_GB_DEPTH_SELECT_Z 0
#define R300_GB_DEPTH_SELECT_1_1_W (1<<3)
#define R300_GB_W_SELECT_1_W 0
#define R300_GB_W_SELECT_1 (1<<4)
#define R300_GB_AA_CONFIG 0x4020
#define R300_AA_ENABLE 0x01
#define R300_AA_SUBSAMPLES_2 0
#define R300_AA_SUBSAMPLES_3 (1<<1)
#define R300_AA_SUBSAMPLES_4 (2<<1)
#define R300_AA_SUBSAMPLES_6 (3<<1)
/* END */
/* gap */
/* Zero to flush caches. */
#define R300_TX_CNTL 0x4100
/* The upper enable bits are guessed, based on fglrx reported limits. */
#define R300_TX_ENABLE 0x4104
#define R300_TX_ENABLE_0 (1 << 0)
#define R300_TX_ENABLE_1 (1 << 1)
#define R300_TX_ENABLE_2 (1 << 2)
#define R300_TX_ENABLE_3 (1 << 3)
#define R300_TX_ENABLE_4 (1 << 4)
#define R300_TX_ENABLE_5 (1 << 5)
#define R300_TX_ENABLE_6 (1 << 6)
#define R300_TX_ENABLE_7 (1 << 7)
#define R300_TX_ENABLE_8 (1 << 8)
#define R300_TX_ENABLE_9 (1 << 9)
#define R300_TX_ENABLE_10 (1 << 10)
#define R300_TX_ENABLE_11 (1 << 11)
#define R300_TX_ENABLE_12 (1 << 12)
#define R300_TX_ENABLE_13 (1 << 13)
#define R300_TX_ENABLE_14 (1 << 14)
#define R300_TX_ENABLE_15 (1 << 15)
// The pointsize is given in multiples of 6. The pointsize can be
// enormous: Clear() renders a single point that fills the entire
// framebuffer. */
#define R300_RE_POINTSIZE 0x421C
#define R300_POINTSIZE_Y_SHIFT 0
#define R300_POINTSIZE_Y_MASK (0xFFFF << 0) /* GUESS */
#define R300_POINTSIZE_X_SHIFT 16
#define R300_POINTSIZE_X_MASK (0xFFFF << 16) /* GUESS */
#define R300_POINTSIZE_MAX (R300_POINTSIZE_Y_MASK / 6)
/*
* The line width is given in multiples of 6.
* In default mode lines are classified as vertical lines.
* HO: horizontal
* VE: vertical or horizontal
* HO & VE: no classification
*/
#define R300_RE_LINE_CNT 0x4234
#define R300_LINESIZE_SHIFT 0
#define R300_LINESIZE_MASK (0xFFFF << 0) /* GUESS */
#define R300_LINESIZE_MAX (R300_LINESIZE_MASK / 6)
#define R300_LINE_CNT_HO (1 << 16)
#define R300_LINE_CNT_VE (1 << 17)
/* Some sort of scale or clamp value for texcoordless textures. */
#define R300_RE_UNK4238 0x4238
#define R300_RE_SHADE_MODEL 0x4278
#define R300_RE_SHADE_MODEL_SMOOTH 0x3aaaa
#define R300_RE_SHADE_MODEL_FLAT 0x39595
/* Dangerous */
#define R300_RE_POLYGON_MODE 0x4288
#define R300_PM_ENABLED (1 << 0)
#define R300_PM_FRONT_POINT (0 << 0)
#define R300_PM_BACK_POINT (0 << 0)
#define R300_PM_FRONT_LINE (1 << 4)
#define R300_PM_FRONT_FILL (1 << 5)
#define R300_PM_BACK_LINE (1 << 7)
#define R300_PM_BACK_FILL (1 << 8)
/*
* Not sure why there are duplicate of factor and constant values.
* My best guess so far is that there are seperate zbiases for test
* and write.
* Ordering might be wrong.
* Some of the tests indicate that fgl has a fallback implementation
* of zbias via pixel shaders.
*/
#define R300_RE_ZBIAS_T_FACTOR 0x42A4
#define R300_RE_ZBIAS_T_CONSTANT 0x42A8
#define R300_RE_ZBIAS_W_FACTOR 0x42AC
#define R300_RE_ZBIAS_W_CONSTANT 0x42B0
/*
* This register needs to be set to (1<<1) for RV350 to correctly
* perform depth test (see --vb-triangles in r300_demo)
* Don't know about other chips. - Vladimir
* This is set to 3 when GL_POLYGON_OFFSET_FILL is on.
* My guess is that there are two bits for each zbias
* primitive (FILL, LINE, POINT).
* One to enable depth test and one for depth write.
* Yet this doesnt explain why depth writes work ...
*/
#define R300_RE_OCCLUSION_CNTL 0x42B4
#define R300_OCCLUSION_ON (1<<1)
#define R300_RE_CULL_CNTL 0x42B8
#define R300_CULL_FRONT (1 << 0)
#define R300_CULL_BACK (1 << 1)
#define R300_FRONT_FACE_CCW (0 << 2)
#define R300_FRONT_FACE_CW (1 << 2)
// BEGIN: Rasterization / Interpolators - many guesses
// 0_UNKNOWN_18 has always been set except for clear operations.
// TC_CNT is the number of incoming texture coordinate sets (i.e. it depends
// on the vertex program, *not* the fragment program) */
#define R300_RS_CNTL_0 0x4300
#define R300_RS_CNTL_TC_CNT_SHIFT 2
#define R300_RS_CNTL_TC_CNT_MASK (7 << 2)
#define R300_RS_CNTL_CI_CNT_SHIFT 7
/* number of color interpolators used */
#define R300_RS_CNTL_0_UNKNOWN_18 (1 << 18)
/* Guess: RS_CNTL_1 holds the index of the highest used RS_ROUTE_n register. */
#define R300_RS_CNTL_1 0x4304
/* gap */
// Only used for texture coordinates.
// Use the source field to route texture coordinate input from the
// vertex program to the desired interpolator. Note that the source
// field is relative to the outputs the vertex program *actually*
// writes. If a vertex program only writes texcoord[1], this will
// be source index 0. Set INTERP_USED on all interpolators that
// produce data used by the fragment program. INTERP_USED looks
// like a swizzling mask, but I haven't seen it used that way.
//
// Note: The _UNKNOWN constants are always set in their respective register.
