Cross Reference: /solaris-userland/components/mpfr/Solaris/index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
<html lang="en">
<head>
<title>MPFR 2.3.2</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="description" content="How to install and use MPFR, a library for reliable multiple precision floating-point arithmetic, version 2.3.2.">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="top" href="#Top">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
This manual documents how to install and use the Multiple Precision
Floating-Point Reliable Library, version 2.3.2.
Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in *note GNU Free Documentation License::.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p><hr>
<a name="Top"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Copying">Copying</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#dir">(dir)</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#dir">(dir)</a>
</div>
<h2 class="unnumbered">MPFR</h2>
<p>This manual documents how to install and use the Multiple Precision
Floating-Point Reliable Library, version 2.3.2.
<p>Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
<p>Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>.
<pre class="sp">
</pre>
<!-- Don't bother with contents for html, the menus seem adequate. -->
<ul class="menu">
<li><a accesskey="1" href="#Copying">Copying</a>: MPFR Copying Conditions (LGPL).
<li><a accesskey="2" href="#Introduction-to-MPFR">Introduction to MPFR</a>: Brief introduction to MPFR.
<li><a accesskey="3" href="#Installing-MPFR">Installing MPFR</a>: How to configure and compile the MPFR library.
<li><a accesskey="4" href="#Reporting-Bugs">Reporting Bugs</a>: How to usefully report bugs.
<li><a accesskey="5" href="#MPFR-Basics">MPFR Basics</a>: What every MPFR user should now.
<li><a accesskey="6" href="#MPFR-Interface">MPFR Interface</a>: MPFR functions and macros.
<li><a accesskey="7" href="#Contributors">Contributors</a>
<li><a accesskey="8" href="#References">References</a>
<li><a accesskey="9" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>
<li><a href="#Concept-Index">Concept Index</a>
<li><a href="#Function-Index">Function Index</a>
</ul>
<!-- @m{T,N} is $T$ in tex or @math{N} otherwise. This is an easy way to give -->
<!-- different forms for math in tex and info. Commas in N or T don't work, -->
<!-- but @C{} can be used instead. \, works in info but not in tex. -->
<!-- Usage: @GMPabs{x} -->
<!-- Give either |x| in tex, or abs(x) in info or html. -->
<!-- Usage: @GMPtimes{} -->
<!-- Give either \times or the word "times". -->
<!-- New math operators. -->
<!-- @abs{} can be used in both tex and info, or just \abs in tex. -->
<!-- @times{} made available as a "*" in info and html (already works in tex). -->
<!-- Math operators already available in tex, made available in info too. -->
<!-- For example @log{} can be used in both tex and info. -->
<!-- @pom{} definition -->
<!-- The following macro have been copied from gmp.texi -->
<!-- Usage: @MPFRpxreftop{info,title} -->
<!-- Like @pxref{}, but designed for a reference to the top of a document, not -->
<!-- a particular section. -->
<!-- The texinfo manual recommends putting a likely section name in references -->
<!-- like this, eg. "Introduction", but it seems better to just give the title. -->
<div class="node">
<p><hr>
<a name="Copying"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Introduction-to-MPFR">Introduction to MPFR</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Top">Top</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="unnumbered">MPFR Copying Conditions</h2>
<p><a name="index-Copying-conditions-1"></a><a name="index-Conditions-for-copying-MPFR-2"></a>
This library is <dfn>free</dfn>; this means that everyone is free to use it and
free to redistribute it on a free basis. The library is not in the public
domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of this library that they might get from
you.
<p>Specifically, we want to make sure that you have the right to give away copies
of the library, that you receive source code or else can get it if you want
it, that you can change this library or use pieces of it in new free programs,
and that you know you can do these things.
<p>To make sure that everyone has such rights, we have to forbid you to deprive
anyone else of these rights. For example, if you distribute copies of the
MPFR library, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must tell them their rights.
<p>Also, for our own protection, we must make certain that everyone finds out
that there is no warranty for the MPFR library. If it is modified by
someone else and passed on, we want their recipients to know that what they
have is not what we distributed, so that any problems introduced by others
will not reflect on our reputation.
<p>The precise conditions of the license for the MPFR library are found in the
Lesser General Public License that accompanies the source code.
See the file COPYING.LIB.
<div class="node">
<p><hr>
<a name="Introduction-to-MPFR"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Installing-MPFR">Installing MPFR</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Copying">Copying</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="chapter">1 Introduction to MPFR</h2>
<p>MPFR is a portable library written in C for arbitrary precision arithmetic
on floating-point numbers. It is based on the GNU MP library.
It aims to extend the class of floating-point numbers provided by the
GNU MP library by a precise semantics. The main differences
with the <code>mpf</code> class from GNU MP are:
<ul>
<li>the MPFR code is portable, i.e. the result of any operation
does not depend (or should not) on the machine word size
<code>mp_bits_per_limb</code> (32 or 64 on most machines);
<li>the precision in bits can be set exactly to any valid value
for each variable (including very small precision);
<li>MPFR provides the four rounding modes from the IEEE 754-1985
standard.
</ul>
<p>In particular, with a precision of 53 bits, MPFR should be able to
exactly reproduce all computations with double-precision machine
floating-point numbers (e.g., <code>double</code> type in C, with a C
implementation that rigorously follows Annex F of the ISO C99 standard
and <code>FP_CONTRACT</code> pragma set to <code>OFF</code>) on the four arithmetic
operations and the square root, except the default exponent range is much
wider and subnormal numbers are not implemented (but can be emulated).
<p>This version of MPFR is released under the GNU Lesser General Public
License, Version 2.1 or any later version.
It is permitted to link MPFR to most non-free programs, as long as when
distributing them the MPFR source code and a means to re-link with a
modified MPFR library is provided.
<h3 class="section">1.1 How to Use This Manual</h3>
<p>Everyone should read <a href="#MPFR-Basics">MPFR Basics</a>. If you need to install the library
yourself, you need to read <a href="#Installing-MPFR">Installing MPFR</a>, too.
<p>The rest of the manual can be used for later reference, although it is
probably a good idea to glance through it.
<div class="node">
<p><hr>
<a name="Installing-MPFR"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Reporting-Bugs">Reporting Bugs</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Introduction-to-MPFR">Introduction to MPFR</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="chapter">2 Installing MPFR</h2>
<p><a name="index-Installation-3"></a>
<h3 class="section">2.1 How to Install</h3>
<p>Here are the steps needed to install the library on Unix systems
(more details are provided in the <samp><span class="file">INSTALL</span></samp> file):
<ol type=1 start=1>
<li>To build MPFR, you first have to install GNU MP
(version 4.1 or higher) on your computer.
You need a C compiler, preferably GCC, but any reasonable compiler should
work. And you need a standard Unix &lsquo;<samp><span class="samp">make</span></samp>&rsquo; program, plus some other
standard Unix utility programs.
<li>In the MPFR build directory, type
&lsquo;<samp><span class="samp">/configure</span></samp>&rsquo;
<p>This will prepare the build and setup the options according to your system.
If you get error messages, you might check that you use the same compiler
and compile options as for GNU MP (see the <samp><span class="file">INSTALL</span></samp> file).
<li>&lsquo;<samp><span class="samp">make</span></samp>&rsquo;
<p>This will compile MPFR, and create a library archive file <samp><span class="file">libmpfr.a</span></samp>.
A dynamic library may be produced too (see configure).
<li>&lsquo;<samp><span class="samp">make check</span></samp>&rsquo;
<p>This will make sure MPFR was built correctly.
If you get error messages, please
report this to &lsquo;<samp><span class="samp">mpfr@loria.fr</span></samp>&rsquo;. (See <a href="#Reporting-Bugs">Reporting Bugs</a>, for
information on what to include in useful bug reports.)
<li>&lsquo;<samp><span class="samp">make install</span></samp>&rsquo;
<p>This will copy the files <samp><span class="file">mpfr.h</span></samp> and <samp><span class="file">mpf2mpfr.h</span></samp> to the directory
<samp><span class="file">/usr/local/include</span></samp>, the file <samp><span class="file">libmpfr.a</span></samp> to the directory
<samp><span class="file">/usr/local/lib</span></samp>, and the file <samp><span class="file">mpfr.info</span></samp> to the directory
<samp><span class="file">/usr/local/share/info</span></samp> (or if you passed the &lsquo;<samp><span class="samp">--prefix</span></samp>&rsquo; option to
<samp><span class="file">configure</span></samp>, using the prefix directory given as argument to
&lsquo;<samp><span class="samp">--prefix</span></samp>&rsquo; instead of <samp><span class="file">/usr/local</span></samp>).
</ol>
<h3 class="section">2.2 Other `make' Targets</h3>
<p>There are some other useful make targets:
<ul>
<li>&lsquo;<samp><span class="samp">mpfr.info</span></samp>&rsquo; or &lsquo;<samp><span class="samp">info</span></samp>&rsquo;
<p>Create an info version of the manual, in <samp><span class="file">mpfr.info</span></samp>.
<li>&lsquo;<samp><span class="samp">mpfr.pdf</span></samp>&rsquo; or &lsquo;<samp><span class="samp">pdf</span></samp>&rsquo;
<p>Create a PDF version of the manual, in <samp><span class="file">mpfr.pdf</span></samp>.
<li>&lsquo;<samp><span class="samp">mpfr.dvi</span></samp>&rsquo; or &lsquo;<samp><span class="samp">dvi</span></samp>&rsquo;
<p>Create a DVI version of the manual, in <samp><span class="file">mpfr.dvi</span></samp>.
<li>&lsquo;<samp><span class="samp">mpfr.ps</span></samp>&rsquo; or &lsquo;<samp><span class="samp">ps</span></samp>&rsquo;
<p>Create a Postscript version of the manual, in <samp><span class="file">mpfr.ps</span></samp>.
<li>&lsquo;<samp><span class="samp">mpfr.html</span></samp>&rsquo; or &lsquo;<samp><span class="samp">html</span></samp>&rsquo;
<p>Create a HTML version of the manual, in several pages in the directory
<samp><span class="file">mpfr.html</span></samp>; if you want only one output HTML file, then type
&lsquo;<samp><span class="samp">makeinfo --html --no-split mpfr.texi</span></samp>&rsquo; instead.
<li>&lsquo;<samp><span class="samp">clean</span></samp>&rsquo;
<p>Delete all object files and archive files, but not the configuration files.
<li>&lsquo;<samp><span class="samp">distclean</span></samp>&rsquo;
<p>Delete all files not included in the distribution.
<li>&lsquo;<samp><span class="samp">uninstall</span></samp>&rsquo;
<p>Delete all files copied by &lsquo;<samp><span class="samp">make install</span></samp>&rsquo;.
</ul>
<h3 class="section">2.3 Build Problems</h3>
<p>In case of problem, please read the <samp><span class="file">INSTALL</span></samp> file carefully
before reporting a bug, in particular section &ldquo;In case of problem&rdquo;.
Some problems are due to bad configuration on the user side (not
specific to MPFR). Problems are also mentioned in the FAQ
<a href="http://www.mpfr.org/faq.html">http://www.mpfr.org/faq.html</a>.
<!-- Warning! Do not split "MPFR ... @url{...}" across several lines -->
<!-- as this needs to be updated with update-version. -->
<p>Please report problems to &lsquo;<samp><span class="samp">mpfr@loria.fr</span></samp>&rsquo;.
See <a href="#Reporting-Bugs">Reporting Bugs</a>.
Some bug fixes are available on the
MPFR 2.3.2 web page <a href="http://www.mpfr.org/mpfr-2.3.2/">http://www.mpfr.org/mpfr-2.3.2/</a>.
<h3 class="section">2.4 Getting the Latest Version of MPFR</h3>
<p>The latest version of MPFR is available from <a href="http://www.mpfr.org/">http://www.mpfr.org/</a>.
<div class="node">
<p><hr>
<a name="Reporting-Bugs"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#MPFR-Basics">MPFR Basics</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Installing-MPFR">Installing MPFR</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="chapter">3 Reporting Bugs</h2>
<p><a name="index-Reporting-bugs-4"></a>
<!-- Warning! Do not split "MPFR ... @url{...}" across several lines -->
<!-- as this needs to be updated with update-version. -->
If you think you have found a bug in the MPFR library, first have a look
on the MPFR 2.3.2 web page <a href="http://www.mpfr.org/mpfr-2.3.2/">http://www.mpfr.org/mpfr-2.3.2/</a> and the
FAQ <a href="http://www.mpfr.org/faq.html">http://www.mpfr.org/faq.html</a>:
perhaps this bug is already known, in which case you may find there
a workaround for it. Otherwise, please investigate and report it.
We have made this library available to you, and it is not to ask too
much from you, to ask you to report the bugs that you find.
<p>There are a few things you should think about when you put your bug report
together.
<p>You have to send us a test case that makes it possible for us to reproduce the
bug. Include instructions on how to run the test case.
<p>You also have to explain what is wrong; if you get a crash, or if the results
printed are incorrect and in that case, in what way.
<p>Please include compiler version information in your bug report. This can
be extracted using &lsquo;<samp><span class="samp">cc -V</span></samp>&rsquo; on some machines, or, if you're using gcc,
&lsquo;<samp><span class="samp">gcc -v</span></samp>&rsquo;. Also, include the output from &lsquo;<samp><span class="samp">uname -a</span></samp>&rsquo; and the MPFR
version (the GMP version may be useful too).
<p>If your bug report is good, we will do our best to help you to get a corrected
version of the library; if the bug report is poor, we won't do anything about
it (aside of chiding you to send better bug reports).
<p>Send your bug report to: &lsquo;<samp><span class="samp">mpfr@loria.fr</span></samp>&rsquo;.
<p>If you think something in this manual is unclear, or downright incorrect, or if
the language needs to be improved, please send a note to the same address.
<div class="node">
<p><hr>
<a name="MPFR-Basics"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#MPFR-Interface">MPFR Interface</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Reporting-Bugs">Reporting Bugs</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="chapter">4 MPFR Basics</h2>
<h3 class="section">4.1 Headers and Libraries</h3>
<p><a name="index-g_t_0040file_007bmpfr_002eh_007d-5"></a>All declarations needed to use MPFR are collected in the include file
<samp><span class="file">mpfr.h</span></samp>. It is designed to work with both C and C++ compilers.
You should include that file in any program using the MPFR library:
<pre class="example"> #include &lt;mpfr.h&gt;
</pre>
<p><a name="index-g_t_0040code_007bstdio_002eh_007d-6"></a>Note however that prototypes for MPFR functions with <code>FILE *</code> parameters
are provided only if <code>&lt;stdio.h&gt;</code> is included too (before <samp><span class="file">mpfr.h</span></samp>).
<pre class="example"> #include &lt;stdio.h&gt;
#include &lt;mpfr.h&gt;
</pre>
<p>You can avoid the use of MPFR macros encapsulating functions by defining
the &lsquo;<samp><span class="samp">MPFR_USE_NO_MACRO</span></samp>&rsquo; macro before <samp><span class="file">mpfr.h</span></samp> is included. In
general this should not be necessary, but this can be useful when debugging
user code: with some macros, the compiler may emit spurious warnings with
some warning options, and macros can prevent some prototype checking.
<p><a name="index-Libraries-7"></a><a name="index-Linking-8"></a><a name="index-g_t_0040code_007blibmpfr_007d-9"></a>All programs using MPFR must link against both <samp><span class="file">libmpfr</span></samp> and
<samp><span class="file">libgmp</span></samp> libraries. On a typical Unix-like system this can be
done with &lsquo;<samp><span class="samp">-lmpfr -lgmp</span></samp>&rsquo; (in that order), for example
<pre class="example"> gcc myprogram.c -lmpfr -lgmp
</pre>
<p><a name="index-Libtool-10"></a>MPFR is built using Libtool and an application can use that to link if
desired, see <cite>GNU Libtool</cite>.
<!-- Note: Do not try the above cross reference without moving mpfr.info -->
<!-- into some "safe" place first. Due to a poor design, "info" will not -->
<!-- find the correct libtool info file because of the "libtool" script -->
<!-- in MPFR's directory! -->
<p>If MPFR has been installed to a non-standard location, then it may be
necessary to set up environment variables such as &lsquo;<samp><span class="samp">C_INCLUDE_PATH</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">LIBRARY_PATH</span></samp>&rsquo;, or use &lsquo;<samp><span class="samp">-I</span></samp>&rsquo; and &lsquo;<samp><span class="samp">-L</span></samp>&rsquo; compiler options,
in order to point to the right directories. For a shared library, it may
also be necessary to set up some sort of run-time library path (e.g.,
&lsquo;<samp><span class="samp">LD_LIBRARY_PATH</span></samp>&rsquo;) on some systems. Please read the <samp><span class="file">INSTALL</span></samp>
file for additional information.
<h3 class="section">4.2 Nomenclature and Types</h3>
<p><a name="index-Floating_002dpoint-number-11"></a><a name="index-g_t_0040code_007bmpfr_005ft_007d-12"></a>A <dfn>floating-point number</dfn> or <dfn>float</dfn> for short, is an arbitrary
precision significand (also called mantissa) with a limited precision
exponent. The C data type
for such objects is <code>mpfr_t</code> (internally defined as a one-element
array of a structure, and <code>mpfr_ptr</code> is the C data type representing
a pointer to this structure). A floating-point number can have
three special values: Not-a-Number (NaN) or plus or minus Infinity. NaN
represents an uninitialized object, the result of an invalid operation
(like 0 divided by 0), or a value that cannot be determined (like
+Infinity minus +Infinity). Moreover, like in the IEEE 754-1985 standard,
zero is signed, i.e. there are both +0 and &minus;0; the behavior
is the same as in the IEEE 754-1985 standard and it is generalized to
the other functions supported by MPFR.
<p><a name="index-Precision-13"></a><a name="index-g_t_0040code_007bmp_005fprec_005ft_007d-14"></a>The <dfn>precision</dfn> is the number of bits used to represent the significand
of a floating-point number;
the corresponding C data type is <code>mp_prec_t</code>.
The precision can be any integer between <code>MPFR_PREC_MIN</code> and
<code>MPFR_PREC_MAX</code>. In the current implementation, <code>MPFR_PREC_MIN</code>
is equal to 2.