// I don't know if this is necessary. */
#define R300_RS_INTERP_0 0x4310
#define R300_RS_INTERP_1 0x4314
#define R300_RS_INTERP_1_UNKNOWN 0x40
#define R300_RS_INTERP_2 0x4318
#define R300_RS_INTERP_2_UNKNOWN 0x80
#define R300_RS_INTERP_3 0x431C
#define R300_RS_INTERP_3_UNKNOWN 0xC0
#define R300_RS_INTERP_4 0x4320
#define R300_RS_INTERP_5 0x4324
#define R300_RS_INTERP_6 0x4328
#define R300_RS_INTERP_7 0x432C
#define R300_RS_INTERP_SRC_SHIFT 2
#define R300_RS_INTERP_SRC_MASK (7 << 2)
#define R300_RS_INTERP_USED 0x00D10000
// These DWORDs control how vertex data is routed into fragment program
// registers, after interpolators. */
#define R300_RS_ROUTE_0 0x4330
#define R300_RS_ROUTE_1 0x4334
#define R300_RS_ROUTE_2 0x4338
#define R300_RS_ROUTE_3 0x433C /* GUESS */
#define R300_RS_ROUTE_4 0x4340 /* GUESS */
#define R300_RS_ROUTE_5 0x4344 /* GUESS */
#define R300_RS_ROUTE_6 0x4348 /* GUESS */
#define R300_RS_ROUTE_7 0x434C /* GUESS */
#define R300_RS_ROUTE_SOURCE_INTERP_0 0
#define R300_RS_ROUTE_SOURCE_INTERP_1 1
#define R300_RS_ROUTE_SOURCE_INTERP_2 2
#define R300_RS_ROUTE_SOURCE_INTERP_3 3
#define R300_RS_ROUTE_SOURCE_INTERP_4 4
#define R300_RS_ROUTE_SOURCE_INTERP_5 5 /* GUESS */
#define R300_RS_ROUTE_SOURCE_INTERP_6 6 /* GUESS */
#define R300_RS_ROUTE_SOURCE_INTERP_7 7 /* GUESS */
#define R300_RS_ROUTE_ENABLE (1 << 3) /* GUESS */
#define R300_RS_ROUTE_DEST_SHIFT 6
#define R300_RS_ROUTE_DEST_MASK (31 << 6) /* GUESS */
// Special handling for color: When the fragment program uses color,
// the ROUTE_0_COLOR bit is set and ROUTE_0_COLOR_DEST contains the
// color register index. */
#define R300_RS_ROUTE_0_COLOR (1 << 14)
#define R300_RS_ROUTE_0_COLOR_DEST_SHIFT 17
#define R300_RS_ROUTE_0_COLOR_DEST_MASK (31 << 17) /* GUESS */
/* As above, but for secondary color */
#define R300_RS_ROUTE_1_COLOR1 (1 << 14)
#define R300_RS_ROUTE_1_COLOR1_DEST_SHIFT 17
#define R300_RS_ROUTE_1_COLOR1_DEST_MASK (31 << 17)
#define R300_RS_ROUTE_1_UNKNOWN11 (1 << 11)
/* END */
// BEGIN: Scissors and cliprects
// There are four clipping rectangles. Their corner coordinates are inclusive.
// Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending
// on whether the pixel is inside cliprects 0-3, respectively. For example,
// if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned
// the number 3 (binary 0011).
// Iff the bit corresponding to the pixel's number in RE_CLIPRECT_CNTL is set,
// the pixel is rasterized.
//
// In addition to this, there is a scissors rectangle. Only pixels inside the
// scissors rectangle are drawn. (coordinates are inclusive)
//
// For some reason, the top-left corner of the framebuffer is at (1440, 1440)
// for the purpose of clipping and scissors. */
#define R300_RE_CLIPRECT_TL_0 0x43B0
#define R300_RE_CLIPRECT_BR_0 0x43B4
#define R300_RE_CLIPRECT_TL_1 0x43B8
#define R300_RE_CLIPRECT_BR_1 0x43BC
#define R300_RE_CLIPRECT_TL_2 0x43C0
#define R300_RE_CLIPRECT_BR_2 0x43C4
#define R300_RE_CLIPRECT_TL_3 0x43C8
#define R300_RE_CLIPRECT_BR_3 0x43CC
#define R300_CLIPRECT_OFFSET 1440
#define R300_CLIPRECT_MASK 0x1FFF
#define R300_CLIPRECT_X_SHIFT 0
#define R300_CLIPRECT_X_MASK (0x1FFF << 0)
#define R300_CLIPRECT_Y_SHIFT 13
#define R300_CLIPRECT_Y_MASK (0x1FFF << 13)
#define R300_RE_CLIPRECT_CNTL 0x43D0
#define R300_CLIP_OUT (1 << 0)
#define R300_CLIP_0 (1 << 1)
#define R300_CLIP_1 (1 << 2)
#define R300_CLIP_10 (1 << 3)
#define R300_CLIP_2 (1 << 4)
#define R300_CLIP_20 (1 << 5)
#define R300_CLIP_21 (1 << 6)
#define R300_CLIP_210 (1 << 7)
#define R300_CLIP_3 (1 << 8)
#define R300_CLIP_30 (1 << 9)
#define R300_CLIP_31 (1 << 10)
#define R300_CLIP_310 (1 << 11)
#define R300_CLIP_32 (1 << 12)
#define R300_CLIP_320 (1 << 13)
#define R300_CLIP_321 (1 << 14)
#define R300_CLIP_3210 (1 << 15)
/* gap */
#define R300_RE_SCISSORS_TL 0x43E0
#define R300_RE_SCISSORS_BR 0x43E4
#define R300_SCISSORS_OFFSET 1440
#define R300_SCISSORS_X_SHIFT 0
#define R300_SCISSORS_X_MASK (0x1FFF << 0)
#define R300_SCISSORS_Y_SHIFT 13
#define R300_SCISSORS_Y_MASK (0x1FFF << 13)
/* END */
// BEGIN: Texture specification
// The texture specification dwords are grouped by meaning and not
// by texture unit. This means that e.g. the offset for texture
// image unit N is found in register TX_OFFSET_0 + (4*N) */
#define R300_TX_FILTER_0 0x4400
#define R300_TX_REPEAT 0
#define R300_TX_MIRRORED 1
#define R300_TX_CLAMP 4
#define R300_TX_CLAMP_TO_EDGE 2
#define R300_TX_CLAMP_TO_BORDER 6
#define R300_TX_WRAP_S_SHIFT 0
#define R300_TX_WRAP_S_MASK (7 << 0)
#define R300_TX_WRAP_T_SHIFT 3
#define R300_TX_WRAP_T_MASK (7 << 3)
#define R300_TX_WRAP_Q_SHIFT 6
#define R300_TX_WRAP_Q_MASK (7 << 6)
#define R300_TX_MAG_FILTER_NEAREST (1 << 9)
#define R300_TX_MAG_FILTER_LINEAR (2 << 9)
#define R300_TX_MAG_FILTER_MASK (3 << 9)
#define R300_TX_MIN_FILTER_NEAREST (1 << 11)
#define R300_TX_MIN_FILTER_LINEAR (2 << 11)
#define R300_TX_MIN_FILTER_NEAREST_MIP_NEAREST (5 << 11)
#define R300_TX_MIN_FILTER_NEAREST_MIP_LINEAR (9 << 11)
#define R300_TX_MIN_FILTER_LINEAR_MIP_NEAREST (6 << 11)
#define R300_TX_MIN_FILTER_LINEAR_MIP_LINEAR (10 << 11)
/*
* NOTE: NEAREST doesnt seem to exist
* Im not seting MAG_FILTER_MASK and (3 << 11) on for all
* anisotropy modes because that would void selected mag filter
*/
#define R300_TX_MIN_FILTER_ANISO_NEAREST ((0 << 13)
#define R300_TX_MIN_FILTER_ANISO_LINEAR ((0 << 13)
#define R300_TX_MIN_FILTER_ANISO_NEAREST_MIP_NEAREST ((1 << 13)
#define R300_TX_MIN_FILTER_ANISO_NEAREST_MIP_LINEAR ((2 << 13)
#define R300_TX_MIN_FILTER_MASK ((15 << 11) | (3 << 13))
#define R300_TX_MAX_ANISO_1_TO_1 (0 << 21)
#define R300_TX_MAX_ANISO_2_TO_1 (2 << 21)
#define R300_TX_MAX_ANISO_4_TO_1 (4 << 21)
#define R300_TX_MAX_ANISO_8_TO_1 (6 << 21)
#define R300_TX_MAX_ANISO_16_TO_1 (8 << 21)
#define R300_TX_MAX_ANISO_MASK (14 << 21)
#define R300_TX_FILTER1_0 0x4440
#define R300_CHROMA_KEY_MODE_DISABLE 0
#define R300_CHROMA_KEY_FORCE 1
#define R300_CHROMA_KEY_BLEND 2
#define R300_MC_ROUND_NORMAL (0<<2)
#define R300_MC_ROUND_MPEG4 (1<<2)
#define R300_LOD_BIAS_MASK 0x1fff
#define R300_EDGE_ANISO_EDGE_DIAG (0<<13)
#define R300_EDGE_ANISO_EDGE_ONLY (1<<13)
#define R300_MC_COORD_TRUNCATE_DISABLE (0<<14)
#define R300_MC_COORD_TRUNCATE_MPEG (1<<14)
#define R300_TX_TRI_PERF_0_8 (0<<15)
#define R300_TX_TRI_PERF_1_8 (1<<15)
#define R300_TX_TRI_PERF_1_4 (2<<15)
#define R300_TX_TRI_PERF_3_8 (3<<15)
#define R300_ANISO_THRESHOLD_MASK (7<<17)
#define R300_TX_SIZE_0 0x4480
#define R300_TX_WIDTHMASK_SHIFT 0
#define R300_TX_WIDTHMASK_MASK (2047 << 0)
#define R300_TX_HEIGHTMASK_SHIFT 11
#define R300_TX_HEIGHTMASK_MASK (2047 << 11)
#define R300_TX_UNK23 (1 << 23)
#define R300_TX_SIZE_SHIFT 26 /* largest of width, height */
#define R300_TX_SIZE_MASK (15 << 26)
#define R300_TX_SIZE_PROJECTED (1<<30)
#define R300_TX_SIZE_TXPITCH_EN (1<<31)
#define R300_TX_FORMAT_0 0x44C0
/* The interpretation of the format word by Wladimir van der Laan */
/*
* The X, Y, Z and W refer to the layout of the components.
* They are given meanings as R, G, B and Alpha by the swizzle
* specification
*/
#define R300_TX_FORMAT_X8 0x0
#define R300_TX_FORMAT_X16 0x1
#define R300_TX_FORMAT_Y4X4 0x2
#define R300_TX_FORMAT_Y8X8 0x3
#define R300_TX_FORMAT_Y16X16 0x4
#define R300_TX_FORMAT_Z3Y3X2 0x5
#define R300_TX_FORMAT_Z5Y6X5 0x6
#define R300_TX_FORMAT_Z6Y5X5 0x7
#define R300_TX_FORMAT_Z11Y11X10 0x8
#define R300_TX_FORMAT_Z10Y11X11 0x9
#define R300_TX_FORMAT_W4Z4Y4X4 0xA
#define R300_TX_FORMAT_W1Z5Y5X5 0xB
#define R300_TX_FORMAT_W8Z8Y8X8 0xC
#define R300_TX_FORMAT_W2Z10Y10X10 0xD
#define R300_TX_FORMAT_W16Z16Y16X16 0xE
#define R300_TX_FORMAT_DXT1 0xF
#define R300_TX_FORMAT_DXT3 0x10
#define R300_TX_FORMAT_DXT5 0x11
#define R300_TX_FORMAT_D3DMFT_CxV8U8 0x12 /* no swizzle */
#define R300_TX_FORMAT_A8R8G8B8 0x13 /* no swizzle */
#define R300_TX_FORMAT_B8G8_B8G8 0x14 /* no swizzle */
#define R300_TX_FORMAT_G8R8_G8B8 0x15 /* no swizzle */
/* 0x16 - some 16 bit green format.. ?? */
#define R300_TX_FORMAT_UNK25 (1 << 25) /* no swizzle */
#define R300_TX_FORMAT_CUBIC_MAP (1 << 26)
/* gap */
/* Floating point formats */
/* Note - hardware supports both 16 and 32 bit floating point */
#define R300_TX_FORMAT_FL_I16 0x18
#define R300_TX_FORMAT_FL_I16A16 0x19
#define R300_TX_FORMAT_FL_R16G16B16A16 0x1A
#define R300_TX_FORMAT_FL_I32 0x1B
#define R300_TX_FORMAT_FL_I32A32 0x1C
#define R300_TX_FORMAT_FL_R32G32B32A32 0x1D
/* alpha modes, convenience mostly */
// if you have alpha, pick constant appropriate to the
// number of channels (1 for I8, 2 for I8A8, 4 for R8G8B8A8, etc
#define R300_TX_FORMAT_ALPHA_1CH 0x000
#define R300_TX_FORMAT_ALPHA_2CH 0x200
#define R300_TX_FORMAT_ALPHA_4CH 0x600
#define R300_TX_FORMAT_ALPHA_NONE 0xA00
/* Swizzling */
/* constants */
#define R300_TX_FORMAT_X 0
#define R300_TX_FORMAT_Y 1
#define R300_TX_FORMAT_Z 2
#define R300_TX_FORMAT_W 3
#define R300_TX_FORMAT_ZERO 4
#define R300_TX_FORMAT_ONE 5
#define R300_TX_FORMAT_CUT_Z 6
/* 2.0*Z, everything above 1.0 is set to 0.0 */
#define R300_TX_FORMAT_CUT_W 7
/* 2.0*W, everything above 1.0 is set to 0.0 */
#define R300_TX_FORMAT_B_SHIFT 18
#define R300_TX_FORMAT_G_SHIFT 15
#define R300_TX_FORMAT_R_SHIFT 12
#define R300_TX_FORMAT_A_SHIFT 9
/* Convenience macro to take care of layout and swizzling */
#define R300_EASY_TX_FORMAT(B, G, R, A, FMT) (\
((R300_TX_FORMAT_##B)<<R300_TX_FORMAT_B_SHIFT) \
| ((R300_TX_FORMAT_##G)<<R300_TX_FORMAT_G_SHIFT) \
| ((R300_TX_FORMAT_##R)<<R300_TX_FORMAT_R_SHIFT) \
| ((R300_TX_FORMAT_##A)<<R300_TX_FORMAT_A_SHIFT) \
| (R300_TX_FORMAT_##FMT))
/* These can be ORed with result of R300_EASY_TX_FORMAT() */
/* We don't really know what they do. Take values from a constant color ? */
#define R300_TX_FORMAT_CONST_X (1<<5)
#define R300_TX_FORMAT_CONST_Y (2<<5)
#define R300_TX_FORMAT_CONST_Z (4<<5)
#define R300_TX_FORMAT_CONST_W (8<<5)
#define R300_TX_FORMAT_YUV_MODE 0x00800000
#define R300_TX_PITCH_0 0x4500
/* obvious missing in gap */
#define R300_TX_OFFSET_0 0x4540
/* BEGIN: Guess from R200 */
#define R300_TXO_ENDIAN_NO_SWAP (0 << 0)
#define R300_TXO_ENDIAN_BYTE_SWAP (1 << 0)
#define R300_TXO_ENDIAN_WORD_SWAP (2 << 0)
#define R300_TXO_ENDIAN_HALFDW_SWAP (3 << 0)
#define R300_TXO_MACRO_TILE (1 << 2)
#define R300_TXO_MICRO_TILE (1 << 3)
#define R300_TXO_OFFSET_MASK 0xffffffe0
#define R300_TXO_OFFSET_SHIFT 5
/* END */
#define R300_TX_CHROMA_KEY_0 0x4580
/* 32 bit chroma key */
#define R300_TX_BORDER_COLOR_0 0x45C0
/* ff00ff00 == { 0, 1.0, 0, 1.0 } */
/* END */
// BEGIN: Fragment program instruction set
// Fragment programs are written directly into register space.