<p>Warning! MPFR needs to increase the precision internally, in order to
provide accurate results (and in particular, correct rounding). Do not
attempt to set the precision to any value near <code>MPFR_PREC_MAX</code>,
otherwise MPFR will abort due to an assertion failure. Moreover, you
may reach some memory limit on your platform, in which case the program
may abort, crash or have undefined behavior (depending on your C
implementation).
<p><a name="index-Rounding-Modes-15"></a><a name="index-g_t_0040code_007bmp_005frnd_005ft_007d-16"></a>The <dfn>rounding mode</dfn> specifies the way to round the result of a
floating-point operation, in case the exact result can not be represented
exactly in the destination significand;
the corresponding C data type is <code>mp_rnd_t</code>.
<p><a name="index-Limb-17"></a><!-- @tindex @code{mp_limb_t} -->
A <dfn>limb</dfn> means the part of a multi-precision number that fits in a single
word. (We chose this word because a limb of the human body is analogous to a
digit, only larger, and containing several digits.) Normally a limb contains
32 or 64 bits. The C data type for a limb is <code>mp_limb_t</code>.
<h3 class="section">4.3 Function Classes</h3>
<p>There is only one class of functions in the MPFR library:
<ol type=1 start=1>
<li>Functions for floating-point arithmetic, with names beginning with
<code>mpfr_</code>. The associated type is <code>mpfr_t</code>.
</ol>
<h3 class="section">4.4 MPFR Variable Conventions</h3>
<p>As a general rule, all MPFR functions expect output arguments before input
arguments. This notation is based on an analogy with the assignment operator.
<p>MPFR allows you to use the same variable for both input and output in the same
expression. For example, the main function for floating-point multiplication,
<code>mpfr_mul</code>, can be used like this: <code>mpfr_mul (x, x, x, rnd_mode)</code>.
This
computes the square of <var>x</var> with rounding mode <code>rnd_mode</code>
and puts the result back in <var>x</var>.
<p>Before you can assign to an MPFR variable, you need to initialize it by calling
one of the special initialization functions. When you're done with a
variable, you need to clear it out, using one of the functions for that
purpose.
<p>A variable should only be initialized once, or at least cleared out between
each initialization. After a variable has been initialized, it may be
assigned to any number of times.
<p>For efficiency reasons, avoid to initialize and clear out a variable in loops.
Instead, initialize it before entering the loop, and clear it out after the
loop has exited.
<p>You don't need to be concerned about allocating additional space for MPFR
variables, since any variable has a significand of fixed size.
Hence unless you change its precision, or clear and reinitialize it,
a floating-point variable will have the same allocated space during all its
life.
<h3 class="section">4.5 Rounding Modes</h3>
<p>The following four rounding modes are supported:
<ul>
<li><code>GMP_RNDN</code>: round to nearest
<li><code>GMP_RNDZ</code>: round toward zero
<li><code>GMP_RNDU</code>: round toward plus infinity
<li><code>GMP_RNDD</code>: round toward minus infinity
</ul>
<p>The &lsquo;<samp><span class="samp">round to nearest</span></samp>&rsquo; mode works as in the IEEE 754-1985 standard: in
case the number to be rounded lies exactly in the middle of two representable
numbers, it is rounded to the one with the least significant bit set to zero.
For example, the number 5/2, which is represented by (10.1) in binary, is
rounded to (10.0)=2 with a precision of two bits, and not to (11.0)=3.
This rule avoids the <dfn>drift</dfn> phenomenon mentioned by Knuth in volume 2
of The Art of Computer Programming (Section 4.2.2).
<p>Most MPFR functions take as first argument the destination variable, as
second and following arguments the input variables, as last argument a
rounding mode, and have a return value of type <code>int</code>, called the
<dfn>ternary value</dfn>. The value stored in the destination variable is
correctly rounded, i.e. MPFR behaves as if it computed the result with
an infinite precision, then rounded it to the precision of this variable.
The input variables are regarded as exact (in particular, their precision
does not affect the result).
<p>As a consequence, in case of a non-zero real rounded result, the error
on the result is less or equal to 1/2 ulp (unit in the last place) of
the target in the rounding to nearest mode, and less than 1 ulp of the
target in the directed rounding modes (a ulp is the weight of the least
significant represented bit of the target after rounding).
<!-- Since subnormals are not supported, we must take into account the ulp of -->
<!-- the rounded result, not the one of the exact result, for full generality. -->
<p>Unless documented otherwise, functions returning an <code>int</code> return
a ternary value.
If the ternary value is zero, it means that the value stored in the
destination variable is the exact result of the corresponding mathematical
function. If the ternary value is positive (resp. negative), it means
the value stored in the destination variable is greater (resp. lower)
than the exact result. For example with the <code>GMP_RNDU</code> rounding mode,
the ternary value is usually positive, except when the result is exact, in
which case it is zero. In the case of an infinite result, it is considered
as inexact when it was obtained by overflow, and exact otherwise. A NaN
result (Not-a-Number) always corresponds to an exact return value.
The opposite of a returned ternary value is guaranteed to be representable
in an <code>int</code>.
<p>Unless documented otherwise, functions returning a <code>1</code>
(or any other value specified in this manual)
for special cases (like <code>acos(0)</code>) should return an overflow or
an underflow if <code>1</code> is not representable in the current exponent range.
<h3 class="section">4.6 Floating-Point Values on Special Numbers</h3>
<p>This section specifies the floating-point values (of type <code>mpfr_t</code>)
returned by MPFR functions. For functions returning several values (like
<code>mpfr_sin_cos</code>), the rules apply to each result separately.
<p>Functions can have one or several input arguments. An input point is
a mapping from these input arguments to the set of the MPFR numbers.
When none of its components are NaN, an input point can also be seen
as a tuple in the extended real numbers (the set of the real numbers
with both infinities).
<p>When the input point is in the domain of the mathematical function, the
result is rounded as described in Section &ldquo;Rounding Modes&rdquo; (but see
below for the specification of the sign of an exact zero). Otherwise
the general rules from this section apply unless stated otherwise in
the description of the MPFR function (<a href="#MPFR-Interface">MPFR Interface</a>).
<p>When the input point is not in the domain of the mathematical function
but is in its closure in the extended real numbers and the function can
be extended by continuity, the result is the obtained limit.
Examples: <code>mpfr_hypot</code> on (+Inf,0) gives +Inf. But <code>mpfr_pow</code>
cannot be defined on (1,+Inf) using this rule, as one can find
sequences (<var>x</var>_<var>n</var>,<var>y</var>_<var>n</var>) such that
<var>x</var>_<var>n</var> goes to 1, <var>y</var>_<var>n</var> goes to +Inf
and <var>x</var>_<var>n</var> to the <var>y</var>_<var>n</var> goes to any
positive value when <var>n</var> goes to the infinity.
<p>When the input point is in the closure of the domain of the mathematical
function and an input argument is +0 (resp. &minus;0), one considers
the limit when the corresponding argument approaches 0 from above
(resp. below). If the limit is not defined (e.g., <code>mpfr_log</code> on
&minus;0), the behavior must be specified in the description of the
MPFR function.
<p>When the result is equal to 0, its sign is determined by considering the
limit as if the input point were not in the domain: If one approaches 0
from above (resp. below), the result is +0 (resp. &minus;0). In the
other cases, the sign must be specified in the description of the MPFR
function. Example: <code>mpfr_sin</code> on +0 gives +0.
<p>When the input point is not in the closure of the domain of the function,
the result is NaN. Example: <code>mpfr_sqrt</code> on &minus;17 gives NaN.
<p>When an input argument is NaN, the result is NaN, possibly except when
a partial function is constant on the finite floating-point numbers;
such a case is always explicitly specified in <a href="#MPFR-Interface">MPFR Interface</a>.
<!-- Said otherwise, if such a case is not specified, this is a bug, thus -->
<!-- we may change the returned value after documenting it without having -->
<!-- to change the libtool interface number (this would have more drawbacks -->
<!-- that advantages in practice), like for any bug fix. -->
Example: <code>mpfr_hypot</code> on (NaN,0) gives NaN, but <code>mpfr_hypot</code>
on (NaN,+Inf) gives +Inf (as specified in <a href="#Special-Functions">Special Functions</a>),
since for any finite input <var>x</var>, <code>mpfr_hypot</code> on (<var>x</var>,+Inf)
gives +Inf.
<h3 class="section">4.7 Exceptions</h3>
<p>MPFR supports 5 exception types:
<ul>
<li>Underflow:
An underflow occurs when the exact result of a function is a non-zero
real number and the result obtained after the rounding, assuming an
unbounded exponent range (for the rounding), has an exponent smaller
than the minimum exponent of the current range. In the round-to-nearest
mode, the halfway case is rounded toward zero.
<p>Note: This is not the single definition of the underflow. MPFR chooses
to consider the underflow after rounding. The underflow before rounding
can also be defined. For instance, consider a function that has the
exact result 7 multiplied by two to the power
<var>e</var>&minus;4, where <var>e</var> is the smallest exponent (for a
significand between 1/2 and 1) in the current
range, with a 2-bit target precision and rounding toward plus infinity.
The exact result has the exponent <var>e</var>&minus;1. With the underflow
before rounding, such a function call would yield an underflow, as
<var>e</var>&minus;1 is outside the current exponent range. However, MPFR
first considers the rounded result assuming an unbounded exponent range.
The exact result cannot be represented exactly in precision 2, and here,
it is rounded to 0.5 times 2 to <var>e</var>, which is
representable in the current exponent range. As a consequence, this will
not yield an underflow in MPFR.
<li>Overflow:
An overflow occurs when the exact result of a function is a non-zero
real number and the result obtained after the rounding, assuming an
unbounded exponent range (for the rounding), has an exponent larger
than the maximum exponent of the current range. In the round-to-nearest
mode, the result is infinite.
<li>NaN:
A NaN exception occurs when the result of a function is a NaN.
<!-- NaN is defined above. So, we don't say anything more. -->
<li>Inexact:
An inexact exception occurs when the result of a function cannot be
represented exactly and must be rounded.
<li>Range error:
A range exception occurs when a function that does not return a MPFR
number (such as comparisons and conversions to an integer) has an
invalid result (e.g. an argument is NaN in <code>mpfr_cmp</code> or in a
conversion to an integer).
</ul>
<p>MPFR has a global flag for each exception, which can be cleared, set
or tested by functions described in <a href="#Exception-Related-Functions">Exception Related Functions</a>.
<p>Differences with the ISO C99 standard:
<ul>
<li>In C, only quiet NaNs are specified, and a NaN propagation does not
raise an invalid exception. Unless explicitly stated otherwise, MPFR sets
the NaN flag whenever a NaN is generated, even when a NaN is propagated
(e.g. in NaN + NaN), as if all NaNs were signaling.
<li>An invalid exception in C corresponds to either a NaN exception or
a range error in MPFR.
</ul>
<h3 class="section">4.8 Memory Handling</h3>
<p>MPFR functions may create caches, e.g. when computing constants such
as Pi, either because the user has called a function like
<code>mpfr_const_pi</code> directly or because such a function was called
internally by the MPFR library itself to compute some other function.
<p>At any time, the user can free the various caches with
<code>mpfr_free_cache</code>. It is strongly advised to do that before
terminating a thread, or before exiting when using tools like
&lsquo;<samp><span class="samp">valgrind</span></samp>&rsquo; (to avoid memory leaks being reported).
<p>MPFR internal data such as flags, the exponent range, the default
precision and rounding mode, and caches (i.e., data that are not
accessed via parameters) are either global (if MPFR has not been
compiled as thread safe) or per-thread (thread local storage).
<div class="node">
<p><hr>
<a name="MPFR-Interface"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Contributors">Contributors</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MPFR-Basics">MPFR Basics</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="chapter">5 MPFR Interface</h2>
<p><a name="index-Floating_002dpoint-functions-18"></a><a name="index-Float-functions-19"></a>
The floating-point functions expect arguments of type <code>mpfr_t</code>.
<p>The MPFR floating-point functions have an interface that is similar to the
GNU MP
integer functions. The function prefix for floating-point operations is
<code>mpfr_</code>.
<p>There is one significant characteristic of floating-point numbers that has
motivated a difference between this function class and other GNU MP function
classes: the inherent inexactness of floating-point arithmetic. The user has
to specify the precision for each variable. A computation that assigns a
variable will take place with the precision of the assigned variable; the
cost of that computation should not depend from the
precision of variables used as input (on average).
<p><a name="index-Precision-20"></a>The semantics of a calculation in MPFR is specified as follows: Compute the
requested operation exactly (with &ldquo;infinite accuracy&rdquo;), and round the result
to the precision of the destination variable, with the given rounding mode.
The MPFR floating-point functions are intended to be a smooth extension
of the IEEE 754-1985 arithmetic. The results obtained on one computer should
not differ from the results obtained on a computer with a different word size.
<p><a name="index-Accuracy-21"></a>MPFR does not keep track of the accuracy of a computation. This is left
to the user or to a higher layer.
As a consequence, if two variables are used to store
only a few significant bits, and their product is stored in a variable with large
precision, then MPFR will still compute the result with full precision.
<p>The value of the standard C macro <code>errno</code> may be set to non-zero by
any MPFR function or macro, whether or not there is an error.
<ul class="menu">
<li><a accesskey="1" href="#Initialization-Functions">Initialization Functions</a>
<li><a accesskey="2" href="#Assignment-Functions">Assignment Functions</a>
<li><a accesskey="3" href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a>
<li><a accesskey="4" href="#Conversion-Functions">Conversion Functions</a>
<li><a accesskey="5" href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a>
<li><a accesskey="6" href="#Comparison-Functions">Comparison Functions</a>
<li><a accesskey="7" href="#Special-Functions">Special Functions</a>
<li><a accesskey="8" href="#Input-and-Output-Functions">Input and Output Functions</a>
<li><a accesskey="9" href="#Integer-Related-Functions">Integer Related Functions</a>
<li><a href="#Miscellaneous-Functions">Miscellaneous Functions</a>
<li><a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a>
<li><a href="#Exception-Related-Functions">Exception Related Functions</a>
<li><a href="#Advanced-Functions">Advanced Functions</a>
<li><a href="#Compatibility-with-MPF">Compatibility with MPF</a>
<li><a href="#Custom-Interface">Custom Interface</a>
<li><a href="#Internals">Internals</a>
</ul>
<div class="node">
<p><hr>
<a name="Initialization-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Assignment-Functions">Assignment Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MPFR-Interface">MPFR Interface</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Initialization-functions-22"></a>
<h3 class="section">5.1 Initialization Functions</h3>
<p>An <code>mpfr_t</code> object must be initialized before storing the first value in
it. The functions <code>mpfr_init</code> and <code>mpfr_init2</code> are used for that
purpose.
<div class="defun">
&mdash; Function: void <b>mpfr_init2</b> (<var>mpfr_t x, mp_prec_t prec</var>)<var><a name="index-mpfr_005finit2-23"></a></var><br>
<blockquote><p>Initialize <var>x</var>, set its precision to be <strong>exactly</strong>
<var>prec</var> bits and its value to NaN. (Warning: the corresponding
<code>mpf</code> functions initialize to zero instead.)
<p>Normally, a variable should be initialized once only or at
least be cleared, using <code>mpfr_clear</code>, between initializations.
To change the precision of a variable which has already been initialized,
use <code>mpfr_set_prec</code>.
The precision <var>prec</var> must be an integer between <code>MPFR_PREC_MIN</code> and
<code>MPFR_PREC_MAX</code> (otherwise the behavior is undefined).
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_clear</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fclear-24"></a></var><br>
<blockquote><p>Free the space occupied by <var>x</var>. Make sure to call this function for all
<code>mpfr_t</code> variables when you are done with them.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_init</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005finit-25"></a></var><br>
<blockquote><p>Initialize <var>x</var> and set its value to NaN.
<p>Normally, a variable should be initialized once only
or at least be cleared, using <code>mpfr_clear</code>, between initializations. The
precision of <var>x</var> is the default precision, which can be changed
by a call to <code>mpfr_set_default_prec</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_set_default_prec</b> (<var>mp_prec_t prec</var>)<var><a name="index-mpfr_005fset_005fdefault_005fprec-26"></a></var><br>
<blockquote><p>Set the default precision to be <strong>exactly</strong> <var>prec</var> bits. The
precision of a variable means the number of bits used to store its significand.
All
subsequent calls to <code>mpfr_init</code> will use this precision, but previously
initialized variables are unaffected.
This default precision is set to 53 bits initially.
The precision can be any integer between <code>MPFR_PREC_MIN</code> and
<code>MPFR_PREC_MAX</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_prec_t <b>mpfr_get_default_prec</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005fdefault_005fprec-27"></a></var><br>
<blockquote><p>Return the default MPFR precision in bits.
</p></blockquote></div>
<p>Here is an example on how to initialize floating-point variables:
<pre class="example"> {
mpfr_t x, y;
mpfr_init (x); /* use default precision */
mpfr_init2 (y, 256); /* precision <em>exactly</em> 256 bits */
...
/* When the program is about to exit, do ... */
mpfr_clear (x);
mpfr_clear (y);
mpfr_free_cache ();
}
</pre>
<p>The following functions are useful for changing the precision during a
calculation. A typical use would be for adjusting the precision gradually in
iterative algorithms like Newton-Raphson, making the computation precision
closely match the actual accurate part of the numbers.
<div class="defun">
&mdash; Function: void <b>mpfr_set_prec</b> (<var>mpfr_t x, mp_prec_t prec</var>)<var><a name="index-mpfr_005fset_005fprec-28"></a></var><br>
<blockquote><p>Reset the precision of <var>x</var> to be <strong>exactly</strong> <var>prec</var> bits,
and set its value to NaN.
The previous value stored in <var>x</var> is lost. It is equivalent to
a call to <code>mpfr_clear(x)</code> followed by a call to
<code>mpfr_init2(x, prec)</code>, but more efficient as no allocation is done in
case the current allocated space for the significand of <var>x</var> is enough.
The precision <var>prec</var> can be any integer between <code>MPFR_PREC_MIN</code> and
<code>MPFR_PREC_MAX</code>.