// There are separate instruction streams for texture instructions and ALU
// instructions.
// In order to synchronize these streams, the program is divided into up
// to 4 nodes. Each node begins with a number of TEX operations, followed
// by a number of ALU operations.
// The first node can have zero TEX ops, all subsequent nodes must have at least
// one TEX ops.
// All nodes must have at least one ALU op.
//
// The index of the last node is stored in PFS_CNTL_0: A value of 0 means
// 1 node, a value of 3 means 4 nodes.
// The total amount of instructions is defined in PFS_CNTL_2. The offsets are
// offsets into the respective instruction streams, while *_END points to the
// last instruction relative to this offset.
#define R300_PFS_CNTL_0 0x4600
#define R300_PFS_CNTL_LAST_NODES_SHIFT 0
#define R300_PFS_CNTL_LAST_NODES_MASK (3 << 0)
#define R300_PFS_CNTL_FIRST_NODE_HAS_TEX (1 << 3)
#define R300_PFS_CNTL_1 0x4604
// There is an unshifted value here which has so far always been equal to the
// index of the highest used temporary register.
#define R300_PFS_CNTL_2 0x4608
#define R300_PFS_CNTL_ALU_OFFSET_SHIFT 0
#define R300_PFS_CNTL_ALU_OFFSET_MASK (63 << 0)
#define R300_PFS_CNTL_ALU_END_SHIFT 6
#define R300_PFS_CNTL_ALU_END_MASK (63 << 6)
#define R300_PFS_CNTL_TEX_OFFSET_SHIFT 12
#define R300_PFS_CNTL_TEX_OFFSET_MASK (31 << 12) /* GUESS */
#define R300_PFS_CNTL_TEX_END_SHIFT 18
#define R300_PFS_CNTL_TEX_END_MASK (31 << 18) /* GUESS */
/* gap */
// Nodes are stored backwards. The last active node is always stored in
// PFS_NODE_3.
// Example: In a 2-node program, NODE_0 and NODE_1 are set to 0. The
// first node is stored in NODE_2, the second node is stored in NODE_3.
//
// Offsets are relative to the master offset from PFS_CNTL_2.
// LAST_NODE is set for the last node, and only for the last node.
#define R300_PFS_NODE_0 0x4610
#define R300_PFS_NODE_1 0x4614
#define R300_PFS_NODE_2 0x4618
#define R300_PFS_NODE_3 0x461C
#define R300_PFS_NODE_ALU_OFFSET_SHIFT 0
#define R300_PFS_NODE_ALU_OFFSET_MASK (63 << 0)
#define R300_PFS_NODE_ALU_END_SHIFT 6
#define R300_PFS_NODE_ALU_END_MASK (63 << 6)
#define R300_PFS_NODE_TEX_OFFSET_SHIFT 12
#define R300_PFS_NODE_TEX_OFFSET_MASK (31 << 12)
#define R300_PFS_NODE_TEX_END_SHIFT 17
#define R300_PFS_NODE_TEX_END_MASK (31 << 17)
/* #define R300_PFS_NODE_LAST_NODE (1 << 22) */
#define R300_PFS_NODE_OUTPUT_COLOR (1 << 22)
#define R300_PFS_NODE_OUTPUT_DEPTH (1 << 23)
// TEX
// As far as I can tell, texture instructions cannot write into output
// registers directly. A subsequent ALU instruction is always necessary,
// even if it's just MAD o0, r0, 1, 0
#define R300_PFS_TEXI_0 0x4620
#define R300_FPITX_SRC_SHIFT 0
#define R300_FPITX_SRC_MASK (31 << 0)
#define R300_FPITX_SRC_CONST (1 << 5) /* GUESS */
#define R300_FPITX_DST_SHIFT 6
#define R300_FPITX_DST_MASK (31 << 6)
#define R300_FPITX_IMAGE_SHIFT 11
#define R300_FPITX_IMAGE_MASK (15 << 11)
/* GUESS based on layout and native limits */
/*
* Unsure if these are opcodes, or some kind of bitfield, but this is how
* they were set when I checked
*/
#define R300_FPITX_OPCODE_SHIFT 15
#define R300_FPITX_OP_TEX 1
#define R300_FPITX_OP_KIL 2
#define R300_FPITX_OP_TXP 3
#define R300_FPITX_OP_TXB 4
// ALU
// The ALU instructions register blocks are enumerated according to the order
// in which fglrx. I assume there is space for 64 instructions, since
// each block has space for a maximum of 64 DWORDs, and this matches reported
// native limits.
//
// The basic functional block seems to be one MAD for each color and alpha,
// and an adder that adds all components after the MUL.
// - ADD, MUL, MAD etc.: use MAD with appropriate neutral operands
// - DP4: Use OUTC_DP4, OUTA_DP4
// - DP3: Use OUTC_DP3, OUTA_DP4, appropriate alpha operands
// - DPH: Use OUTC_DP4, OUTA_DP4, appropriate alpha operands
// - CMP: If ARG2 < 0, return ARG1, else return ARG0
// - FLR: use FRC+MAD
// - XPD: use MAD+MAD
// - SGE, SLT: use MAD+CMP
// - RSQ: use ABS modifier for argument
// - Use OUTC_REPL_ALPHA to write results of an alpha-only operation (e.g. RCP)
// into color register
// - apparently, there's no quick DST operation
// - fglrx set FPI2_UNKNOWN_31 on a "MAD fragment.color, tmp0, tmp1, tmp2"
// - fglrx set FPI2_UNKNOWN_31 on a "MAX r2, r1, c0"
// - fglrx once set FPI0_UNKNOWN_31 on a "FRC r1, r1"
//
// Operand selection
// First stage selects three sources from the available registers and
// constant parameters. This is defined in INSTR1 (color) and INSTR3 (alpha).
// fglrx sorts the three source fields: Registers before constants,
// lower indices before higher indices; I do not know whether this is necessary.
// fglrx fills unused sources with "read constant 0"
// According to specs, you cannot select more than two different constants.
//
// Second stage selects the operands from the sources. This is defined in
// INSTR0 (color) and INSTR2 (alpha). You can also select the special constants
// zero and one.
// Swizzling and negation happens in this stage, as well.
//
// Important: Color and alpha seem to be mostly separate, i.e. their sources
// selection appears to be fully independent (the register storage is probably
// physically split into a color and an alpha section).
// However (because of the apparent physical split), there is some interaction
// WRT swizzling. If, for example, you want to load an R component into an
// Alpha operand, this R component is taken from a *color* source, not from
// an alpha source. The corresponding register doesn't even have to appear in
// the alpha sources list. (I hope this alll makes sense to you)
//
// Destination selection
// The destination register index is in FPI1 (color) and FPI3 (alpha) together
// with enable bits.
// There are separate enable bits for writing into temporary registers
// (DSTC_REG_* /DSTA_REG) and and program output registers
// (DSTC_OUTPUT_* /DSTA_OUTPUT).
// You can write to both at once, or not write at all (the same index
// must be used for both).
//
// Note: There is a special form for LRP
// - Argument order is the same as in ARB_fragment_program.
// - Operation is MAD
// - ARG1 is set to ARGC_SRC1C_LRP/ARGC_SRC1A_LRP
// - Set FPI0/FPI2_SPECIAL_LRP
// Arbitrary LRP (including support for swizzling) requires vanilla MAD+MAD
#define R300_PFS_INSTR1_0 0x46C0
#define R300_FPI1_SRC0C_SHIFT 0
#define R300_FPI1_SRC0C_MASK (31 << 0)
#define R300_FPI1_SRC0C_CONST (1 << 5)
#define R300_FPI1_SRC1C_SHIFT 6
#define R300_FPI1_SRC1C_MASK (31 << 6)
#define R300_FPI1_SRC1C_CONST (1 << 11)
#define R300_FPI1_SRC2C_SHIFT 12
#define R300_FPI1_SRC2C_MASK (31 << 12)
#define R300_FPI1_SRC2C_CONST (1 << 17)
#define R300_FPI1_DSTC_SHIFT 18
#define R300_FPI1_DSTC_MASK (31 << 18)
#define R300_FPI1_DSTC_REG_MASK_SHIFT 23
#define R300_FPI1_DSTC_REG_X (1 << 23)
#define R300_FPI1_DSTC_REG_Y (1 << 24)
#define R300_FPI1_DSTC_REG_Z (1 << 25)
#define R300_FPI1_DSTC_OUTPUT_MASK_SHIFT 26
#define R300_FPI1_DSTC_OUTPUT_X (1 << 26)
#define R300_FPI1_DSTC_OUTPUT_Y (1 << 27)
#define R300_FPI1_DSTC_OUTPUT_Z (1 << 28)
#define R300_PFS_INSTR3_0 0x47C0
#define R300_FPI3_SRC0A_SHIFT 0
#define R300_FPI3_SRC0A_MASK (31 << 0)
#define R300_FPI3_SRC0A_CONST (1 << 5)
#define R300_FPI3_SRC1A_SHIFT 6
#define R300_FPI3_SRC1A_MASK (31 << 6)
#define R300_FPI3_SRC1A_CONST (1 << 11)
#define R300_FPI3_SRC2A_SHIFT 12
#define R300_FPI3_SRC2A_MASK (31 << 12)
#define R300_FPI3_SRC2A_CONST (1 << 17)
#define R300_FPI3_DSTA_SHIFT 18
#define R300_FPI3_DSTA_MASK (31 << 18)
#define R300_FPI3_DSTA_REG (1 << 23)
#define R300_FPI3_DSTA_OUTPUT (1 << 24)
#define R300_FPI3_DSTA_DEPTH (1 << 27)
#define R300_PFS_INSTR0_0 0x48C0
#define R300_FPI0_ARGC_SRC0C_XYZ 0
#define R300_FPI0_ARGC_SRC0C_XXX 1
#define R300_FPI0_ARGC_SRC0C_YYY 2
#define R300_FPI0_ARGC_SRC0C_ZZZ 3
#define R300_FPI0_ARGC_SRC1C_XYZ 4
#define R300_FPI0_ARGC_SRC1C_XXX 5
#define R300_FPI0_ARGC_SRC1C_YYY 6
#define R300_FPI0_ARGC_SRC1C_ZZZ 7
#define R300_FPI0_ARGC_SRC2C_XYZ 8
#define R300_FPI0_ARGC_SRC2C_XXX 9
#define R300_FPI0_ARGC_SRC2C_YYY 10
#define R300_FPI0_ARGC_SRC2C_ZZZ 11
#define R300_FPI0_ARGC_SRC0A 12
#define R300_FPI0_ARGC_SRC1A 13
#define R300_FPI0_ARGC_SRC2A 14
#define R300_FPI0_ARGC_SRC1C_LRP 15
#define R300_FPI0_ARGC_ZERO 20
#define R300_FPI0_ARGC_ONE 21
#define R300_FPI0_ARGC_HALF 22 /* GUESS */
#define R300_FPI0_ARGC_SRC0C_YZX 23
#define R300_FPI0_ARGC_SRC1C_YZX 24
#define R300_FPI0_ARGC_SRC2C_YZX 25
#define R300_FPI0_ARGC_SRC0C_ZXY 26
#define R300_FPI0_ARGC_SRC1C_ZXY 27
#define R300_FPI0_ARGC_SRC2C_ZXY 28
#define R300_FPI0_ARGC_SRC0CA_WZY 29
#define R300_FPI0_ARGC_SRC1CA_WZY 30
#define R300_FPI0_ARGC_SRC2CA_WZY 31
#define R300_FPI0_ARG0C_SHIFT 0
#define R300_FPI0_ARG0C_MASK (31 << 0)
#define R300_FPI0_ARG0C_NEG (1 << 5)
#define R300_FPI0_ARG0C_ABS (1 << 6)
#define R300_FPI0_ARG1C_SHIFT 7
#define R300_FPI0_ARG1C_MASK (31 << 7)
#define R300_FPI0_ARG1C_NEG (1 << 12)
#define R300_FPI0_ARG1C_ABS (1 << 13)
#define R300_FPI0_ARG2C_SHIFT 14
#define R300_FPI0_ARG2C_MASK (31 << 14)
#define R300_FPI0_ARG2C_NEG (1 << 19)
#define R300_FPI0_ARG2C_ABS (1 << 20)
#define R300_FPI0_SPECIAL_LRP (1 << 21)
#define R300_FPI0_OUTC_MAD (0 << 23)
#define R300_FPI0_OUTC_DP3 (1 << 23)
#define R300_FPI0_OUTC_DP4 (2 << 23)
#define R300_FPI0_OUTC_MIN (4 << 23)
#define R300_FPI0_OUTC_MAX (5 << 23)
#define R300_FPI0_OUTC_CMP (8 << 23)
#define R300_FPI0_OUTC_FRC (9 << 23)
#define R300_FPI0_OUTC_REPL_ALPHA (10 << 23)
#define R300_FPI0_OUTC_SAT (1 << 30)
#define R300_FPI0_INSERT_NOP (1 << 31)
#define R300_PFS_INSTR2_0 0x49C0
#define R300_FPI2_ARGA_SRC0C_X 0
#define R300_FPI2_ARGA_SRC0C_Y 1
#define R300_FPI2_ARGA_SRC0C_Z 2
#define R300_FPI2_ARGA_SRC1C_X 3
#define R300_FPI2_ARGA_SRC1C_Y 4
#define R300_FPI2_ARGA_SRC1C_Z 5
#define R300_FPI2_ARGA_SRC2C_X 6
#define R300_FPI2_ARGA_SRC2C_Y 7
#define R300_FPI2_ARGA_SRC2C_Z 8