<p>In case you want to keep the previous value stored in <var>x</var>,
use <code>mpfr_prec_round</code> instead.
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_prec_t <b>mpfr_get_prec</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fget_005fprec-29"></a></var><br>
<blockquote><p>Return the precision actually used for assignments of <var>x</var>, i.e. the
number of bits used to store its significand.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Assignment-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Initialization-Functions">Initialization Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Assignment-functions-30"></a>
<h3 class="section">5.2 Assignment Functions</h3>
<p>These functions assign new values to already initialized floats
(see <a href="#Initialization-Functions">Initialization Functions</a>). When using any functions using
<code>intmax_t</code>, you must include <code>&lt;stdint.h&gt;</code> or <code>&lt;inttypes.h&gt;</code>
before <samp><span class="file">mpfr.h</span></samp>, to allow <samp><span class="file">mpfr.h</span></samp> to define prototypes for
these functions.
<div class="defun">
&mdash; Function: int <b>mpfr_set</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset-31"></a></var><br>
&mdash; Function: int <b>mpfr_set_ui</b> (<var>mpfr_t rop, unsigned long int op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fui-32"></a></var><br>
&mdash; Function: int <b>mpfr_set_si</b> (<var>mpfr_t rop, long int op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fsi-33"></a></var><br>
&mdash; Function: int <b>mpfr_set_uj</b> (<var>mpfr_t rop, uintmax_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fuj-34"></a></var><br>
&mdash; Function: int <b>mpfr_set_sj</b> (<var>mpfr_t rop, intmax_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fsj-35"></a></var><br>
&mdash; Function: int <b>mpfr_set_d</b> (<var>mpfr_t rop, double op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fd-36"></a></var><br>
&mdash; Function: int <b>mpfr_set_ld</b> (<var>mpfr_t rop, long double op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fld-37"></a></var><br>
&mdash; Function: int <b>mpfr_set_decimal64</b> (<var>mpfr_t rop, _Decimal64 op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fdecimal64-38"></a></var><br>
&mdash; Function: int <b>mpfr_set_z</b> (<var>mpfr_t rop, mpz_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fz-39"></a></var><br>
&mdash; Function: int <b>mpfr_set_q</b> (<var>mpfr_t rop, mpq_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fq-40"></a></var><br>
&mdash; Function: int <b>mpfr_set_f</b> (<var>mpfr_t rop, mpf_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005ff-41"></a></var><br>
<blockquote><p>Set the value of <var>rop</var> from <var>op</var>, rounded
toward the given direction <var>rnd</var>.
Note that the input 0 is converted to +0 by <code>mpfr_set_ui</code>,
<code>mpfr_set_si</code>, <code>mpfr_set_sj</code>, <code>mpfr_set_uj</code>,
<code>mpfr_set_z</code>, <code>mpfr_set_q</code> and
<code>mpfr_set_f</code>, regardless of the rounding mode.
If the system doesn't support the IEEE-754 standard, <code>mpfr_set_d</code>,
<code>mpfr_set_ld</code> and
<code>mpfr_set_decimal64</code> might not preserve the signed zeros.
The <code>mpfr_set_decimal64</code> function is built only with the configure
option &lsquo;<samp><span class="samp">--enable-decimal-float</span></samp>&rsquo;, which also requires
&lsquo;<samp><span class="samp">--with-gmp-build</span></samp>&rsquo;, and when the compiler or
system provides the &lsquo;<samp><span class="samp">_Decimal64</span></samp>&rsquo; data type
(GCC version 4.2.0 is known to support this data type,
but only when configured with &lsquo;<samp><span class="samp">--enable-decimal-float</span></samp>&rsquo; too).
<code>mpfr_set_q</code> might not be able to work if the numerator (or the
denominator) can not be representable as a <code>mpfr_t</code>.
<p>Note: If you want to store a floating-point constant to a <code>mpfr_t</code>,
you should use <code>mpfr_set_str</code> (or one of the MPFR constant functions,
such as <code>mpfr_const_pi</code> for Pi) instead of <code>mpfr_set_d</code>,
<code>mpfr_set_ld</code> or <code>mpfr_set_decimal64</code>.
Otherwise the floating-point constant will be first
converted into a reduced-precision (e.g., 53-bit) binary number before
MPFR can work with it.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_set_ui_2exp</b> (<var>mpfr_t rop, unsigned long int op, mp_exp_t e, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fui_005f2exp-42"></a></var><br>
&mdash; Function: int <b>mpfr_set_si_2exp</b> (<var>mpfr_t rop, long int op, mp_exp_t e, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fsi_005f2exp-43"></a></var><br>
&mdash; Function: int <b>mpfr_set_uj_2exp</b> (<var>mpfr_t rop, uintmax_t op, intmax_t e, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fuj_005f2exp-44"></a></var><br>
&mdash; Function: int <b>mpfr_set_sj_2exp</b> (<var>mpfr_t rop, intmax_t op, intmax_t e, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fsj_005f2exp-45"></a></var><br>
<blockquote><p>Set the value of <var>rop</var> from <var>op</var> multiplied by
two to the power <var>e</var>, rounded toward the given direction <var>rnd</var>.
Note that the input 0 is converted to +0.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_set_str</b> (<var>mpfr_t rop, const char *s, int base, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fstr-46"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the whole string <var>s</var> in base <var>base</var>,
rounded in the direction <var>rnd</var>.
See the documentation of <code>mpfr_strtofr</code> for a detailed description
of the valid string formats.
<!-- Additionally, special values -->
<!-- @code{@@NaN@@}, @code{@@Inf@@}, @code{+@@Inf@@} and @code{-@@Inf@@}, -->
<!-- all case insensitive, without leading whitespace and possibly followed by -->
<!-- other characters, are accepted too (it may change). -->
This function returns 0 if the entire string up to the final null character
is a valid number in base <var>base</var>; otherwise it returns &minus;1, and
<var>rop</var> may have changed.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_strtofr</b> (<var>mpfr_t rop, const char *nptr, char **endptr, int base, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fstrtofr-47"></a></var><br>
<blockquote>
<p>Read a floating-point number from a string <var>nptr</var> in base <var>base</var>,
rounded in the direction <var>rnd</var>; <var>base</var> must be either 0 (to
detect the base, as described below) or a number from 2 to 36 (otherwise
the behavior is undefined). If <var>nptr</var> starts with valid data, the
result is stored in <var>rop</var> and <code>*</code><var>endptr</var> points to the
character just after the valid data (if <var>endptr</var> is not a null pointer);
otherwise <var>rop</var> is set to zero and the value of <var>nptr</var> is stored
in the location referenced by <var>endptr</var> (if <var>endptr</var> is not a null
pointer). The usual ternary value is returned.
<p>Parsing follows the standard C <code>strtod</code> function with some extensions.
Case is ignored. After optional leading whitespace, one has a subject
sequence consisting of an optional sign (<code>+</code> or <code>-</code>), and either
numeric data or special data. The subject sequence is defined as the
longest initial subsequence of the input string, starting with the first
non-whitespace character, that is of the expected form.
<p>The form of numeric data is a non-empty sequence of significand digits
with an optional decimal point, and an optional exponent consisting of
an exponent prefix followed by an optional sign and a non-empty sequence
of decimal digits. A significand digit is either a decimal digit or a
Latin letter (62 possible characters), with <code>a</code> = 10, <code>b</code> = 11,
<small class="dots">...</small>, <code>z</code> = 36; its value must be strictly less than the base.
The decimal point can be either the one defined by the current locale or
the period (the first one is accepted for consistency with the C standard
and the practice, the second one is accepted to allow the programmer to
provide MPFR numbers from strings in a way that does not depend on the
current locale).
The exponent prefix can be <code>e</code> or <code>E</code> for bases up to 10, or
<code>@</code> in any base; it indicates a multiplication by a power of the
base. In bases 2 and 16, the exponent prefix can also be <code>p</code> or
<code>P</code>, in which case it introduces a binary exponent: it indicates a
multiplication by a power of 2 (there is a difference only for base 16).
The value of an exponent is always written in base 10.
In base 2, the significand can start with <code>0b</code> or <code>0B</code>, and
in base 16, it can start with <code>0x</code> or <code>0X</code>.
<p>If the argument <var>base</var> is 0, then the base is automatically detected
as follows. If the significand starts with <code>0b</code> or <code>0B</code>, base 2
is assumed. If the significand starts with <code>0x</code> or <code>0X</code>, base 16
is assumed. Otherwise base 10 is assumed.
<p>Note: The exponent must contain at least a digit. Otherwise the possible
exponent prefix and sign are not part of the number (which ends with the
significand). Similarly, if <code>0b</code>, <code>0B</code>, <code>0x</code> or <code>0X</code>
is not followed by a binary/hexadecimal digit, then the subject sequence
stops at the character <code>0</code>.
<p>Special data (for infinities and NaN) can be <code>@inf@</code> or
<code>@nan@(n-char-sequence)</code>, and if <var>base</var> &lt;= 16,
it can also be <code>infinity</code>, <code>inf</code>, <code>nan</code> or
<code>nan(n-char-sequence)</code>, all case insensitive.
A <code>n-char-sequence</code> is a non-empty string containing only digits,
Latin letters and the underscore (0, 1, 2, <small class="dots">...</small>, 9, a, b, <small class="dots">...</small>, z,
A, B, <small class="dots">...</small>, Z, _). Note: one has an optional sign for all data, even
NaN.
</blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_set_inf</b> (<var>mpfr_t x, int sign</var>)<var><a name="index-mpfr_005fset_005finf-48"></a></var><br>
&mdash; Function: void <b>mpfr_set_nan</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fset_005fnan-49"></a></var><br>
<blockquote><p>Set the variable <var>x</var> to infinity or NaN (Not-a-Number) respectively.
In <code>mpfr_set_inf</code>, <var>x</var> is set to plus infinity iff <var>sign</var> is
nonnegative.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_swap</b> (<var>mpfr_t x, mpfr_t y</var>)<var><a name="index-mpfr_005fswap-50"></a></var><br>
<blockquote><p>Swap the values <var>x</var> and <var>y</var> efficiently. Warning: the
precisions are exchanged too; in case the precisions are different,
<code>mpfr_swap</code> is thus not equivalent to three <code>mpfr_set</code> calls
using a third auxiliary variable.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Combined-Initialization-and-Assignment-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Conversion-Functions">Conversion Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Assignment-Functions">Assignment Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Combined-initialization-and-assignment-functions-51"></a>
<h3 class="section">5.3 Combined Initialization and Assignment Functions</h3>
<div class="defun">
&mdash; Macro: int <b>mpfr_init_set</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset-52"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_ui</b> (<var>mpfr_t rop, unsigned long int op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fui-53"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_si</b> (<var>mpfr_t rop, signed long int op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fsi-54"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_d</b> (<var>mpfr_t rop, double op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fd-55"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_ld</b> (<var>mpfr_t rop, long double op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fld-56"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_z</b> (<var>mpfr_t rop, mpz_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fz-57"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_q</b> (<var>mpfr_t rop, mpq_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fq-58"></a></var><br>
&mdash; Macro: int <b>mpfr_init_set_f</b> (<var>mpfr_t rop, mpf_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005ff-59"></a></var><br>
<blockquote><p>Initialize <var>rop</var> and set its value from <var>op</var>, rounded in the direction
<var>rnd</var>.
The precision of <var>rop</var> will be taken from the active default precision,
as set by <code>mpfr_set_default_prec</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_init_set_str</b> (<var>mpfr_t x, const char *s, int base, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finit_005fset_005fstr-60"></a></var><br>
<blockquote><p>Initialize <var>x</var> and set its value from
the string <var>s</var> in base <var>base</var>,
rounded in the direction <var>rnd</var>.
See <code>mpfr_set_str</code>.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Conversion-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Conversion-functions-61"></a>
<h3 class="section">5.4 Conversion Functions</h3>
<div class="defun">
&mdash; Function: double <b>mpfr_get_d</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fd-62"></a></var><br>
&mdash; Function: long double <b>mpfr_get_ld</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fld-63"></a></var><br>
&mdash; Function: _Decimal64 <b>mpfr_get_decimal64</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fdecimal64-64"></a></var><br>
<blockquote><p>Convert <var>op</var> to a <code>double</code> (respectively <code>_Decimal64</code> or
<code>long double</code>), using the rounding mode <var>rnd</var>.
If <var>op</var> is NaN, some fixed NaN (either quiet or signaling) or the result
of 0.0/0.0 is returned. If <var>op</var> is �Inf, an infinity of the same
sign or the result of �1.0/0.0 is returned. If <var>op</var> is zero, these
functions return a zero, trying to preserve its sign, if possible.
The <code>mpfr_get_decimal64</code> function is built only under some conditions:
see the documentation of <code>mpfr_set_decimal64</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: double <b>mpfr_get_d_2exp</b> (<var>long *exp, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fd_005f2exp-65"></a></var><br>
&mdash; Function: long double <b>mpfr_get_ld_2exp</b> (<var>long *exp, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fld_005f2exp-66"></a></var><br>
<blockquote><p>Return <var>d</var> and set <var>exp</var> such that 0.5&lt;=abs(<var>d</var>)&lt;1
and <var>d</var> times 2 raised to <var>exp</var> equals
<var>op</var> rounded to double (resp. long double)
precision, using the given rounding mode.
<!-- See ISO C standard, frexp function. -->
If <var>op</var> is zero, then a zero of the same sign (or an unsigned zero,
if the implementation does not have signed zeros) is returned, and
<var>exp</var> is set to 0.
If <var>op</var> is NaN or an infinity, then the corresponding double precision
(resp. long-double precision)
value is returned, and <var>exp</var> is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: long <b>mpfr_get_si</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fsi-67"></a></var><br>
&mdash; Function: unsigned long <b>mpfr_get_ui</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fui-68"></a></var><br>
&mdash; Function: intmax_t <b>mpfr_get_sj</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fsj-69"></a></var><br>
&mdash; Function: uintmax_t <b>mpfr_get_uj</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fuj-70"></a></var><br>
<blockquote><p>Convert <var>op</var> to a <code>long</code>, an <code>unsigned long</code>,
an <code>intmax_t</code> or an <code>uintmax_t</code> (respectively) after rounding
it with respect to <var>rnd</var>.
If <var>op</var> is NaN, the result is undefined.
If <var>op</var> is too big for the return type, it returns the maximum
or the minimum of the corresponding C type, depending on the direction
of the overflow. The flag erange is set too.
See also <code>mpfr_fits_slong_p</code>, <code>mpfr_fits_ulong_p</code>,
<code>mpfr_fits_intmax_p</code> and <code>mpfr_fits_uintmax_p</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_exp_t <b>mpfr_get_z_exp</b> (<var>mpz_t rop, mpfr_t op</var>)<var><a name="index-mpfr_005fget_005fz_005fexp-71"></a></var><br>
<blockquote><p>Put the scaled significand of <var>op</var> (regarded as an integer, with the
precision of <var>op</var>) into <var>rop</var>, and return the exponent <var>exp</var>
(which may be outside the current exponent range) such that <var>op</var>
exactly equals
<var>rop</var> multiplied by two exponent <var>exp</var>.
If the exponent is not representable in the <code>mp_exp_t</code> type, the
behavior is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_get_z</b> (<var>mpz_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fz-72"></a></var><br>
<blockquote><p>Convert <var>op</var> to a <code>mpz_t</code>, after rounding it with respect to
<var>rnd</var>. If <var>op</var> is NaN or Inf, the result is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_get_f</b> (<var>mpf_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005ff-73"></a></var><br>
<blockquote><p>Convert <var>op</var> to a <code>mpf_t</code>, after rounding it with respect to
<var>rnd</var>. Return zero iff no error occurred,
in particular a non-zero value is returned if
<var>op</var> is NaN or Inf, which do not exist in <code>mpf</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: char * <b>mpfr_get_str</b> (<var>char *str, mp_exp_t *expptr, int b, size_t n, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fget_005fstr-74"></a></var><br>
<blockquote><p>Convert <var>op</var> to a string of digits in base <var>b</var>, with rounding in
the direction <var>rnd</var>, where <var>n</var> is either zero (see below) or the
number of significant digits; in the latter case, <var>n</var> must be greater
or equal to 2. The base may vary from 2 to 36.
<p>The generated string is a fraction, with an implicit radix point immediately
to the left of the first digit. For example, the number &minus;3.1416 would
be returned as "&minus;31416" in the string and 1 written at <var>expptr</var>.
If <var>rnd</var> is to nearest, and <var>op</var> is exactly in the middle of two
possible outputs, the one with an even last digit is chosen
(for an odd base, this may not correspond to an even significand).
<p>If <var>n</var> is zero, the number of digits of the significand is chosen
large enough so that re-reading the printed value with the same precision,
assuming both output and input use rounding to nearest, will recover
the original value of <var>op</var>.
More precisely, in most cases, the chosen precision of <var>str</var> is
the minimal precision depending on <var>n</var> and <var>b</var> only that
satisfies the above property, i.e.,
m = 1 + ceil(<var>n</var>*log(2)/log(<var>b</var>)),
but in some very rare cases, it might be m+1.
<p>If <var>str</var> is a null pointer, space for the significand is allocated using
the current allocation function, and a pointer to the string is returned.
To free the returned string, you must use <code>mpfr_free_str</code>.
<p>If <var>str</var> is not a null pointer, it should point to a block of storage
large enough for the significand, i.e., at least <code>max(</code><var>n</var><code> + 2, 7)</code>.
The extra two bytes are for a possible minus sign, and for the terminating null
character.
<p>If the input number is an ordinary number, the exponent is written through
the pointer <var>expptr</var> (the current minimal exponent for 0).
<p>A pointer to the string is returned, unless there is an error, in which
case a null pointer is returned.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_free_str</b> (<var>char *str</var>)<var><a name="index-mpfr_005ffree_005fstr-75"></a></var><br>
<blockquote><p>Free a string allocated by <code>mpfr_get_str</code> using the current unallocation
function (preliminary interface).
The block is assumed to be <code>strlen(</code><var>str</var><code>)+1</code> bytes.