#define R300_FPI2_ARGA_SRC0A 9
#define R300_FPI2_ARGA_SRC1A 10
#define R300_FPI2_ARGA_SRC2A 11
#define R300_FPI2_ARGA_SRC1A_LRP 15
#define R300_FPI2_ARGA_ZERO 16
#define R300_FPI2_ARGA_ONE 17
#define R300_FPI2_ARGA_HALF 18 /* GUESS */
#define R300_FPI2_ARG0A_SHIFT 0
#define R300_FPI2_ARG0A_MASK (31 << 0)
#define R300_FPI2_ARG0A_NEG (1 << 5)
#define R300_FPI2_ARG0A_ABS (1 << 6) /* GUESS */
#define R300_FPI2_ARG1A_SHIFT 7
#define R300_FPI2_ARG1A_MASK (31 << 7)
#define R300_FPI2_ARG1A_NEG (1 << 12)
#define R300_FPI2_ARG1A_ABS (1 << 13) /* GUESS */
#define R300_FPI2_ARG2A_SHIFT 14
#define R300_FPI2_ARG2A_MASK (31 << 14)
#define R300_FPI2_ARG2A_NEG (1 << 19)
#define R300_FPI2_ARG2A_ABS (1 << 20) /* GUESS */
#define R300_FPI2_SPECIAL_LRP (1 << 21)
#define R300_FPI2_OUTA_MAD (0 << 23)
#define R300_FPI2_OUTA_DP4 (1 << 23)
#define R300_FPI2_OUTA_MIN (2 << 23)
#define R300_FPI2_OUTA_MAX (3 << 23)
#define R300_FPI2_OUTA_CMP (6 << 23)
#define R300_FPI2_OUTA_FRC (7 << 23)
#define R300_FPI2_OUTA_EX2 (8 << 23)
#define R300_FPI2_OUTA_LG2 (9 << 23)
#define R300_FPI2_OUTA_RCP (10 << 23)
#define R300_FPI2_OUTA_RSQ (11 << 23)
#define R300_FPI2_OUTA_SAT (1 << 30)
#define R300_FPI2_UNKNOWN_31 (1 << 31)
/* END */
/* gap */
#define R300_PP_ALPHA_TEST 0x4BD4
#define R300_REF_ALPHA_MASK 0x000000ff
#define R300_ALPHA_TEST_FAIL (0 << 8)
#define R300_ALPHA_TEST_LESS (1 << 8)
#define R300_ALPHA_TEST_LEQUAL (3 << 8)
#define R300_ALPHA_TEST_EQUAL (2 << 8)
#define R300_ALPHA_TEST_GEQUAL (6 << 8)
#define R300_ALPHA_TEST_GREATER (4 << 8)
#define R300_ALPHA_TEST_NEQUAL (5 << 8)
#define R300_ALPHA_TEST_PASS (7 << 8)
#define R300_ALPHA_TEST_OP_MASK (7 << 8)
#define R300_ALPHA_TEST_ENABLE (1 << 11)
/* gap */
/* Fragment program parameters in 7.16 floating point */
#define R300_PFS_PARAM_0_X 0x4C00
#define R300_PFS_PARAM_0_Y 0x4C04
#define R300_PFS_PARAM_0_Z 0x4C08
#define R300_PFS_PARAM_0_W 0x4C0C
/* GUESS: PARAM_31 is last, based on native limits reported by fglrx */
#define R300_PFS_PARAM_31_X 0x4DF0
#define R300_PFS_PARAM_31_Y 0x4DF4
#define R300_PFS_PARAM_31_Z 0x4DF8
#define R300_PFS_PARAM_31_W 0x4DFC
// Notes:
// - AFAIK fglrx always sets BLEND_UNKNOWN when blending is used
// in the application
// - AFAIK fglrx always sets BLEND_NO_SEPARATE when CBLEND and
// ABLEND are set to the same
// function (both registers are always set up completely in any case)
// - Most blend flags are simply copied from R200 and not tested yet
#define R300_RB3D_CBLEND 0x4E04
#define R300_RB3D_ABLEND 0x4E08
/* the following only appear in CBLEND */
#define R300_BLEND_ENABLE (1 << 0)
#define R300_BLEND_UNKNOWN (3 << 1)
#define R300_BLEND_NO_SEPARATE (1 << 3)
/* the following are shared between CBLEND and ABLEND */
#define R300_FCN_MASK (3 << 12)
#define R300_COMB_FCN_ADD_CLAMP (0 << 12)
#define R300_COMB_FCN_ADD_NOCLAMP (1 << 12)
#define R300_COMB_FCN_SUB_CLAMP (2 << 12)
#define R300_COMB_FCN_SUB_NOCLAMP (3 << 12)
#define R300_SRC_BLEND_GL_ZERO (32 << 16)
#define R300_SRC_BLEND_GL_ONE (33 << 16)
#define R300_SRC_BLEND_GL_SRC_COLOR (34 << 16)
#define R300_SRC_BLEND_GL_ONE_MINUS_SRC_COLOR (35 << 16)
#define R300_SRC_BLEND_GL_DST_COLOR (36 << 16)
#define R300_SRC_BLEND_GL_ONE_MINUS_DST_COLOR (37 << 16)
#define R300_SRC_BLEND_GL_SRC_ALPHA (38 << 16)
#define R300_SRC_BLEND_GL_ONE_MINUS_SRC_ALPHA (39 << 16)
#define R300_SRC_BLEND_GL_DST_ALPHA (40 << 16)
#define R300_SRC_BLEND_GL_ONE_MINUS_DST_ALPHA (41 << 16)
#define R300_SRC_BLEND_GL_SRC_ALPHA_SATURATE (42 << 16)
#define R300_SRC_BLEND_MASK (63 << 16)
#define R300_DST_BLEND_GL_ZERO (32 << 24)
#define R300_DST_BLEND_GL_ONE (33 << 24)
#define R300_DST_BLEND_GL_SRC_COLOR (34 << 24)
#define R300_DST_BLEND_GL_ONE_MINUS_SRC_COLOR (35 << 24)
#define R300_DST_BLEND_GL_DST_COLOR (36 << 24)
#define R300_DST_BLEND_GL_ONE_MINUS_DST_COLOR (37 << 24)
#define R300_DST_BLEND_GL_SRC_ALPHA (38 << 24)
#define R300_DST_BLEND_GL_ONE_MINUS_SRC_ALPHA (39 << 24)
#define R300_DST_BLEND_GL_DST_ALPHA (40 << 24)
#define R300_DST_BLEND_GL_ONE_MINUS_DST_ALPHA (41 << 24)
#define R300_DST_BLEND_MASK (63 << 24)
#define R300_RB3D_COLORMASK 0x4E0C
#define R300_COLORMASK0_B (1<<0)
#define R300_COLORMASK0_G (1<<1)
#define R300_COLORMASK0_R (1<<2)
#define R300_COLORMASK0_A (1<<3)
/* gap */
#define R300_RB3D_COLOROFFSET0 0x4E28
#define R300_COLOROFFSET_MASK 0xFFFFFFF0 /* GUESS */
#define R300_RB3D_COLOROFFSET1 0x4E2C /* GUESS */
#define R300_RB3D_COLOROFFSET2 0x4E30 /* GUESS */
#define R300_RB3D_COLOROFFSET3 0x4E34 /* GUESS */
/* gap */
// Bit 16: Larger tiles
// Bit 17: 4x2 tiles
// Bit 18: Extremely weird tile like, but some pixels duplicated?
#define R300_RB3D_COLORPITCH0 0x4E38
#define R300_COLORPITCH_MASK 0x00001FF8 /* GUESS */
#define R300_COLOR_TILE_ENABLE (1 << 16) /* GUESS */
#define R300_COLOR_MICROTILE_ENABLE (1 << 17) /* GUESS */
#define R300_COLOR_ENDIAN_NO_SWAP (0 << 18) /* GUESS */
#define R300_COLOR_ENDIAN_WORD_SWAP (1 << 18) /* GUESS */
#define R300_COLOR_ENDIAN_DWORD_SWAP (2 << 18) /* GUESS */
#define R300_COLOR_FORMAT_RGB565 (2 << 22)
#define R300_COLOR_FORMAT_ARGB8888 (3 << 22)
#define R300_RB3D_COLORPITCH1 0x4E3C /* GUESS */
#define R300_RB3D_COLORPITCH2 0x4E40 /* GUESS */
#define R300_RB3D_COLORPITCH3 0x4E44 /* GUESS */
/* gap */
/*
* Guess by Vladimir.
* Set to 0A before 3D operations, set to 02 afterwards.
*/
#define R300_RB3D_DSTCACHE_CTLSTAT 0x4E4C
#define R300_RB3D_DSTCACHE_02 0x00000002
#define R300_RB3D_DSTCACHE_0A 0x0000000A
/* gap */
/*
* There seems to be no "write only" setting, so use
* Z-test = ALWAYS for this. Bit (1<<8) is the "test"
* bit. so plain write is 6 - vd
*/
#define R300_RB3D_ZSTENCIL_CNTL_0 0x4F00
#define R300_RB3D_Z_DISABLED_1 0x00000010 /* GUESS */
#define R300_RB3D_Z_DISABLED_2 0x00000014 /* GUESS */
#define R300_RB3D_Z_TEST 0x00000012
#define R300_RB3D_Z_TEST_AND_WRITE 0x00000016
#define R300_RB3D_Z_WRITE_ONLY 0x00000006
#define R300_RB3D_Z_TEST 0x00000012
#define R300_RB3D_Z_TEST_AND_WRITE 0x00000016
#define R300_RB3D_Z_WRITE_ONLY 0x00000006
#define R300_RB3D_STENCIL_ENABLE 0x00000001
#define R300_RB3D_ZSTENCIL_CNTL_1 0x4F04
/* functions */
#define R300_ZS_NEVER 0
#define R300_ZS_LESS 1
#define R300_ZS_LEQUAL 2
#define R300_ZS_EQUAL 3
#define R300_ZS_GEQUAL 4
#define R300_ZS_GREATER 5
#define R300_ZS_NOTEQUAL 6
#define R300_ZS_ALWAYS 7
#define R300_ZS_MASK 7
/* operations */
#define R300_ZS_KEEP 0
#define R300_ZS_ZERO 1
#define R300_ZS_REPLACE 2
#define R300_ZS_INCR 3
#define R300_ZS_DECR 4
#define R300_ZS_INVERT 5
#define R300_ZS_INCR_WRAP 6
#define R300_ZS_DECR_WRAP 7
/*
* front and back refer to operations done for front
* and back faces, i.e. separate stencil function support
*/
#define R300_RB3D_ZS1_DEPTH_FUNC_SHIFT 0
#define R300_RB3D_ZS1_FRONT_FUNC_SHIFT 3
#define R300_RB3D_ZS1_FRONT_FAIL_OP_SHIFT 6
#define R300_RB3D_ZS1_FRONT_ZPASS_OP_SHIFT 9
#define R300_RB3D_ZS1_FRONT_ZFAIL_OP_SHIFT 12
#define R300_RB3D_ZS1_BACK_FUNC_SHIFT 15
#define R300_RB3D_ZS1_BACK_FAIL_OP_SHIFT 18
#define R300_RB3D_ZS1_BACK_ZPASS_OP_SHIFT 21
#define R300_RB3D_ZS1_BACK_ZFAIL_OP_SHIFT 24
#define R300_RB3D_ZSTENCIL_CNTL_2 0x4F08
#define R300_RB3D_ZS2_STENCIL_REF_SHIFT 0
#define R300_RB3D_ZS2_STENCIL_MASK 0xFF
#define R300_RB3D_ZS2_STENCIL_MASK_SHIFT 8
#define R300_RB3D_ZS2_STENCIL_WRITE_MASK_SHIFT 16
/* gap */
#define R300_RB3D_ZSTENCIL_FORMAT 0x4F10
#define R300_DEPTH_FORMAT_16BIT_INT_Z (0 << 0)
#define R300_DEPTH_FORMAT_24BIT_INT_Z (2 << 0)
/* gap */
#define R300_RB3D_DEPTHOFFSET 0x4F20
#define R300_RB3D_DEPTHPITCH 0x4F24
#define R300_DEPTHPITCH_MASK 0x00001FF8 /* GUESS */
#define R300_DEPTH_TILE_ENABLE (1 << 16) /* GUESS */
#define R300_DEPTH_MICROTILE_ENABLE (1 << 17) /* GUESS */
#define R300_DEPTH_ENDIAN_NO_SWAP (0 << 18) /* GUESS */
#define R300_DEPTH_ENDIAN_WORD_SWAP (1 << 18) /* GUESS */
#define R300_DEPTH_ENDIAN_DWORD_SWAP (2 << 18) /* GUESS */
/*
* BEGIN: Vertex program instruction set
* Every instruction is four dwords long:
* DWORD 0: output and opcode
* DWORD 1: first argument
* DWORD 2: second argument
* DWORD 3: third argument
*
* Notes:
* - ABS r, a is implemented as MAX r, a, -a
* - MOV is implemented as ADD to zero
* - XPD is implemented as MUL + MAD
* - FLR is implemented as FRC + ADD
* - apparently, fglrx tries to schedule instructions so that there
* is at least one instruction between the write to a temporary
* and the first read from said temporary; however, violations
* of this scheduling are allowed
* - register indices seem to be unrelated with OpenGL aliasing to
* conventional state
* - only one attribute and one parameter can be loaded at a time;
* however, the same attribute/parameter can be used for more
* than one argument
* - the second software argument for POW is the third hardware
* argument (no idea why)
* - MAD with only temporaries as input seems to use VPI_OUT_SELECT_MAD_2
*
* There is some magic surrounding LIT:
* The single argument is replicated across all three inputs, but swizzled:
* First argument: xyzy
* Second argument: xyzx
* Third argument: xyzw
* Whenever the result is used later in the fragment program, fglrx forces
* x and w to be 1.0 in the input selection; I don't know whether this is
* strictly necessary
*/
#define R300_VPI_OUT_OP_DOT (1 << 0)
#define R300_VPI_OUT_OP_MUL (2 << 0)
#define R300_VPI_OUT_OP_ADD (3 << 0)
#define R300_VPI_OUT_OP_MAD (4 << 0)
#define R300_VPI_OUT_OP_DST (5 << 0)
#define R300_VPI_OUT_OP_FRC (6 << 0)
#define R300_VPI_OUT_OP_MAX (7 << 0)