For more information about how it is done:
see section &ldquo;Custom Allocation&rdquo; in <cite>GNU MP</cite>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_fits_ulong_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fulong_005fp-76"></a></var><br>
&mdash; Function: int <b>mpfr_fits_slong_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fslong_005fp-77"></a></var><br>
&mdash; Function: int <b>mpfr_fits_uint_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fuint_005fp-78"></a></var><br>
&mdash; Function: int <b>mpfr_fits_sint_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fsint_005fp-79"></a></var><br>
&mdash; Function: int <b>mpfr_fits_ushort_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fushort_005fp-80"></a></var><br>
&mdash; Function: int <b>mpfr_fits_sshort_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fsshort_005fp-81"></a></var><br>
&mdash; Function: int <b>mpfr_fits_intmax_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fintmax_005fp-82"></a></var><br>
&mdash; Function: int <b>mpfr_fits_uintmax_p</b> (<var>mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffits_005fuintmax_005fp-83"></a></var><br>
<blockquote><p>Return non-zero if <var>op</var> would fit in the respective C data type, when
rounded to an integer in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Basic-Arithmetic-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Comparison-Functions">Comparison Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Conversion-Functions">Conversion Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Basic-arithmetic-functions-84"></a><a name="index-Float-arithmetic-functions-85"></a><a name="index-Arithmetic-functions-86"></a>
<h3 class="section">5.5 Basic Arithmetic Functions</h3>
<div class="defun">
&mdash; Function: int <b>mpfr_add</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fadd-87"></a></var><br>
&mdash; Function: int <b>mpfr_add_ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fadd_005fui-88"></a></var><br>
&mdash; Function: int <b>mpfr_add_si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fadd_005fsi-89"></a></var><br>
&mdash; Function: int <b>mpfr_add_z</b> (<var>mpfr_t rop, mpfr_t op1, mpz_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fadd_005fz-90"></a></var><br>
&mdash; Function: int <b>mpfr_add_q</b> (<var>mpfr_t rop, mpfr_t op1, mpq_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fadd_005fq-91"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var> + <var>op2</var> rounded in the direction
<var>rnd</var>. For types having no signed zero, it is considered unsigned
(i.e. (+0) + 0 = (+0) and (&minus;0) + 0 = (&minus;0)).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sub</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsub-92"></a></var><br>
&mdash; Function: int <b>mpfr_ui_sub</b> (<var>mpfr_t rop, unsigned long int op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fui_005fsub-93"></a></var><br>
&mdash; Function: int <b>mpfr_sub_ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsub_005fui-94"></a></var><br>
&mdash; Function: int <b>mpfr_si_sub</b> (<var>mpfr_t rop, long int op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsi_005fsub-95"></a></var><br>
&mdash; Function: int <b>mpfr_sub_si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsub_005fsi-96"></a></var><br>
&mdash; Function: int <b>mpfr_sub_z</b> (<var>mpfr_t rop, mpfr_t op1, mpz_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsub_005fz-97"></a></var><br>
&mdash; Function: int <b>mpfr_sub_q</b> (<var>mpfr_t rop, mpfr_t op1, mpq_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsub_005fq-98"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var> - <var>op2</var> rounded in the direction
<var>rnd</var>. For types having no signed zero, it is considered unsigned
(i.e. (+0) &minus; 0 = (+0), (&minus;0) &minus; 0 = (&minus;0),
0 &minus; (+0) = (&minus;0) and 0 &minus; (&minus;0) = (+0)).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_mul</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul-99"></a></var><br>
&mdash; Function: int <b>mpfr_mul_ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005fui-100"></a></var><br>
&mdash; Function: int <b>mpfr_mul_si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005fsi-101"></a></var><br>
&mdash; Function: int <b>mpfr_mul_z</b> (<var>mpfr_t rop, mpfr_t op1, mpz_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005fz-102"></a></var><br>
&mdash; Function: int <b>mpfr_mul_q</b> (<var>mpfr_t rop, mpfr_t op1, mpq_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005fq-103"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var> times <var>op2</var> rounded in the
direction <var>rnd</var>.
When a result is zero, its sign is the product of the signs of the operands
(for types having no signed zero, it is considered positive).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sqr</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsqr-104"></a></var><br>
<blockquote><p>Set <var>rop</var> to the square of <var>op</var>
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_div</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv-105"></a></var><br>
&mdash; Function: int <b>mpfr_ui_div</b> (<var>mpfr_t rop, unsigned long int op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fui_005fdiv-106"></a></var><br>
&mdash; Function: int <b>mpfr_div_ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005fui-107"></a></var><br>
&mdash; Function: int <b>mpfr_si_div</b> (<var>mpfr_t rop, long int op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsi_005fdiv-108"></a></var><br>
&mdash; Function: int <b>mpfr_div_si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005fsi-109"></a></var><br>
&mdash; Function: int <b>mpfr_div_z</b> (<var>mpfr_t rop, mpfr_t op1, mpz_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005fz-110"></a></var><br>
&mdash; Function: int <b>mpfr_div_q</b> (<var>mpfr_t rop, mpfr_t op1, mpq_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005fq-111"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var>/<var>op2</var> rounded in the direction <var>rnd</var>.
When a result is zero, its sign is the product of the signs of the operands
(for types having no signed zero, it is considered positive).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sqrt</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsqrt-112"></a></var><br>
&mdash; Function: int <b>mpfr_sqrt_ui</b> (<var>mpfr_t rop, unsigned long int op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsqrt_005fui-113"></a></var><br>
<blockquote><p>Set <var>rop</var> to the square root of <var>op</var>
rounded in the direction <var>rnd</var>. Return &minus;0 if <var>op</var> is
&minus;0 (to be consistent with the IEEE 754-1985 standard).
Set <var>rop</var> to NaN if <var>op</var> is negative.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_cbrt</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcbrt-114"></a></var><br>
&mdash; Function: int <b>mpfr_root</b> (<var>mpfr_t rop, mpfr_t op, unsigned long int k, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005froot-115"></a></var><br>
<blockquote><p>Set <var>rop</var> to the cubic root (resp. the <var>k</var>th root)
of <var>op</var> rounded in the direction <var>rnd</var>.
An odd (resp. even) root of a negative number (including &minus;Inf)
returns a negative number (resp. NaN).
The <var>k</var>th root of &minus;0 is defined to be &minus;0,
whatever the parity of <var>k</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_pow</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fpow-116"></a></var><br>
&mdash; Function: int <b>mpfr_pow_ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fpow_005fui-117"></a></var><br>
&mdash; Function: int <b>mpfr_pow_si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fpow_005fsi-118"></a></var><br>
&mdash; Function: int <b>mpfr_pow_z</b> (<var>mpfr_t rop, mpfr_t op1, mpz_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fpow_005fz-119"></a></var><br>
&mdash; Function: int <b>mpfr_ui_pow_ui</b> (<var>mpfr_t rop, unsigned long int op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fui_005fpow_005fui-120"></a></var><br>
&mdash; Function: int <b>mpfr_ui_pow</b> (<var>mpfr_t rop, unsigned long int op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fui_005fpow-121"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var> raised to <var>op2</var>,
rounded in the direction <var>rnd</var>.
Special values are currently handled as described in the ISO C99 standard
for the <code>pow</code> function (note this may change in future versions):
<ul>
<li><code>pow(�0, </code><var>y</var><code>)</code> returns plus or minus infinity for <var>y</var> a negative odd integer.
<li><code>pow(�0, </code><var>y</var><code>)</code> returns plus infinity for <var>y</var> negative and not an odd integer.
<li><code>pow(�0, </code><var>y</var><code>)</code> returns plus or minus zero for <var>y</var> a positive odd integer.
<li><code>pow(�0, </code><var>y</var><code>)</code> returns plus zero for <var>y</var> positive and not an odd integer.
<li><code>pow(-1, �Inf)</code> returns 1.
<li><code>pow(+1, </code><var>y</var><code>)</code> returns 1 for any <var>y</var>, even a NaN.
<li><code>pow(</code><var>x</var><code>, �0)</code> returns 1 for any <var>x</var>, even a NaN.
<li><code>pow(</code><var>x</var><code>, </code><var>y</var><code>)</code> returns NaN for finite negative <var>x</var> and finite non-integer <var>y</var>.
<li><code>pow(</code><var>x</var><code>, -Inf)</code> returns plus infinity for 0 &lt; abs(x) &lt; 1, and plus zero for abs(x) &gt; 1.
<li><code>pow(</code><var>x</var><code>, +Inf)</code> returns plus zero for 0 &lt; abs(x) &lt; 1, and plus infinity for abs(x) &gt; 1.
<li><code>pow(-Inf, </code><var>y</var><code>)</code> returns minus zero for <var>y</var> a negative odd integer.
<li><code>pow(-Inf, </code><var>y</var><code>)</code> returns plus zero for <var>y</var> negative and not an odd integer.
<li><code>pow(-Inf, </code><var>y</var><code>)</code> returns minus infinity for <var>y</var> a positive odd integer.
<li><code>pow(-Inf, </code><var>y</var><code>)</code> returns plus infinity for <var>y</var> positive and not an odd integer.
<li><code>pow(+Inf, </code><var>y</var><code>)</code> returns plus zero for <var>y</var> negative, and plus infinity for <var>y</var> positive.
</ul>
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_neg</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fneg-122"></a></var><br>
<blockquote><p>Set <var>rop</var> to -<var>op</var> rounded in the direction <var>rnd</var>.
Just changes the sign if <var>rop</var> and <var>op</var> are the same variable.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_abs</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fabs-123"></a></var><br>
<blockquote><p>Set <var>rop</var> to the absolute value of <var>op</var>,
rounded in the direction <var>rnd</var>.
Just changes the sign if <var>rop</var> and <var>op</var> are the same variable.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_dim</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdim-124"></a></var><br>
<blockquote><p>Set <var>rop</var> to the positive difference of <var>op1</var> and <var>op2</var>, i.e.,
<var>op1</var> - <var>op2</var> rounded in the direction <var>rnd</var>
if <var>op1</var> &gt; <var>op2</var>, and +0 otherwise.
Returns NaN when <var>op1</var> or <var>op2</var> is NaN.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_mul_2ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005f2ui-125"></a></var><br>
&mdash; Function: int <b>mpfr_mul_2si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005f2si-126"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var> times 2 raised
to <var>op2</var>
rounded in the direction <var>rnd</var>. Just increases the exponent by <var>op2</var>
when <var>rop</var> and <var>op1</var> are identical.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_div_2ui</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005f2ui-127"></a></var><br>
&mdash; Function: int <b>mpfr_div_2si</b> (<var>mpfr_t rop, mpfr_t op1, long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005f2si-128"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op1</var> divided by 2 raised
to <var>op2</var>
rounded in the direction <var>rnd</var>. Just decreases the exponent by <var>op2</var>
when <var>rop</var> and <var>op1</var> are identical.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Comparison-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Special-Functions">Special Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Float-comparisons-functions-129"></a><a name="index-Comparison-functions-130"></a>
<h3 class="section">5.6 Comparison Functions</h3>
<div class="defun">
&mdash; Function: int <b>mpfr_cmp</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005fcmp-131"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_ui</b> (<var>mpfr_t op1, unsigned long int op2</var>)<var><a name="index-mpfr_005fcmp_005fui-132"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_si</b> (<var>mpfr_t op1, signed long int op2</var>)<var><a name="index-mpfr_005fcmp_005fsi-133"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_d</b> (<var>mpfr_t op1, double op2</var>)<var><a name="index-mpfr_005fcmp_005fd-134"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_ld</b> (<var>mpfr_t op1, long double op2</var>)<var><a name="index-mpfr_005fcmp_005fld-135"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_z</b> (<var>mpfr_t op1, mpz_t op2</var>)<var><a name="index-mpfr_005fcmp_005fz-136"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_q</b> (<var>mpfr_t op1, mpq_t op2</var>)<var><a name="index-mpfr_005fcmp_005fq-137"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_f</b> (<var>mpfr_t op1, mpf_t op2</var>)<var><a name="index-mpfr_005fcmp_005ff-138"></a></var><br>
<blockquote><p>Compare <var>op1</var> and <var>op2</var>. Return a positive value if <var>op1</var> &gt;
<var>op2</var>, zero if <var>op1</var> = <var>op2</var>, and a negative value if
<var>op1</var> &lt; <var>op2</var>.
Both <var>op1</var> and <var>op2</var> are considered to their full own precision,
which may differ.
If one of the operands is NaN, set the erange flag and return zero.
<p>Note: These functions may be useful to distinguish the three possible cases.
If you need to distinguish two cases only, it is recommended to use the
predicate functions (e.g., <code>mpfr_equal_p</code> for the equality) described
below; they behave like the IEEE-754 comparisons, in particular when one
or both arguments are NaN. But only floating-point numbers can be compared
(you may need to do a conversion first).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_cmp_ui_2exp</b> (<var>mpfr_t op1, unsigned long int op2, mp_exp_t e</var>)<var><a name="index-mpfr_005fcmp_005fui_005f2exp-139"></a></var><br>
&mdash; Function: int <b>mpfr_cmp_si_2exp</b> (<var>mpfr_t op1, long int op2, mp_exp_t e</var>)<var><a name="index-mpfr_005fcmp_005fsi_005f2exp-140"></a></var><br>
<blockquote><p>Compare <var>op1</var> and <var>op2</var> multiplied by two to
the power <var>e</var>. Similar as above.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_cmpabs</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005fcmpabs-141"></a></var><br>
<blockquote><p>Compare |<var>op1</var>| and |<var>op2</var>|. Return a positive value if
|<var>op1</var>| &gt; |<var>op2</var>|, zero if |<var>op1</var>| = |<var>op2</var>|, and
a negative value if |<var>op1</var>| &lt; |<var>op2</var>|.
If one of the operands is NaN, set the erange flag and return zero.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_nan_p</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005fnan_005fp-142"></a></var><br>
&mdash; Function: int <b>mpfr_inf_p</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005finf_005fp-143"></a></var><br>
&mdash; Function: int <b>mpfr_number_p</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005fnumber_005fp-144"></a></var><br>
&mdash; Function: int <b>mpfr_zero_p</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005fzero_005fp-145"></a></var><br>
<blockquote><p>Return non-zero if <var>op</var> is respectively NaN, an infinity, an ordinary
number (i.e. neither NaN nor an infinity) or zero. Return zero otherwise.
</p></blockquote></div>
<div class="defun">
&mdash; Macro: int <b>mpfr_sgn</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005fsgn-146"></a></var><br>
<blockquote><p>Return a positive value if <var>op</var> &gt; 0, zero if <var>op</var> = 0,
and a negative value if <var>op</var> &lt; 0.
If the operand is NaN, set the erange flag and return zero.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_greater_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005fgreater_005fp-147"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> &gt; <var>op2</var>, zero otherwise.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_greaterequal_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005fgreaterequal_005fp-148"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> &gt;= <var>op2</var>, zero otherwise.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_less_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005fless_005fp-149"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> &lt; <var>op2</var>, zero otherwise.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_lessequal_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005flessequal_005fp-150"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> &lt;= <var>op2</var>, zero otherwise.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_lessgreater_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005flessgreater_005fp-151"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> &lt; <var>op2</var> or
<var>op1</var> &gt; <var>op2</var> (i.e. neither <var>op1</var>, nor <var>op2</var> is
NaN, and <var>op1</var> &lt;&gt; <var>op2</var>), zero otherwise (i.e. <var>op1</var>
and/or <var>op2</var> are NaN, or <var>op1</var> = <var>op2</var>).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_equal_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005fequal_005fp-152"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> = <var>op2</var>, zero otherwise
(i.e. <var>op1</var> and/or <var>op2</var> are NaN, or
<var>op1</var> &lt;&gt; <var>op2</var>).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_unordered_p</b> (<var>mpfr_t op1, mpfr_t op2</var>)<var><a name="index-mpfr_005funordered_005fp-153"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> or <var>op2</var> is a NaN (i.e. they cannot be
compared), zero otherwise.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Special-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Input-and-Output-Functions">Input and Output Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Comparison-Functions">Comparison Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<p><a name="index-Special-functions-154"></a>
<h3 class="section">5.7 Special Functions</h3>
<p>All those functions, except explicitly stated, return zero for an
exact return value, a positive value for a return value larger than the
exact result, and a negative value otherwise.
<p>Important note: in some domains, computing special functions (either with
correct or incorrect rounding) is expensive, even for small precision,
for example the trigonometric and Bessel functions for large argument.
<div class="defun">
&mdash; Function: int <b>mpfr_log</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005flog-155"></a></var><br>
&mdash; Function: int <b>mpfr_log2</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005flog2-156"></a></var><br>
&mdash; Function: int <b>mpfr_log10</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005flog10-157"></a></var><br>
<blockquote><p>Set <var>rop</var> to the natural logarithm of <var>op</var>,
log2(<var>op</var>) or
log10(<var>op</var>), respectively,
rounded in the direction <var>rnd</var>.
Return &minus;Inf if <var>op</var> is &minus;0 (i.e. the sign of the zero
has no influence on the result).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_exp</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fexp-158"></a></var><br>
&mdash; Function: int <b>mpfr_exp2</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fexp2-159"></a></var><br>
&mdash; Function: int <b>mpfr_exp10</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fexp10-160"></a></var><br>
<blockquote><p>Set <var>rop</var> to the exponential of <var>op</var>,
to 2 power of <var>op</var>
or to 10 power of <var>op</var>, respectively,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_cos</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcos-161"></a></var><br>
&mdash; Function: int <b>mpfr_sin</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsin-162"></a></var><br>
&mdash; Function: int <b>mpfr_tan</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ftan-163"></a></var><br>
<blockquote><p>Set <var>rop</var> to the cosine of <var>op</var>, sine of <var>op</var>,
tangent of <var>op</var>, rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sec</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsec-164"></a></var><br>
&mdash; Function: int <b>mpfr_csc</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcsc-165"></a></var><br>
&mdash; Function: int <b>mpfr_cot</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcot-166"></a></var><br>
<blockquote><p>Set <var>rop</var> to the secant of <var>op</var>, cosecant of <var>op</var>,
cotangent of <var>op</var>, rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sin_cos</b> (<var>mpfr_t sop, mpfr_t cop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsin_005fcos-167"></a></var><br>
<blockquote><p>Set simultaneously <var>sop</var> to the sine of <var>op</var> and
<var>cop</var> to the cosine of <var>op</var>,
rounded in the direction <var>rnd</var> with the corresponding precisions of
<var>sop</var> and <var>cop</var>, which must be different variables.
Return 0 iff both results are exact.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_acos</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005facos-168"></a></var><br>
&mdash; Function: int <b>mpfr_asin</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fasin-169"></a></var><br>
&mdash; Function: int <b>mpfr_atan</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fatan-170"></a></var><br>
<blockquote><p>Set <var>rop</var> to the arc-cosine, arc-sine or arc-tangent of <var>op</var>,
rounded in the direction <var>rnd</var>.
Note that since <code>acos(-1)</code> returns the floating-point number closest to
Pi according to the given rounding mode, this number might not be
in the output range 0 &lt;= <var>rop</var> &lt; \pi
of the arc-cosine function;
still, the result lies in the image of the output range
by the rounding function.
The same holds for <code>asin(-1)</code>, <code>asin(1)</code>, <code>atan(-Inf)</code>,
<code>atan(+Inf)</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_atan2</b> (<var>mpfr_t rop, mpfr_t y, mpfr_t x, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fatan2-171"></a></var><br>
<blockquote><p>Set <var>rop</var> to the arc-tangent2 of <var>y</var> and <var>x</var>,
rounded in the direction <var>rnd</var>:
if <code>x &gt; 0</code>, <code>atan2(y, x) = atan (y/x)</code>;
if <code>x &lt; 0</code>, <code>atan2(y, x) = sign(y)*(Pi - atan (abs(y/x)))</code>.
As for <code>atan</code>, in case the exact mathematical result is +Pi or
-Pi, its rounded result might be outside the function output range.
<p><code>atan2(y, 0)</code> does not raise any floating-point exception.
Special values are currently handled as described in the ISO C99 standard
for the <code>atan2</code> function (note this may change in future versions):
<ul>
<li><code>atan2(+0, -0)</code> returns +Pi.
<li><code>atan2(-0, -0)</code> returns -Pi.
<li><code>atan2(+0, +0)</code> returns +0.
<li><code>atan2(-0, +0)</code> returns &minus;0.
<li><code>atan2(+0, x)</code> returns +Pi for x &lt; 0.
<li><code>atan2(-0, x)</code> returns -Pi for x &lt; 0.
<li><code>atan2(+0, x)</code> returns +0 for x &gt; 0.
<li><code>atan2(-0, x)</code> returns &minus;0 for x &gt; 0.
<li><code>atan2(y, 0)</code> returns -Pi/2 for y &lt; 0.
<li><code>atan2(y, 0)</code> returns +Pi/2 for y &gt; 0.
<li><code>atan2(+Inf, -Inf)</code> returns +3*Pi/4.
<li><code>atan2(-Inf, -Inf)</code> returns -3*Pi/4.
<li><code>atan2(+Inf, +Inf)</code> returns +Pi/4.
<li><code>atan2(-Inf, +Inf)</code> returns -Pi/4.
<li><code>atan2(+Inf, x)</code> returns +Pi/2 for finite x.
<li><code>atan2(-Inf, x)</code> returns -Pi/2 for finite x.
<li><code>atan2(y, -Inf)</code> returns +Pi for finite y &gt; 0.
<li><code>atan2(y, -Inf)</code> returns -Pi for finite y &lt; 0.
<li><code>atan2(y, +Inf)</code> returns +0 for finite y &gt; 0.
<li><code>atan2(y, +Inf)</code> returns &minus;0 for finite y &lt; 0.
</ul>
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_cosh</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcosh-172"></a></var><br>
&mdash; Function: int <b>mpfr_sinh</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsinh-173"></a></var><br>
&mdash; Function: int <b>mpfr_tanh</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ftanh-174"></a></var><br>
<blockquote><p>Set <var>rop</var> to the hyperbolic cosine, sine or tangent of <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sech</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsech-175"></a></var><br>
&mdash; Function: int <b>mpfr_csch</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcsch-176"></a></var><br>
&mdash; Function: int <b>mpfr_coth</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcoth-177"></a></var><br>
<blockquote><p>Set <var>rop</var> to the hyperbolic secant of <var>op</var>, cosecant of <var>op</var>,
cotangent of <var>op</var>, rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_acosh</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005facosh-178"></a></var><br>
&mdash; Function: int <b>mpfr_asinh</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fasinh-179"></a></var><br>
&mdash; Function: int <b>mpfr_atanh</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fatanh-180"></a></var><br>
<blockquote><p>Set <var>rop</var> to the inverse hyperbolic cosine, sine or tangent of <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_fac_ui</b> (<var>mpfr_t rop, unsigned long int op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffac_005fui-181"></a></var><br>
<blockquote><p>Set <var>rop</var> to the factorial of the <code>unsigned long int</code> <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_log1p</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005flog1p-182"></a></var><br>
<blockquote><p>Set <var>rop</var> to the logarithm of one plus <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_expm1</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fexpm1-183"></a></var><br>
<blockquote><p>Set <var>rop</var> to the exponential of <var>op</var> minus one,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_eint</b> (<var>mpfr_t y, mpfr_t x, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005feint-184"></a></var><br>
<blockquote><p>Set <var>y</var> to the exponential integral of <var>x</var>,
rounded in the direction <var>rnd</var>.
For positive <var>x</var>,
the exponential integral is the sum of Euler's constant, of the logarithm
of <var>x</var>, and of the sum for k from 1 to infinity of
<var>x</var> to the power k, divided by k and factorial(k).
For negative <var>x</var>, the returned value is NaN.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_gamma</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fgamma-185"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the Gamma function on <var>op</var>, rounded in the
direction <var>rnd</var>. When <var>op</var> is a negative integer, NaN is returned.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_lngamma</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005flngamma-186"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the logarithm of the Gamma function on <var>op</var>,
rounded in the direction <var>rnd</var>.
When &minus;2<var>k</var>&minus;1 &lt;= <var>x</var> &lt;= &minus;2<var>k</var>,
<var>k</var> being a non-negative integer, NaN is returned.
See also <code>mpfr_lgamma</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_lgamma</b> (<var>mpfr_t rop, int *signp, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005flgamma-187"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the logarithm of the absolute value of the
Gamma function on <var>op</var>, rounded in the direction <var>rnd</var>. The sign
(1 or &minus;1) of Gamma(<var>op</var>) is returned in the object pointed to
by <var>signp</var>. When <var>op</var> is an infinity or a non-positive integer,
+Inf is returned. When <var>op</var> is NaN, &minus;Inf or a negative integer,
*<var>signp</var> is undefined, and when <var>op</var> is �0, *<var>signp</var> is
the sign of the zero.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_zeta</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fzeta-188"></a></var><br>
&mdash; Function: int <b>mpfr_zeta_ui</b> (<var>mpfr_t rop, unsigned long op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fzeta_005fui-189"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the Riemann Zeta function on <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_erf</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ferf-190"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the error function on <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_erfc</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ferfc-191"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the complementary error function on <var>op</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_j0</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fj0-192"></a></var><br>
&mdash; Function: int <b>mpfr_j1</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fj1-193"></a></var><br>
&mdash; Function: int <b>mpfr_jn</b> (<var>mpfr_t rop, long n, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fjn-194"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the first order Bessel function of order 0, 1
and <var>n</var> on <var>op</var>, rounded in the direction <var>rnd</var>. When <var>op</var> is
NaN, <var>rop</var> is always set to NaN. When <var>op</var> is plus or minus Infinity,
<var>rop</var> is set to +0. When <var>op</var> is zero, and <var>n</var> is not zero,
<var>rop</var> is +0 or &minus;0 depending on the parity and sign of <var>n</var>,
and the sign of <var>op</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_y0</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fy0-195"></a></var><br>
&mdash; Function: int <b>mpfr_y1</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fy1-196"></a></var><br>
&mdash; Function: int <b>mpfr_yn</b> (<var>mpfr_t rop, long n, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fyn-197"></a></var><br>
<blockquote><p>Set <var>rop</var> to the value of the second order Bessel function of order 0, 1
and <var>n</var> on <var>op</var>, rounded in the direction <var>rnd</var>. When <var>op</var> is
NaN or negative,
<var>rop</var> is always set to NaN. When <var>op</var> is +Inf,
<var>rop</var> is +0. When <var>op</var> is zero,
<var>rop</var> is +Inf or &minus;Inf depending on the parity and sign of <var>n</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_fma</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mpfr_t op3, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffma-198"></a></var><br>
<blockquote><p>Set <var>rop</var> to (<var>op1</var> times <var>op2</var>) + <var>op3</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_fms</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mpfr_t op3, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffms-199"></a></var><br>
<blockquote><p>Set <var>rop</var> to (<var>op1</var> times <var>op2</var>) - <var>op3</var>,
rounded in the direction <var>rnd</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_agm</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fagm-200"></a></var><br>
<blockquote><p>Set <var>rop</var> to the arithmetic-geometric mean of <var>op1</var> and <var>op2</var>,
rounded in the direction <var>rnd</var>.
The arithmetic-geometric mean is the common limit of the sequences
u[n] and v[n], where u[0]=<var>op1</var>, v[0]=<var>op2</var>, u[n+1] is the
arithmetic mean of u[n] and v[n], and v[n+1] is the geometric mean of
u[n] and v[n].
If any operand is negative, the return value is NaN.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_hypot</b> (<var>mpfr_t rop, mpfr_t x, mpfr_t y, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fhypot-201"></a></var><br>
<blockquote><p>Set <var>rop</var> to the Euclidean norm of <var>x</var> and <var>y</var>,
i.e. the square root of the sum of the squares of <var>x</var> and <var>y</var>,
rounded in the direction <var>rnd</var>.
Special values are currently handled as described in Section F.9.4.3 of
the ISO C99 standard, for the <code>hypot</code> function (note this may change
in future versions): If <var>x</var> or <var>y</var> is an infinity, then plus
infinity is returned in <var>rop</var>, even if the other number is NaN.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_const_log2</b> (<var>mpfr_t rop, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fconst_005flog2-202"></a></var><br>
&mdash; Function: int <b>mpfr_const_pi</b> (<var>mpfr_t rop, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fconst_005fpi-203"></a></var><br>
&mdash; Function: int <b>mpfr_const_euler</b> (<var>mpfr_t rop, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fconst_005feuler-204"></a></var><br>
&mdash; Function: int <b>mpfr_const_catalan</b> (<var>mpfr_t rop, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fconst_005fcatalan-205"></a></var><br>
<blockquote><p>Set <var>rop</var> to the logarithm of 2, the value of Pi,
of Euler's constant 0.577<small class="dots">...</small>, of Catalan's constant 0.915<small class="dots">...</small>,
respectively, rounded in the direction
<var>rnd</var>. These functions cache the computed values to avoid other
calculations if a lower or equal precision is requested. To free these caches,
use <code>mpfr_free_cache</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_free_cache</b> (<var>void</var>)<var><a name="index-mpfr_005ffree_005fcache-206"></a></var><br>
<blockquote><p>Free various caches used by MPFR internally, in particular the
caches used by the functions computing constants (currently
<code>mpfr_const_log2</code>, <code>mpfr_const_pi</code>,
<code>mpfr_const_euler</code> and <code>mpfr_const_catalan</code>).
You should call this function before terminating a thread, even if you did
not call these functions directly (they could have been called internally).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_sum</b> (<var>mpfr_t rop, mpfr_ptr const tab</var>[]<var>, unsigned long n, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsum-207"></a></var><br>
<blockquote><p>Set <var>ret</var> to the sum of all elements of <var>tab</var> whose size is <var>n</var>,
rounded in the direction <var>rnd</var>. Warning, <var>tab</var> is a table of pointers
to mpfr_t, not a table of mpfr_t (preliminary interface). The returned
<code>int</code> value is zero when the computed value is the exact value,
and non-zero when this cannot be guaranteed, without giving the
direction of the error as the other functions do.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Input-and-Output-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Integer-Related-Functions">Integer Related Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Special-Functions">Special Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Float-input-and-output-functions-208"></a><a name="index-Input-functions-209"></a><a name="index-Output-functions-210"></a><a name="index-I_002fO-functions-211"></a>
<h3 class="section">5.8 Input and Output Functions</h3>
<p>This section describes functions that perform input from an input/output
stream, and functions that output to an input/output stream.
Passing a null pointer for a <var>stream</var> argument to any of
these functions will make them read from <code>stdin</code> and write to
<code>stdout</code>, respectively.
<p>When using any of these functions, you must include the <code>&lt;stdio.h&gt;</code>
standard header before <samp><span class="file">mpfr.h</span></samp>, to allow <samp><span class="file">mpfr.h</span></samp> to define
prototypes for these functions.
<div class="defun">
&mdash; Function: size_t <b>mpfr_out_str</b> (<var>FILE *stream, int base, size_t n, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fout_005fstr-212"></a></var><br>
<blockquote><p>Output <var>op</var> on stream <var>stream</var>, as a string of digits in
base <var>base</var>, rounded in the direction <var>rnd</var>.
The base may vary from 2 to 36. Print <var>n</var> significant digits exactly,
or if <var>n</var> is 0, enough digits so that <var>op</var> can be read back
exactly (see <code>mpfr_get_str</code>).
<p>In addition to the significant digits, a decimal point (defined by the
current locale) at the right of the
first digit and a trailing exponent in base 10, in the form &lsquo;<samp><span class="samp">eNNN</span></samp>&rsquo;,
are printed. If <var>base</var> is greater than 10, &lsquo;<samp><span class="samp">@</span></samp>&rsquo; will be used
instead of &lsquo;<samp><span class="samp">e</span></samp>&rsquo; as exponent delimiter.
<p>Return the number of bytes written, or if an error occurred, return 0.
</p></blockquote></div>
<div class="defun">
&mdash; Function: size_t <b>mpfr_inp_str</b> (<var>mpfr_t rop, FILE *stream, int base, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005finp_005fstr-213"></a></var><br>
<blockquote><p>Input a string in base <var>base</var> from stream <var>stream</var>,
rounded in the direction <var>rnd</var>, and put the
read float in <var>rop</var>.
<!-- The argument @var{base} must be in the range 2 to 36. -->
<!-- The string is of the form @samp{M@@N} or, if the -->
<!-- base is 10 or less, alternatively @samp{MeN} or @samp{MEN}, or, if the base -->
<!-- is 16, alternatively @samp{MpB} or @samp{MPB}. -->
<!-- @samp{M} is the significand in the specified base, @samp{N} is the exponent -->
<!-- written in decimal for the specified base, and in base 16, @samp{B} is the -->
<!-- binary exponent written in decimal (i.e.@: it indicates the power of 2 by -->
<!-- which the significand is to be scaled). -->
<p>This function reads a word (defined as a sequence of characters between
whitespace) and parses it using <code>mpfr_set_str</code> (it may change).
See the documentation of <code>mpfr_strtofr</code> for a detailed description
of the valid string formats.
<!-- Special values can be read as follows (the case does not matter): -->
<!-- @code{@@NaN@@}, @code{@@Inf@@}, @code{+@@Inf@@} and @code{-@@Inf@@}, -->
<!-- possibly followed by other characters; if the base is smaller or equal -->
<!-- to 16, the following strings are accepted too: @code{NaN}, @code{Inf}, -->
<!-- @code{+Inf} and @code{-Inf}. -->
<p>Return the number of bytes read, or if an error occurred, return 0.
</p></blockquote></div>
<!-- @deftypefun void mpfr_inp_raw (mpfr_t @var{float}, FILE *@var{stream}) -->
<!-- Input from stdio stream @var{stream} in the format written by -->
<!-- @code{mpfr_out_raw}, and put the result in @var{float}. -->
<!-- @end deftypefun -->
<div class="node">
<p><hr>
<a name="Integer-Related-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Miscellaneous-Functions">Miscellaneous Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Input-and-Output-Functions">Input and Output Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Integer-related-functions-214"></a>
<h3 class="section">5.9 Integer Related Functions</h3>
<div class="defun">
&mdash; Function: int <b>mpfr_rint</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005frint-215"></a></var><br>
&mdash; Function: int <b>mpfr_ceil</b> (<var>mpfr_t rop, mpfr_t op</var>)<var><a name="index-mpfr_005fceil-216"></a></var><br>
&mdash; Function: int <b>mpfr_floor</b> (<var>mpfr_t rop, mpfr_t op</var>)<var><a name="index-mpfr_005ffloor-217"></a></var><br>
&mdash; Function: int <b>mpfr_round</b> (<var>mpfr_t rop, mpfr_t op</var>)<var><a name="index-mpfr_005fround-218"></a></var><br>
&mdash; Function: int <b>mpfr_trunc</b> (<var>mpfr_t rop, mpfr_t op</var>)<var><a name="index-mpfr_005ftrunc-219"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op</var> rounded to an integer.
<code>mpfr_rint</code> rounds to the nearest representable integer in the
given rounding mode, <code>mpfr_ceil</code> rounds
to the next higher or equal representable integer, <code>mpfr_floor</code> to
the next lower or equal representable integer, <code>mpfr_round</code> to the
nearest representable integer, rounding halfway cases away from zero,
and <code>mpfr_trunc</code> to the next representable integer toward zero.
<p>The returned value is zero when the result is exact, positive when it is
greater than the original value of <var>op</var>, and negative when it is smaller.
More precisely, the returned value is 0 when <var>op</var> is an integer
representable in <var>rop</var>, 1 or &minus;1 when <var>op</var> is an integer
that is not representable in <var>rop</var>, 2 or &minus;2 when <var>op</var> is
not an integer.
<p>Note that <code>mpfr_round</code> is different from <code>mpfr_rint</code> called with
the rounding to nearest mode (where halfway cases are rounded to an even
integer or significand). Note also that no double rounding is performed; for
instance, 4.5 (100.1 in binary) is rounded by <code>mpfr_round</code> to 4 (100
in binary) in 2-bit precision, though <code>round(4.5)</code> is equal to 5 and
5 (101 in binary) is rounded to 6 (110 in binary) in 2-bit precision.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_rint_ceil</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005frint_005fceil-220"></a></var><br>
&mdash; Function: int <b>mpfr_rint_floor</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005frint_005ffloor-221"></a></var><br>
&mdash; Function: int <b>mpfr_rint_round</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005frint_005fround-222"></a></var><br>
&mdash; Function: int <b>mpfr_rint_trunc</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005frint_005ftrunc-223"></a></var><br>
<blockquote><p>Set <var>rop</var> to <var>op</var> rounded to an integer.