#define R300_VPI_OUT_OP_MIN (8 << 0)
#define R300_VPI_OUT_OP_SGE (9 << 0)
#define R300_VPI_OUT_OP_SLT (10 << 0)
#define R300_VPI_OUT_OP_UNK12 (12 << 0)
/*
* Used in GL_POINT_DISTANCE_ATTENUATION_ARB,
* vector(scalar, vector)
*/
#define R300_VPI_OUT_OP_EXP (65 << 0)
#define R300_VPI_OUT_OP_LOG (66 << 0)
#define R300_VPI_OUT_OP_UNK67 (67 << 0)
/* Used in fog computations, scalar(scalar) */
#define R300_VPI_OUT_OP_LIT (68 << 0)
#define R300_VPI_OUT_OP_POW (69 << 0)
#define R300_VPI_OUT_OP_RCP (70 << 0)
#define R300_VPI_OUT_OP_RSQ (72 << 0)
#define R300_VPI_OUT_OP_UNK73 (73 << 0)
/*
* Used in GL_POINT_DISTANCE_ATTENUATION_ARB,
* scalar(scalar)
*/
#define R300_VPI_OUT_OP_EX2 (75 << 0)
#define R300_VPI_OUT_OP_LG2 (76 << 0)
#define R300_VPI_OUT_OP_MAD_2 (128 << 0)
#define R300_VPI_OUT_OP_UNK129 (129 << 0)
/* all temps, vector(scalar, vector, vector) */
#define R300_VPI_OUT_REG_CLASS_TEMPORARY (0 << 8)
#define R300_VPI_OUT_REG_CLASS_RESULT (2 << 8)
#define R300_VPI_OUT_REG_CLASS_MASK (31 << 8)
#define R300_VPI_OUT_REG_INDEX_SHIFT 13
#define R300_VPI_OUT_REG_INDEX_MASK (31 << 13)
/* GUESS based on fglrx native limits */
#define R300_VPI_OUT_WRITE_X (1 << 20)
#define R300_VPI_OUT_WRITE_Y (1 << 21)
#define R300_VPI_OUT_WRITE_Z (1 << 22)
#define R300_VPI_OUT_WRITE_W (1 << 23)
#define R300_VPI_IN_REG_CLASS_TEMPORARY (0 << 0)
#define R300_VPI_IN_REG_CLASS_ATTRIBUTE (1 << 0)
#define R300_VPI_IN_REG_CLASS_PARAMETER (2 << 0)
#define R300_VPI_IN_REG_CLASS_NONE (9 << 0)
#define R300_VPI_IN_REG_CLASS_MASK (31 << 0) /* GUESS */
#define R300_VPI_IN_REG_INDEX_SHIFT 5
#define R300_VPI_IN_REG_INDEX_MASK (255 << 5)
/* GUESS based on fglrx native limits */
/*
* The R300 can select components from the input register arbitrarily.
* Use the following constants, shifted by the component shift you
* want to select
*/
#define R300_VPI_IN_SELECT_X 0
#define R300_VPI_IN_SELECT_Y 1
#define R300_VPI_IN_SELECT_Z 2
#define R300_VPI_IN_SELECT_W 3
#define R300_VPI_IN_SELECT_ZERO 4
#define R300_VPI_IN_SELECT_ONE 5
#define R300_VPI_IN_SELECT_MASK 7
#define R300_VPI_IN_X_SHIFT 13
#define R300_VPI_IN_Y_SHIFT 16
#define R300_VPI_IN_Z_SHIFT 19
#define R300_VPI_IN_W_SHIFT 22
#define R300_VPI_IN_NEG_X (1 << 25)
#define R300_VPI_IN_NEG_Y (1 << 26)
#define R300_VPI_IN_NEG_Z (1 << 27)
#define R300_VPI_IN_NEG_W (1 << 28)
/* END */
/* BEGIN: Packet 3 commands */
// A primitive emission dword.
#define R300_PRIM_TYPE_NONE (0 << 0)
#define R300_PRIM_TYPE_POINT (1 << 0)
#define R300_PRIM_TYPE_LINE (2 << 0)
#define R300_PRIM_TYPE_LINE_STRIP (3 << 0)
#define R300_PRIM_TYPE_TRI_LIST (4 << 0)
#define R300_PRIM_TYPE_TRI_FAN (5 << 0)
#define R300_PRIM_TYPE_TRI_STRIP (6 << 0)
#define R300_PRIM_TYPE_TRI_TYPE2 (7 << 0)
#define R300_PRIM_TYPE_RECT_LIST (8 << 0)
#define R300_PRIM_TYPE_3VRT_POINT_LIST (9 << 0)
#define R300_PRIM_TYPE_3VRT_LINE_LIST (10 << 0)
#define R300_PRIM_TYPE_POINT_SPRITES (11 << 0)
// GUESS (based on r200)
#define R300_PRIM_TYPE_LINE_LOOP (12 << 0)
#define R300_PRIM_TYPE_QUADS (13 << 0)
#define R300_PRIM_TYPE_QUAD_STRIP (14 << 0)
#define R300_PRIM_TYPE_POLYGON (15 << 0)
#define R300_PRIM_TYPE_MASK 0xF
#define R300_PRIM_WALK_IND (1 << 4)
#define R300_PRIM_WALK_LIST (2 << 4)
#define R300_PRIM_WALK_RING (3 << 4)
#define R300_PRIM_WALK_MASK (3 << 4)
#define R300_PRIM_COLOR_ORDER_BGRA (0 << 6)
// GUESS (based on r200)
#define R300_PRIM_COLOR_ORDER_RGBA (1 << 6) // GUESS
#define R300_PRIM_NUM_VERTICES_SHIFT 16
// Draw a primitive from vertex data in arrays loaded via 3D_LOAD_VBPNTR.
// Two parameter dwords:
// 0. The first parameter appears to be always 0
// 1. The second parameter is a standard primitive emission dword.
#define R300_PACKET3_3D_DRAW_VBUF 0x00002800
// Specify the full set of vertex arrays as (address, stride).
// The first parameter is the number of vertex arrays specified.
// The rest of the command is a variable length list of blocks, where
// each block is three dwords long and specifies two arrays.
// The first dword of a block is split into two words, the lower significant
// word refers to the first array, the more significant word to the second
// array in the block.
// The low byte of each word contains the size of an array entry in dwords,
// the high byte contains the stride of the array.
// The second dword of a block contains the pointer to the first array,
// the third dword of a block contains the pointer to the second array.
// Note that if the total number of arrays is odd, the third dword of
// the last block is omitted.
#define R300_PACKET3_3D_LOAD_VBPNTR 0x00002F00
#define R300_PACKET3_INDX_BUFFER 0x00003300
#define R300_EB_UNK1_SHIFT 24
#define R300_EB_UNK1 (0x80<<24)
#define R300_EB_UNK2 0x0810
#define R300_PACKET3_3D_DRAW_INDX_2 0x00003600
#ifdef __cplusplus
}
#endif
#endif /* __R300_REG_H_ */