<code>mpfr_rint_ceil</code> rounds to the next higher or equal integer,
<code>mpfr_rint_floor</code> to the next lower or equal integer,
<code>mpfr_rint_round</code> to the nearest integer, rounding halfway cases away
from zero, and <code>mpfr_rint_trunc</code> to the next integer toward zero.
If the result is not representable, it is rounded in the direction <var>rnd</var>.
The returned value is the ternary value associated with the considered
round-to-integer function (regarded in the same way as any other
mathematical function).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_frac</b> (<var>mpfr_t rop, mpfr_t op, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005ffrac-224"></a></var><br>
<blockquote><p>Set <var>rop</var> to the fractional part of <var>op</var>, having the same sign as
<var>op</var>, rounded in the direction <var>rnd</var> (unlike in <code>mpfr_rint</code>,
<var>rnd</var> affects only how the exact fractional part is rounded, not how
the fractional part is generated).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_remainder</b> (<var>mpfr_t r, mpfr_t x, mpfr_t y, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fremainder-225"></a></var><br>
&mdash; Function: int <b>mpfr_remquo</b> (<var>mpfr_t r, long* q, mpfr_t x, mpfr_t y, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fremquo-226"></a></var><br>
<blockquote><p>Set <var>r</var> to the remainder of the division of <var>x</var> by <var>y</var>, with
quotient rounded to the nearest integer (ties rounded to even), and
<var>r</var> rounded according to the direction <var>rnd</var>.
If <var>r</var> is zero, it has the sign of <var>x</var>.
The return value is the ternary value corresponding to <var>r</var>.
Additionally, <code>mpfr_remquo</code> stores
the low significant bits from the quotient in <var>*q</var>
(more precisely the number of bits in a <code>long</code> minus one),
with the sign of <var>x</var> divided by <var>y</var>
(except if those low bits are all zero, in which case zero is returned).
Note that <var>x</var> may be so large in magnitude relative to <var>y</var> that an
exact representation of the quotient is not practical.
These functions are useful for additive argument reduction.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_integer_p</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005finteger_005fp-227"></a></var><br>
<blockquote><p>Return non-zero iff <var>op</var> is an integer.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Miscellaneous-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Integer-Related-Functions">Integer Related Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Miscellaneous-float-functions-228"></a>
<h3 class="section">5.10 Miscellaneous Functions</h3>
<div class="defun">
&mdash; Function: void <b>mpfr_nexttoward</b> (<var>mpfr_t x, mpfr_t y</var>)<var><a name="index-mpfr_005fnexttoward-229"></a></var><br>
<blockquote><p>If <var>x</var> or <var>y</var> is NaN, set <var>x</var> to NaN. Otherwise, if <var>x</var>
is different from <var>y</var>, replace <var>x</var> by the next floating-point
number (with the precision of <var>x</var> and the current exponent range)
in the direction of <var>y</var>, if there is one
(the infinite values are seen as the smallest and largest floating-point
numbers). If the result is zero, it keeps the same sign. No underflow or
overflow is generated.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_nextabove</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fnextabove-230"></a></var><br>
<blockquote><p>Equivalent to <code>mpfr_nexttoward</code> where <var>y</var> is plus infinity.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_nextbelow</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fnextbelow-231"></a></var><br>
<blockquote><p>Equivalent to <code>mpfr_nexttoward</code> where <var>y</var> is minus infinity.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_min</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmin-232"></a></var><br>
<blockquote><p>Set <var>rop</var> to the minimum of <var>op1</var> and <var>op2</var>. If <var>op1</var>
and <var>op2</var> are both NaN, then <var>rop</var> is set to NaN. If <var>op1</var>
or <var>op2</var> is NaN, then <var>rop</var> is set to the numeric value. If
<var>op1</var> and <var>op2</var> are zeros of different signs, then <var>rop</var>
is set to &minus;0.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_max</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmax-233"></a></var><br>
<blockquote><p>Set <var>rop</var> to the maximum of <var>op1</var> and <var>op2</var>. If <var>op1</var>
and <var>op2</var> are both NaN, then <var>rop</var> is set to NaN. If <var>op1</var>
or <var>op2</var> is NaN, then <var>rop</var> is set to the numeric value. If
<var>op1</var> and <var>op2</var> are zeros of different signs, then <var>rop</var>
is set to +0.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_urandomb</b> (<var>mpfr_t rop, gmp_randstate_t state</var>)<var><a name="index-mpfr_005furandomb-234"></a></var><br>
<blockquote><p>Generate a uniformly distributed random float in the interval
0 &lt;= <var>rop</var> &lt; 1.
Return 0, unless the exponent is not in the current exponent range, in
which case <var>rop</var> is set to NaN and a non-zero value is returned. The
second argument is a <code>gmp_randstate_t</code> structure which should be
created using the GMP <code>gmp_randinit</code> function, see the GMP manual.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_random</b> (<var>mpfr_t rop</var>)<var><a name="index-mpfr_005frandom-235"></a></var><br>
<blockquote><p>Generate a uniformly distributed random float in the interval
0 &lt;= <var>rop</var> &lt; 1.
This function is deprecated; <code>mpfr_urandomb</code> should be used instead.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_random2</b> (<var>mpfr_t rop, mp_size_t size, mp_exp_t exp</var>)<var><a name="index-mpfr_005frandom2-236"></a></var><br>
<blockquote><p>Generate a random float of at most <var>size</var> limbs, with long strings of
zeros and ones in the binary representation. The exponent of the number is in
the interval &minus;<var>exp</var> to <var>exp</var>.
This function is useful for
testing functions and algorithms, since this kind of random numbers have
proven to be more likely to trigger corner-case bugs.
Negative random numbers are generated when <var>size</var> is negative.
Put +0 in <var>rop</var> when size if zero. The internal state of the default
pseudorandom number generator is modified by a call to this function (the
same one as GMP if MPFR was built using &lsquo;<samp><span class="samp">--with-gmp-build</span></samp>&rsquo;).
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_exp_t <b>mpfr_get_exp</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fget_005fexp-237"></a></var><br>
<blockquote><p>Get the exponent of <var>x</var>, assuming that <var>x</var> is a non-zero ordinary
number and the significand is chosen in [1/2,1). The behavior for NaN,
infinity or zero is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_set_exp</b> (<var>mpfr_t x, mp_exp_t e</var>)<var><a name="index-mpfr_005fset_005fexp-238"></a></var><br>
<blockquote><p>Set the exponent of <var>x</var> if <var>e</var> is in the current exponent range,
and return 0 (even if <var>x</var> is not a non-zero ordinary number);
otherwise, return a non-zero value.
The significand is assumed to be in [1/2,1).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_signbit</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005fsignbit-239"></a></var><br>
<blockquote><p>Return a non-zero value iff <var>op</var> has its sign bit set (i.e. if it is
negative, &minus;0, or a NaN whose representation has its sign bit set).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_setsign</b> (<var>mpfr_t rop, mpfr_t op, int s, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsetsign-240"></a></var><br>
<blockquote><p>Set the value of <var>rop</var> from <var>op</var>, rounded toward the given
direction <var>rnd</var>, then set (resp. clear) its sign bit if <var>s</var>
is non-zero (resp. zero), even when <var>op</var> is a NaN.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_copysign</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcopysign-241"></a></var><br>
<blockquote><p>Set the value of <var>rop</var> from <var>op1</var>, rounded toward the given
direction <var>rnd</var>, then set its sign bit to that of <var>op2</var> (even
when <var>op1</var> or <var>op2</var> is a NaN). This function is equivalent to
<code>mpfr_setsign (</code><var>rop</var><code>, </code><var>op1</var><code>, mpfr_signbit (</code><var>op2</var><code>), </code><var>rnd</var><code>)</code>.
</p></blockquote></div>
<!-- By definition, a C string is always null-terminated, so that we -->
<!-- could just say "string" or "null-terminated character array", -->
<!-- but "null-terminated string" is not an error and probably better -->
<!-- for most users. -->
<div class="defun">
&mdash; Function: const char * <b>mpfr_get_version</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005fversion-242"></a></var><br>
<blockquote><p>Return the MPFR version, as a null-terminated string.
</p></blockquote></div>
<div class="defun">
&mdash; Macro: <b>MPFR_VERSION</b><var><a name="index-MPFR_005fVERSION-243"></a></var><br>
&mdash; Macro: <b>MPFR_VERSION_MAJOR</b><var><a name="index-MPFR_005fVERSION_005fMAJOR-244"></a></var><br>
&mdash; Macro: <b>MPFR_VERSION_MINOR</b><var><a name="index-MPFR_005fVERSION_005fMINOR-245"></a></var><br>
&mdash; Macro: <b>MPFR_VERSION_PATCHLEVEL</b><var><a name="index-MPFR_005fVERSION_005fPATCHLEVEL-246"></a></var><br>
&mdash; Macro: <b>MPFR_VERSION_STRING</b><var><a name="index-MPFR_005fVERSION_005fSTRING-247"></a></var><br>
<blockquote><p><code>MPFR_VERSION</code> is the version of MPFR as a preprocessing constant.
<code>MPFR_VERSION_MAJOR</code>, <code>MPFR_VERSION_MINOR</code> and
<code>MPFR_VERSION_PATCHLEVEL</code> are respectively the major, minor and patch
level of MPFR version, as preprocessing constants.
<code>MPFR_VERSION_STRING</code> is the version (with an optional suffix, used
in development and pre-release versions) as a string constant, which can
be compared to the result of <code>mpfr_get_version</code> to check at run time
the header file and library used match:
<pre class="example"> if (strcmp (mpfr_get_version (), MPFR_VERSION_STRING))
fprintf (stderr, "Warning: header and library do not match\n");
</pre>
<p>Note: Obtaining different strings is not necessarily an error, as
in general, a program compiled with some old MPFR version can be
dynamically linked with a newer MPFR library version (if allowed
by the library versioning system).
</p></blockquote></div>
<div class="defun">
&mdash; Macro: long <b>MPFR_VERSION_NUM</b> (<var>major, minor, patchlevel</var>)<var><a name="index-MPFR_005fVERSION_005fNUM-248"></a></var><br>
<blockquote><p>Create an integer in the same format as used by <code>MPFR_VERSION</code> from the
given <var>major</var>, <var>minor</var> and <var>patchlevel</var>.
Here is an example of how to check the MPFR version at compile time:
<pre class="example"> #if (!defined(MPFR_VERSION) || (MPFR_VERSION&lt;MPFR_VERSION_NUM(2,1,0)))
# error "Wrong MPFR version."
#endif
</pre>
</blockquote></div>
<div class="defun">
&mdash; Function: const char * <b>mpfr_get_patches</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005fpatches-249"></a></var><br>
<blockquote><p>Return a null-terminated string containing the ids of the patches applied to
the MPFR library (contents of the <samp><span class="file">PATCHES</span></samp> file), separated by spaces.
Note: If the program has been compiled with an older MPFR version and is
dynamically linked with a new MPFR library version, the ids of the patches
applied to the old (compile-time) MPFR version are not available (however
this information should not have much interest in general).
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Rounding-Mode-Related-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Exception-Related-Functions">Exception Related Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Miscellaneous-Functions">Miscellaneous Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<p><a name="index-Rounding-mode-related-functions-250"></a>
<h3 class="section">5.11 Rounding Mode Related Functions</h3>
<div class="defun">
&mdash; Function: void <b>mpfr_set_default_rounding_mode</b> (<var>mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fset_005fdefault_005frounding_005fmode-251"></a></var><br>
<blockquote><p>Set the default rounding mode to <var>rnd</var>.
The default rounding mode is to nearest initially.
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_rnd_t <b>mpfr_get_default_rounding_mode</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005fdefault_005frounding_005fmode-252"></a></var><br>
<blockquote><p>Get the default rounding mode.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_prec_round</b> (<var>mpfr_t x, mp_prec_t prec, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fprec_005fround-253"></a></var><br>
<blockquote><p>Round <var>x</var> according to <var>rnd</var> with precision <var>prec</var>, which
must be an integer between <code>MPFR_PREC_MIN</code> and <code>MPFR_PREC_MAX</code>
(otherwise the behavior is undefined).
If <var>prec</var> is greater or equal to the precision of <var>x</var>, then new
space is allocated for the significand, and it is filled with zeros.
Otherwise, the significand is rounded to precision <var>prec</var> with the given
direction. In both cases, the precision of <var>x</var> is changed to <var>prec</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_round_prec</b> (<var>mpfr_t x, mp_rnd_t rnd, mp_prec_t prec</var>)<var><a name="index-mpfr_005fround_005fprec-254"></a></var><br>
<blockquote><p>[This function is obsolete. Please use <code>mpfr_prec_round</code> instead.]
</p></blockquote></div>
<div class="defun">
&mdash; Function: const char * <b>mpfr_print_rnd_mode</b> (<var>mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fprint_005frnd_005fmode-255"></a></var><br>
<blockquote><p>Return the input string (GMP_RNDD, GMP_RNDU, GMP_RNDN, GMP_RNDZ)
corresponding to the rounding mode <var>rnd</var> or a null pointer if
<var>rnd</var> is an invalid rounding mode.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Exception-Related-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Advanced-Functions">Advanced Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Exception-related-functions-256"></a>
<h3 class="section">5.12 Exception Related Functions</h3>
<div class="defun">
&mdash; Function: mp_exp_t <b>mpfr_get_emin</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005femin-257"></a></var><br>
&mdash; Function: mp_exp_t <b>mpfr_get_emax</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005femax-258"></a></var><br>
<blockquote><p>Return the (current) smallest and largest exponents allowed for a
floating-point variable. The smallest positive value of a floating-point
variable is one half times 2 raised to the
smallest exponent and the largest value has the form (1 - epsilon) times 2 raised to the largest exponent.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_set_emin</b> (<var>mp_exp_t exp</var>)<var><a name="index-mpfr_005fset_005femin-259"></a></var><br>
&mdash; Function: int <b>mpfr_set_emax</b> (<var>mp_exp_t exp</var>)<var><a name="index-mpfr_005fset_005femax-260"></a></var><br>
<blockquote><p>Set the smallest and largest exponents allowed for a floating-point variable.
Return a non-zero value when <var>exp</var> is not in the range accepted by the
implementation (in that case the smallest or largest exponent is not changed),
and zero otherwise.
If the user changes the exponent range, it is her/his responsibility to check
that all current floating-point variables are in the new allowed range
(for example using <code>mpfr_check_range</code>), otherwise the subsequent
behavior will be undefined, in the sense of the ISO C standard.
<!-- It is also her/his responsibility to check that @m {emin <= emax}. -->
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_exp_t <b>mpfr_get_emin_min</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005femin_005fmin-261"></a></var><br>
&mdash; Function: mp_exp_t <b>mpfr_get_emin_max</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005femin_005fmax-262"></a></var><br>
&mdash; Function: mp_exp_t <b>mpfr_get_emax_min</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005femax_005fmin-263"></a></var><br>
&mdash; Function: mp_exp_t <b>mpfr_get_emax_max</b> (<var>void</var>)<var><a name="index-mpfr_005fget_005femax_005fmax-264"></a></var><br>
<blockquote><p>Return the minimum and maximum of the smallest and largest exponents
allowed for <code>mpfr_set_emin</code> and <code>mpfr_set_emax</code>. These values
are implementation dependent; it is possible to create a non
portable program by writing <code>mpfr_set_emax(mpfr_get_emax_max())</code>
and <code>mpfr_set_emin(mpfr_get_emin_min())</code> since the values
of the smallest and largest exponents become implementation dependent.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_check_range</b> (<var>mpfr_t x, int t, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fcheck_005frange-265"></a></var><br>
<blockquote><p>This function forces <var>x</var> to be in the current range of acceptable
values, <var>t</var> being the current ternary value: negative if <var>x</var>
is smaller than the exact value, positive if <var>x</var> is larger than
the exact value and zero if <var>x</var> is exact (before the call). It
generates an underflow or an overflow if the exponent of <var>x</var> is
outside the current allowed range; the value of <var>t</var> may be used
to avoid a double rounding. This function returns zero if the rounded
result is equal to the exact one, a positive value if the rounded
result is larger than the exact one, a negative value if the rounded
result is smaller than the exact one. Note that unlike most functions,
the result is compared to the exact one, not the input value <var>x</var>,
i.e. the ternary value is propagated.
<p>Note: If <var>x</var> is an infinity and <var>t</var> is different from zero (i.e.,
if the rounded result is an inexact infinity), then the overflow flag is
set. This is useful because <code>mpfr_check_range</code> is typically called
(at least in MPFR functions) after restoring the flags that could have
been set due to internal computations.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_subnormalize</b> (<var>mpfr_t x, int t, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fsubnormalize-266"></a></var><br>
<blockquote><p>This function rounds <var>x</var> emulating subnormal number arithmetic:
if <var>x</var> is outside the subnormal exponent range, it just propagates the
ternary value <var>t</var>; otherwise, it rounds <var>x</var> to precision
<code>EXP(x)-emin+1</code> according to rounding mode <var>rnd</var> and previous
ternary value <var>t</var>, avoiding double rounding problems.
More precisely in the subnormal domain, denoting by <var>e</var> the value of
<code>emin</code>, <var>x</var> is rounded in fixed-point
arithmetic to an integer multiple of two to the power
<var>e</var>&minus;1; as a consequence, 1.5 multiplied by two to the power <var>e</var>&minus;1 when <var>t</var> is zero
is rounded to two to the power <var>e</var> with rounding to nearest.
<p><code>PREC(x)</code> is not modified by this function.
<var>rnd</var> and <var>t</var> must be the used rounding mode for computing <var>x</var>
and the returned ternary value when computing <var>x</var>.
The subnormal exponent range is from <code>emin</code> to <code>emin+PREC(x)-1</code>.
If the result cannot be represented in the current exponent range
(due to a too small <code>emax</code>), the behavior is undefined.
Note that unlike most functions, the result is compared to the exact one,
not the input value <var>x</var>, i.e. the ternary value is propagated.
This is a preliminary interface.
</p></blockquote></div>
<p>This is an example of how to emulate double IEEE-754 arithmetic
using MPFR:
<pre class="example"> {
mpfr_t xa, xb;
int i;
volatile double a, b;
mpfr_set_default_prec (53);
mpfr_set_emin (-1073);
mpfr_set_emax (1024);
mpfr_init (xa); mpfr_init (xb);
b = 34.3; mpfr_set_d (xb, b, GMP_RNDN);
a = 0x1.1235P-1021; mpfr_set_d (xa, a, GMP_RNDN);
a /= b;
i = mpfr_div (xa, xa, xb, GMP_RNDN);
i = mpfr_subnormalize (xa, i, GMP_RNDN);
mpfr_clear (xa); mpfr_clear (xb);
}
</pre>
<p>Warning: this emulates a double IEEE-754 arithmetic with correct rounding
in the subnormal range, which may not be the case for your hardware.
<div class="defun">
&mdash; Function: void <b>mpfr_clear_underflow</b> (<var>void</var>)<var><a name="index-mpfr_005fclear_005funderflow-267"></a></var><br>
&mdash; Function: void <b>mpfr_clear_overflow</b> (<var>void</var>)<var><a name="index-mpfr_005fclear_005foverflow-268"></a></var><br>
&mdash; Function: void <b>mpfr_clear_nanflag</b> (<var>void</var>)<var><a name="index-mpfr_005fclear_005fnanflag-269"></a></var><br>
&mdash; Function: void <b>mpfr_clear_inexflag</b> (<var>void</var>)<var><a name="index-mpfr_005fclear_005finexflag-270"></a></var><br>
&mdash; Function: void <b>mpfr_clear_erangeflag</b> (<var>void</var>)<var><a name="index-mpfr_005fclear_005ferangeflag-271"></a></var><br>
<blockquote><p>Clear the underflow, overflow, invalid, inexact and erange flags.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_set_underflow</b> (<var>void</var>)<var><a name="index-mpfr_005fset_005funderflow-272"></a></var><br>
&mdash; Function: void <b>mpfr_set_overflow</b> (<var>void</var>)<var><a name="index-mpfr_005fset_005foverflow-273"></a></var><br>
&mdash; Function: void <b>mpfr_set_nanflag</b> (<var>void</var>)<var><a name="index-mpfr_005fset_005fnanflag-274"></a></var><br>
&mdash; Function: void <b>mpfr_set_inexflag</b> (<var>void</var>)<var><a name="index-mpfr_005fset_005finexflag-275"></a></var><br>
&mdash; Function: void <b>mpfr_set_erangeflag</b> (<var>void</var>)<var><a name="index-mpfr_005fset_005ferangeflag-276"></a></var><br>
<blockquote><p>Set the underflow, overflow, invalid, inexact and erange flags.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_clear_flags</b> (<var>void</var>)<var><a name="index-mpfr_005fclear_005fflags-277"></a></var><br>
<blockquote><p>Clear all global flags (underflow, overflow, inexact, invalid, erange).
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_underflow_p</b> (<var>void</var>)<var><a name="index-mpfr_005funderflow_005fp-278"></a></var><br>
&mdash; Function: int <b>mpfr_overflow_p</b> (<var>void</var>)<var><a name="index-mpfr_005foverflow_005fp-279"></a></var><br>
&mdash; Function: int <b>mpfr_nanflag_p</b> (<var>void</var>)<var><a name="index-mpfr_005fnanflag_005fp-280"></a></var><br>
&mdash; Function: int <b>mpfr_inexflag_p</b> (<var>void</var>)<var><a name="index-mpfr_005finexflag_005fp-281"></a></var><br>
&mdash; Function: int <b>mpfr_erangeflag_p</b> (<var>void</var>)<var><a name="index-mpfr_005ferangeflag_005fp-282"></a></var><br>
<blockquote><p>Return the corresponding (underflow, overflow, invalid, inexact, erange)
flag, which is non-zero iff the flag is set.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Advanced-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Compatibility-with-MPF">Compatibility with MPF</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Exception-Related-Functions">Exception Related Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<!-- node-name, next, previous, up -->
<p><a name="index-Advanced-functions-283"></a>
<h3 class="section">5.13 Advanced Functions</h3>
<p>All the given interfaces are preliminary. They might change incompatibly in
future revisions.
<div class="defun">
&mdash; Macro: <b>MPFR_DECL_INIT</b> (<var>name, prec</var>)<var><a name="index-MPFR_005fDECL_005fINIT-284"></a></var><br>
<blockquote><p>This macro declares <var>name</var> as an automatic variable of type <code>mpfr_t</code>,
initializes it and sets its precision to be <strong>exactly</strong> <var>prec</var> bits
and its value to NaN. <var>name</var> must be a valid identifier.
You must use this macro in the declaration section.
This macro is much faster than using <code>mpfr_init2</code> but has some
drawbacks:
<ul>
<li>You <strong>must not</strong> call <code>mpfr_clear</code> with variables
created with this macro (The storage is allocated at the point of declaration
and deallocated when the brace-level is exited.).
<li>You <strong>can not</strong> change their precision.
<li>You <strong>should not</strong> create variables with huge precision with this macro.
<li>Your compiler must support &lsquo;<samp><span class="samp">Non-Constant Initializers</span></samp>&rsquo; (standard
in C++ and ISO C99) and &lsquo;<samp><span class="samp">Token Pasting</span></samp>&rsquo;
(standard in ISO C89). If <var>prec</var> is not a compiler constant, your compiler
must support &lsquo;<samp><span class="samp">Variable-length automatic arrays</span></samp>&rsquo; (standard in ISO C99).
&lsquo;<samp><span class="samp">GCC 2.95.3</span></samp>&rsquo; supports all these features. If you compile your program
with gcc in c89 mode and with &lsquo;<samp><span class="samp">-pedantic</span></samp>&rsquo;, you may want to define the
<code>MPFR_USE_EXTENSION</code> macro to avoid warnings due to the
<code>MPFR_DECL_INIT</code> implementation.
</ul>
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_inits</b> (<var>mpfr_t x, ...</var>)<var><a name="index-mpfr_005finits-285"></a></var><br>
<blockquote><p>Initialize all the <code>mpfr_t</code> variables of the given <code>va_list</code>,
set their precision to be the default precision and their value to NaN.
See <code>mpfr_init</code> for more details.
The <code>va_list</code> is assumed to be composed only of type <code>mpfr_t</code>
(or equivalently <code>mpfr_ptr</code>).
It begins from <var>x</var>. It ends when it encounters a null pointer (whose
type must also be <code>mpfr_ptr</code>).
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_inits2</b> (<var>mp_prec_t prec, mpfr_t x, ...</var>)<var><a name="index-mpfr_005finits2-286"></a></var><br>
<blockquote><p>Initialize all the <code>mpfr_t</code> variables of the given <code>va_list</code>,
set their precision to be <strong>exactly</strong>
<var>prec</var> bits and their value to NaN.
See <code>mpfr_init2</code> for more details.
The <code>va_list</code> is assumed to be composed only of type <code>mpfr_t</code>
(or equivalently <code>mpfr_ptr</code>).
It begins from <var>x</var>. It ends when it encounters a null pointer (whose
type must also be <code>mpfr_ptr</code>).
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_clears</b> (<var>mpfr_t x, ...</var>)<var><a name="index-mpfr_005fclears-287"></a></var><br>
<blockquote><p>Free the space occupied by all the <code>mpfr_t</code> variables of the given
<code>va_list</code>. See <code>mpfr_clear</code> for more details.
The <code>va_list</code> is assumed to be composed only of type <code>mpfr_t</code>
(or equivalently <code>mpfr_ptr</code>).
It begins from <var>x</var>. It ends when it encounters a null pointer (whose
type must also be <code>mpfr_ptr</code>).
</p></blockquote></div>
<p>Here is an example of how to use multiple initialization functions:
<pre class="example"> {
mpfr_t x, y, z, t;
mpfr_inits2 (256, x, y, z, t, (mpfr_ptr) 0);
...
mpfr_clears (x, y, z, t, (mpfr_ptr) 0);
}
</pre>
<div class="node">
<p><hr>
<a name="Compatibility-with-MPF"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Custom-Interface">Custom Interface</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Advanced-Functions">Advanced Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<p><a name="index-Compatibility-with-MPF-288"></a>
<h3 class="section">5.14 Compatibility With MPF</h3>
<p>A header file <samp><span class="file">mpf2mpfr.h</span></samp> is included in the distribution of MPFR for
compatibility with the GNU MP class MPF.
After inserting the following two lines after the <code>#include &lt;gmp.h&gt;</code>
line,
<pre class="verbatim">
#include &lt;mpfr.h>
#include &lt;mpf2mpfr.h>
</pre>
any program written for
MPF can be compiled directly with MPFR without any changes.
All operations are then performed with the default MPFR rounding mode,
which can be reset with <code>mpfr_set_default_rounding_mode</code>.
<p>Warning: the <code>mpf_init</code> and <code>mpf_init2</code> functions initialize
to zero, whereas the corresponding MPFR functions initialize to NaN:
this is useful to detect uninitialized values, but is slightly incompatible
with <code>mpf</code>.
<div class="defun">
&mdash; Function: void <b>mpfr_set_prec_raw</b> (<var>mpfr_t x, mp_prec_t prec</var>)<var><a name="index-mpfr_005fset_005fprec_005fraw-289"></a></var><br>
<blockquote><p>Reset the precision of <var>x</var> to be <strong>exactly</strong> <var>prec</var> bits.
The only difference with <code>mpfr_set_prec</code> is that <var>prec</var> is assumed to
be small enough so that the significand fits into the current allocated memory
space for <var>x</var>. Otherwise the behavior is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_eq</b> (<var>mpfr_t op1, mpfr_t op2, unsigned long int op3</var>)<var><a name="index-mpfr_005feq-290"></a></var><br>
<blockquote><p>Return non-zero if <var>op1</var> and <var>op2</var> are both non-zero ordinary
numbers with the same exponent and the same first <var>op3</var> bits, both
zero, or both infinities of the same sign. Return zero otherwise. This
function is defined for compatibility with <code>mpf</code>. Do not use it if
you want to know whether two numbers are close to each other; for instance,
1.011111 and 1.100000 are regarded as different for any value of <var>op3</var>
larger than 1.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_reldiff</b> (<var>mpfr_t rop, mpfr_t op1, mpfr_t op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005freldiff-291"></a></var><br>
<blockquote><p>Compute the relative difference between <var>op1</var> and <var>op2</var>
and store the result in <var>rop</var>.
This function does not guarantee the correct rounding on the relative
difference; it just computes |<var>op1</var>-<var>op2</var>|/<var>op1</var>, using the
rounding mode <var>rnd</var> for all operations and the precision of <var>rop</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_mul_2exp</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fmul_005f2exp-292"></a></var><br>
&mdash; Function: int <b>mpfr_div_2exp</b> (<var>mpfr_t rop, mpfr_t op1, unsigned long int op2, mp_rnd_t rnd</var>)<var><a name="index-mpfr_005fdiv_005f2exp-293"></a></var><br>
<blockquote><p>See <code>mpfr_mul_2ui</code> and <code>mpfr_div_2ui</code>. These functions are only kept
for compatibility with MPF.
</p></blockquote></div>
<div class="node">
<p><hr>
<a name="Custom-Interface"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Internals">Internals</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Compatibility-with-MPF">Compatibility with MPF</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<p><a name="index-Custom-interface-294"></a>
<h3 class="section">5.15 Custom Interface</h3>
<p>Some applications use a stack to handle the memory and their objects.
However, the MPFR memory design is not well suited for such a thing. So that
such applications are able to use MPFR, an auxiliary memory interface has
been created: the Custom Interface.
<p>The following interface allows them to use MPFR in two ways:
<ul>
<li>Either they directly store the MPFR FP number as a <code>mpfr_t</code>
on the stack.
<li>Either they store their own representation of a FP number on the
stack and construct a new temporary <code>mpfr_t</code> each time it is needed.
</ul>
Nothing has to be done to destroy the FP numbers except garbaging the used
memory: all the memory stuff (allocating, destroying, garbaging) is kept to
the application.
<p>Each function in this interface is also implemented as a macro for
efficiency reasons: for example <code>mpfr_custom_init (s, p)</code>
uses the macro, while <code>(mpfr_custom_init) (s, p)</code> uses the function.
<p>Note 1: MPFR functions may still initialize temporary FP numbers
using standard mpfr_init. See Custom Allocation (GNU MP).
<p>Note 2: MPFR functions may use the cached functions (mpfr_const_pi for
example), even if they are not explicitly called. You have to call
<code>mpfr_free_cache</code> each time you garbage the memory iff mpfr_init, through
GMP Custom Allocation, allocates its memory on the application stack.
<p>Note 3: This interface is preliminary.
<div class="defun">
&mdash; Function: size_t <b>mpfr_custom_get_size</b> (<var>mp_prec_t prec</var>)<var><a name="index-mpfr_005fcustom_005fget_005fsize-295"></a></var><br>
<blockquote><p>Return the needed size in bytes to store the significand of a FP number
of precision <var>prec</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_custom_init</b> (<var>void *significand, mp_prec_t prec</var>)<var><a name="index-mpfr_005fcustom_005finit-296"></a></var><br>
<blockquote><p>Initialize a significand of precision <var>prec</var>.
<var>significand</var> must be an area of <code>mpfr_custom_get_size (prec)</code> bytes
at least and be suitably aligned for an array of <code>mp_limb_t</code>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_custom_init_set</b> (<var>mpfr_t x, int kind, mp_exp_t exp, mp_prec_t prec, void *significand</var>)<var><a name="index-mpfr_005fcustom_005finit_005fset-297"></a></var><br>
<blockquote><p>Perform a dummy initialization of a <code>mpfr_t</code> and set it to:
<ul>
<li>if <code>ABS(kind) == MPFR_NAN_KIND</code>, <var>x</var> is set to NaN;
<li>if <code>ABS(kind) == MPFR_INF_KIND</code>, <var>x</var> is set to the infinity
of sign <code>sign(kind)</code>;
<li>if <code>ABS(kind) == MPFR_ZERO_KIND</code>, <var>x</var> is set to the zero of
sign <code>sign(kind)</code>;
<li>if <code>ABS(kind) == MPFR_REGULAR_KIND</code>, <var>x</var> is set to a regular
number: <code>x = sign(kind)*significand*2^exp</code>
</ul>
In all cases, it uses <var>significand</var> directly for further computing
involving <var>x</var>. It will not allocate anything.
A FP number initialized with this function cannot be resized using
<code>mpfr_set_prec</code>, or cleared using <code>mpfr_clear</code>!
<var>significand</var> must have been initialized with <code>mpfr_custom_init</code>
using the same precision <var>prec</var>.
</p></blockquote></div>
<div class="defun">
&mdash; Function: int <b>mpfr_custom_get_kind</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fcustom_005fget_005fkind-298"></a></var><br>
<blockquote><p>Return the current kind of a <code>mpfr_t</code> as used by
<code>mpfr_custom_init_set</code>.
The behavior of this function for any <code>mpfr_t</code> not initialized
with <code>mpfr_custom_init_set</code> is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void * <b>mpfr_custom_get_mantissa</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fcustom_005fget_005fmantissa-299"></a></var><br>
<blockquote><p>Return a pointer to the significand used by a <code>mpfr_t</code> initialized with
<code>mpfr_custom_init_set</code>.
The behavior of this function for any <code>mpfr_t</code> not initialized
with <code>mpfr_custom_init_set</code> is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: mp_exp_t <b>mpfr_custom_get_exp</b> (<var>mpfr_t x</var>)<var><a name="index-mpfr_005fcustom_005fget_005fexp-300"></a></var><br>
<blockquote><p>Return the exponent of <var>x</var>, assuming that <var>x</var> is a non-zero ordinary
number. The return value for NaN, Infinity or Zero is unspecified but doesn't
produce any trap.
The behavior of this function for any <code>mpfr_t</code> not initialized
with <code>mpfr_custom_init_set</code> is undefined.
</p></blockquote></div>
<div class="defun">
&mdash; Function: void <b>mpfr_custom_move</b> (<var>mpfr_t x, void *new_position</var>)<var><a name="index-mpfr_005fcustom_005fmove-301"></a></var><br>
<blockquote><p>Inform MPFR that the significand has moved due to a garbage collect
and update its new position to <code>new_position</code>.
However the application has to move the significand and the <code>mpfr_t</code>
itself.
The behavior of this function for any <code>mpfr_t</code> not initialized
with <code>mpfr_custom_init_set</code> is undefined.
</p></blockquote></div>
<p>See the test suite for examples.
<div class="node">
<p><hr>
<a name="Internals"></a>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Custom-Interface">Custom Interface</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MPFR-Interface">MPFR Interface</a>
</div>
<p><a name="index-Internals-302"></a>
<h3 class="section">5.16 Internals</h3>
<p>The following types and
functions were mainly designed for the implementation of MPFR,
but may be useful for users too.
However no upward compatibility is guaranteed.
You may need to include <samp><span class="file">mpfr-impl.h</span></samp> to use them.
<p>The <code>mpfr_t</code> type consists of four fields.
<ul>
<li>The <code>_mpfr_prec</code> field is used to store the precision of
the variable (in bits); this is not less than <code>MPFR_PREC_MIN</code>.
<li>The <code>_mpfr_sign</code> field is used to store the sign of the variable.
<li>The <code>_mpfr_exp</code> field stores the exponent.
An exponent of 0 means a radix point just above the most significant
limb. Non-zero values n are a multiplier 2^n relative to that
point.
A NaN, an infinity and a zero are indicated by a special value of the exponent.
<li>Finally, the <code>_mpfr_d</code> is a pointer to the limbs, least
significant limbs stored first.
The number of limbs in use is controlled by <code>_mpfr_prec</code>, namely
ceil(<code>_mpfr_prec</code>/<code>mp_bits_per_limb</code>).
Non-singular values always have the most significant bit of the most
significant limb set to 1. When the precision does not correspond to a
whole number of limbs, the excess bits at the low end of the data are zero.
</ul>
<!-- @deftypefun int mpfr_add_one_ulp (mpfr_t @var{x}, mp_rnd_t @var{rnd}) -->
<!-- Add one unit in last place (ulp) to @var{x} if @var{x} is finite -->
<!-- and positive, subtract one ulp if @var{x} is finite and negative; -->
<!-- otherwise, @var{x} is not changed. -->
<!-- The return value is zero unless an overflow occurs, in which case the -->
<!-- @code{mpfr_add_one_ulp} function behaves like a conventional addition. -->
<!-- @end deftypefun -->
<!-- @deftypefun int mpfr_sub_one_ulp (mpfr_t @var{x}, mp_rnd_t @var{rnd}) -->
<!-- Subtract one ulp to @var{x} if @var{x} is finite and positive, add one -->
<!-- ulp if @var{x} is finite and negative; otherwise, @var{x} is not changed. -->
<!-- The return value is zero unless an underflow occurs, in which case the -->
<!-- @code{mpfr_sub_one_ulp} function behaves like a conventional subtraction. -->
<!-- @end deftypefun -->
<div class="defun">
&mdash; Function: int <b>mpfr_can_round</b> (<var>mpfr_t b, mp_exp_t err, mp_rnd_t rnd1, mp_rnd_t rnd2, mp_prec_t prec</var>)<var><a name="index-mpfr_005fcan_005fround-303"></a></var><br>
<blockquote><p>Assuming <var>b</var> is an approximation of an unknown number
<var>x</var> in the direction <var>rnd1</var> with error at most two to the power
E(b)-<var>err</var> where E(b) is the exponent of <var>b</var>, return a non-zero
value if one is able to round correctly <var>x</var> to precision
<var>prec</var> with the direction <var>rnd2</var>,
and 0 otherwise (including for NaN and Inf).
This function <strong>does not modify</strong> its arguments.
<p>Note: if one wants to also determine the correct ternary value when rounding
<var>b</var> to precision <var>prec</var>, a useful trick is the following:
<pre class="verbatim">
if (mpfr_can_round (b, err, rnd1, GMP_RNDZ, prec + (rnd2 == GMP_RNDN)))
...
</pre>
Indeed, if <var>rnd2</var> is <code>GMP_RNDN</code>, this will check if one can
round to <var>prec</var>+1 bits with a directed rounding:
if so, one can surely round to nearest to <var>prec</var> bits,
and in addition one can determine the correct ternary value, which would not
be the case when <var>b</var> is near from a value exactly representable on
<var>prec</var> bits.
</p></blockquote></div>
<div class="defun">
&mdash; Function: double <b>mpfr_get_d1</b> (<var>mpfr_t op</var>)<var><a name="index-mpfr_005fget_005fd1-304"></a></var><br>
<blockquote><p>Convert <var>op</var> to a <code>double</code>, using the default MPFR rounding mode
(see function <code>mpfr_set_default_rounding_mode</code>). This function is
obsolete.
</p></blockquote></div>
<!-- @deftypefun void mpfr_set_str_binary (mpfr_t @var{x}, const char *@var{s}) -->
<!-- Set @var{x} to the value of the binary number in string @var{s}, which has to -->
<!-- be of the -->
<!-- form +/-xxxx.xxxxxxEyy. The exponent is read in decimal, but is interpreted -->
<!-- as the power of two to be multiplied by the significand. -->
<!-- The significand length of @var{s} has to be less or equal to the precision -->
<!-- of @var{x}, otherwise an error occurs. -->
<!-- If @var{s} starts with @code{N}, it is interpreted as NaN (Not-a-Number); -->
<!-- if it starts with @code{I} after the sign, it is interpreted as infinity, -->
<!-- with the corresponding sign. -->
<!-- @end deftypefun -->
<!-- @deftypefun void mpfr_print_binary (mpfr_t @var{float}) -->
<!-- Output @var{float} on stdout -->
<!-- in raw binary format (the exponent is written in decimal, yet). -->
<!-- @end deftypefun -->
<div class="node">
<p><hr>
<a name="Contributors"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#References">References</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MPFR-Interface">MPFR Interface</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="unnumbered">Contributors</h2>
<p>The main developers of MPFR are Guillaume Hanrot, Vincent Lef&egrave;vre,
Patrick P&eacute;lissier, Philippe Th&eacute;veny and Paul Zimmermann.
<p>Sylvie Boldo from ENS-Lyon, France,
contributed the functions <code>mpfr_agm</code> and <code>mpfr_log</code>.
Emmanuel Jeandel, from ENS-Lyon too,
contributed the generic hypergeometric code in
<code>generic.c</code>, as well as the <code>mpfr_exp3</code>,
a first implementation of the sine and cosine,
and improved versions of
<code>mpfr_const_log2</code> and <code>mpfr_const_pi</code>.
Mathieu Dutour contributed the functions <code>mpfr_atan</code> and <code>mpfr_asin</code>,
and a previous version of <code>mpfr_gamma</code>;
David Daney contributed the hyperbolic and inverse hyperbolic functions,
the base-2 exponential, and the factorial function. Fabrice Rouillier
contributed the original version of <samp><span class="file">mul_ui.c</span></samp>, the <samp><span class="file">gmp_op.c</span></samp>
file, and helped to the Microsoft Windows porting.
Jean-Luc R&eacute;my contributed the <code>mpfr_zeta</code> code.
Ludovic Meunier helped in the design of the <code>mpfr_erf</code> code.
Damien Stehl&eacute; contributed the <code>mpfr_get_ld_2exp</code> function.
<p>We would like to thank Jean-Michel Muller and Joris van der Hoeven for very
fruitful discussions at the beginning of that project, Torbj&ouml;rn Granlund
and Kevin Ryde for their help about design issues,
and Nathalie Revol for her careful reading of a previous version of
this documentation.
Kevin Ryde did a tremendous job for the portability of MPFR in 2002-2004.
<p>The development of the MPFR library would not have been possible without
the continuous support of INRIA, and of the LORIA (Nancy, France) and LIP
(Lyon, France) laboratories. In particular the main authors were or are
members of the PolKA, Spaces, Cacao project-teams at LORIA and of the
Arenaire project-team at LIP.
This project was started during the Fiable (reliable in French) action
supported by INRIA, and continued during the AOC action.
The development of MPFR was also supported by a grant
(202F0659 00 MPN 121) from the Conseil R&eacute;gional de Lorraine in 2002,
and from INRIA by an "associate engineer" grant (2003-2005)
and an "op&eacute;ration de d&eacute;veloppement logiciel" grant (2007-2009).
<div class="node">
<p><hr>
<a name="References"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Contributors">Contributors</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="unnumbered">References</h2>
<ul>
<li>Laurent Fousse, Guillaume Hanrot, Vincent Lef&egrave;vre,
Patrick P&eacute;lissier and Paul Zimmermann,
"MPFR: A Multiple-Precision Binary Floating-Point Library With Correct Rounding",
ACM Transactions on Mathematical Software,
volume 33, issue 2, article 13, 15 pages, 2007,
<a href="http://doi.acm.org/10.1145/1236463.1236468">http://doi.acm.org/10.1145/1236463.1236468</a>.
<li>Torbj&ouml;rn Granlund, "GNU MP: The GNU Multiple Precision Arithmetic Library",
version 4.2.2, 2007, <a href="http://gmplib.org">http://gmplib.org</a>.
<li>IEEE standard for binary floating-point arithmetic, Technical Report
ANSI-IEEE Standard 754-1985, New York, 1985.
Approved March 21, 1985: IEEE Standards Board; approved July 26,
1985: American National Standards Institute, 18 pages.
<li>Donald E. Knuth, "The Art of Computer Programming", vol 2,
"Seminumerical Algorithms", 2nd edition, Addison-Wesley, 1981.
<li>Jean-Michel Muller, "Elementary Functions, Algorithms and Implementation",
Birkhauser, Boston, 2nd edition, 2006.
</ul>
<div class="node">
<p><hr>
<a name="GNU-Free-Documentation-License"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Concept-Index">Concept Index</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#References">References</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="appendix">Appendix A GNU Free Documentation License</h2>
<p><a name="index-GNU-Free-Documentation-License-305"></a>
<!-- MPFR tweak: Have this in mpfr.texi to help texinfo-mode -->
<!-- @node GNU Free Documentation License -->
<!-- @appendixsec GNU Free Documentation License -->
<p><a name="index-FDL_002c-GNU-Free-Documentation-License-306"></a><div align="center">Version 1.2, November 2002</div>
<pre class="display"> Copyright &copy; 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</pre>
<ol type=1 start=0>
<li>PREAMBLE
<p>The purpose of this License is to make a manual, textbook, or other
functional and useful document <dfn>free</dfn> in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
<p>This License is a kind of &ldquo;copyleft&rdquo;, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
<p>We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
<li>APPLICABILITY AND DEFINITIONS
<p>This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The &ldquo;Document&rdquo;, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as &ldquo;you&rdquo;. You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
<p>A &ldquo;Modified Version&rdquo; of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
<p>A &ldquo;Secondary Section&rdquo; is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
<p>The &ldquo;Invariant Sections&rdquo; are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
<p>The &ldquo;Cover Texts&rdquo; are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
<p>A &ldquo;Transparent&rdquo; copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not &ldquo;Transparent&rdquo; is called &ldquo;Opaque&rdquo;.
<p>Examples of suitable formats for Transparent copies include plain
<span class="sc">ascii</span> without markup, Texinfo input format, LaTeX input
format, <acronym>SGML</acronym> or <acronym>XML</acronym> using a publicly available
<acronym>DTD</acronym>, and standard-conforming simple <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> designed for human modification. Examples
of transparent image formats include <acronym>PNG</acronym>, <acronym>XCF</acronym> and
<acronym>JPG</acronym>. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, <acronym>SGML</acronym> or
<acronym>XML</acronym> for which the <acronym>DTD</acronym> and/or processing tools are
not generally available, and the machine-generated <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> produced by some word processors for
output purposes only.
<p>The &ldquo;Title Page&rdquo; means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, &ldquo;Title Page&rdquo; means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.
<p>A section &ldquo;Entitled XYZ&rdquo; means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as &ldquo;Acknowledgements&rdquo;,
&ldquo;Dedications&rdquo;, &ldquo;Endorsements&rdquo;, or &ldquo;History&rdquo;.) To &ldquo;Preserve the Title&rdquo;
of such a section when you modify the Document means that it remains a
section &ldquo;Entitled XYZ&rdquo; according to this definition.
<p>The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
<li>VERBATIM COPYING
<p>You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
<p>You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
<li>COPYING IN QUANTITY
<p>If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
<p>If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
<p>If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
<p>It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
<li>MODIFICATIONS
<p>You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
<ol type=A start=1>
<li>Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.
<li>List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.
<li>State on the Title page the name of the publisher of the
Modified Version, as the publisher.
<li>Preserve all the copyright notices of the Document.
<li>Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
<li>Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.
<li>Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.
<li>Include an unaltered copy of this License.
<li>Preserve the section Entitled &ldquo;History&rdquo;, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled &ldquo;History&rdquo; in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
<li>Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the &ldquo;History&rdquo; section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
<li>For any section Entitled &ldquo;Acknowledgements&rdquo; or &ldquo;Dedications&rdquo;, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.
<li>Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
<li>Delete any section Entitled &ldquo;Endorsements&rdquo;. Such a section
may not be included in the Modified Version.
<li>Do not retitle any existing section to be Entitled &ldquo;Endorsements&rdquo; or
to conflict in title with any Invariant Section.
<li>Preserve any Warranty Disclaimers.
</ol>
<p>If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
<p>You may add a section Entitled &ldquo;Endorsements&rdquo;, provided it contains
nothing but endorsements of your Modified Version by various
parties&mdash;for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
<p>You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
<p>The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
<li>COMBINING DOCUMENTS
<p>You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
<p>The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
<p>In the combination, you must combine any sections Entitled &ldquo;History&rdquo;
in the various original documents, forming one section Entitled
&ldquo;History&rdquo;; likewise combine any sections Entitled &ldquo;Acknowledgements&rdquo;,
and any sections Entitled &ldquo;Dedications&rdquo;. You must delete all
sections Entitled &ldquo;Endorsements.&rdquo;
<li>COLLECTIONS OF DOCUMENTS
<p>You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
<p>You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.
<li>AGGREGATION WITH INDEPENDENT WORKS
<p>A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an &ldquo;aggregate&rdquo; if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
<p>If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
<li>TRANSLATION
<p>Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
<p>If a section in the Document is Entitled &ldquo;Acknowledgements&rdquo;,
&ldquo;Dedications&rdquo;, or &ldquo;History&rdquo;, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
<li>TERMINATION
<p>You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.
<li>FUTURE REVISIONS OF THIS LICENSE
<p>The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
<a href="http://www.gnu.org/copyleft/">http://www.gnu.org/copyleft/</a>.
<p>Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License &ldquo;or any later version&rdquo; applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.
</ol>
<!-- MPFR tweak: Use @appendixsec -->
<!-- @appendixsubsec ADDENDUM: How to use this License for your documents -->
<h3 class="appendixsec">A.1 ADDENDUM: How to use this License for your documents</h3>
<p>To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:
<pre class="smallexample"> Copyright (C) <var>year</var> <var>your name</var>.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
</pre>
<p>If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the &ldquo;with...Texts.&rdquo; line with this:
<pre class="smallexample"> with the Invariant Sections being <var>list their titles</var>, with
the Front-Cover Texts being <var>list</var>, and with the Back-Cover Texts
being <var>list</var>.
</pre>
<p>If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
<p>If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.
<!-- Local Variables: -->
<!-- ispell-local-pdict: "ispell-dict" -->
<!-- End: -->
<div class="node">
<p><hr>
<a name="Concept-Index"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="#Function-Index">Function Index</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="unnumbered">Concept Index</h2>
<ul class="index-cp" compact>
<li><a href="#index-Accuracy-21">Accuracy</a>: <a href="#MPFR-Interface">MPFR Interface</a></li>
<li><a href="#index-Advanced-functions-283">Advanced functions</a>: <a href="#Advanced-Functions">Advanced Functions</a></li>
<li><a href="#index-Arithmetic-functions-86">Arithmetic functions</a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-Assignment-functions-30">Assignment functions</a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-Basic-arithmetic-functions-84">Basic arithmetic functions</a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-Combined-initialization-and-assignment-functions-51">Combined initialization and assignment functions</a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-Comparison-functions-130">Comparison functions</a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-Compatibility-with-MPF-288">Compatibility with MPF</a>: <a href="#Compatibility-with-MPF">Compatibility with MPF</a></li>
<li><a href="#index-Conditions-for-copying-MPFR-2">Conditions for copying MPFR</a>: <a href="#Copying">Copying</a></li>
<li><a href="#index-Conversion-functions-61">Conversion functions</a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-Copying-conditions-1">Copying conditions</a>: <a href="#Copying">Copying</a></li>
<li><a href="#index-Custom-interface-294">Custom interface</a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-Exception-related-functions-256">Exception related functions</a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-FDL_002c-GNU-Free-Documentation-License-306">FDL, GNU Free Documentation License</a>: <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#index-Float-arithmetic-functions-85">Float arithmetic functions</a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-Float-comparisons-functions-129">Float comparisons functions</a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-Float-functions-19">Float functions</a>: <a href="#MPFR-Interface">MPFR Interface</a></li>
<li><a href="#index-Float-input-and-output-functions-208">Float input and output functions</a>: <a href="#Input-and-Output-Functions">Input and Output Functions</a></li>
<li><a href="#index-Floating_002dpoint-functions-18">Floating-point functions</a>: <a href="#MPFR-Interface">MPFR Interface</a></li>
<li><a href="#index-Floating_002dpoint-number-11">Floating-point number</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-GNU-Free-Documentation-License-305">GNU Free Documentation License</a>: <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#index-I_002fO-functions-211">I/O functions</a>: <a href="#Input-and-Output-Functions">Input and Output Functions</a></li>
<li><a href="#index-Initialization-functions-22">Initialization functions</a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-Input-functions-209">Input functions</a>: <a href="#Input-and-Output-Functions">Input and Output Functions</a></li>
<li><a href="#index-Installation-3">Installation</a>: <a href="#Installing-MPFR">Installing MPFR</a></li>
<li><a href="#index-Integer-related-functions-214">Integer related functions</a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-Internals-302">Internals</a>: <a href="#Internals">Internals</a></li>
<li><a href="#index-g_t_0040code_007blibmpfr_007d-9"><code>libmpfr</code></a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Libraries-7">Libraries</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Libtool-10">Libtool</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Limb-17">Limb</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Linking-8">Linking</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Miscellaneous-float-functions-228">Miscellaneous float functions</a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-g_t_0040file_007bmpfr_002eh_007d-5"><samp><span class="file">mpfr.h</span></samp></a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Output-functions-210">Output functions</a>: <a href="#Input-and-Output-Functions">Input and Output Functions</a></li>
<li><a href="#index-Precision-20">Precision</a>: <a href="#MPFR-Interface">MPFR Interface</a></li>
<li><a href="#index-Precision-13">Precision</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Reporting-bugs-4">Reporting bugs</a>: <a href="#Reporting-Bugs">Reporting Bugs</a></li>
<li><a href="#index-Rounding-mode-related-functions-250">Rounding mode related functions</a>: <a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a></li>
<li><a href="#index-Rounding-Modes-15">Rounding Modes</a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-Special-functions-154">Special functions</a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-g_t_0040code_007bstdio_002eh_007d-6"><code>stdio.h</code></a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
</ul><div class="node">
<p><hr>
<a name="Function-Index"></a>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Concept-Index">Concept Index</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="unnumbered">Function and Type Index</h2>
<ul class="index-fn" compact>
<li><a href="#index-g_t_0040code_007bmp_005fprec_005ft_007d-14"><code>mp_prec_t</code></a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-g_t_0040code_007bmp_005frnd_005ft_007d-16"><code>mp_rnd_t</code></a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-mpfr_005fabs-123"><code>mpfr_abs</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005facos-168"><code>mpfr_acos</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005facosh-178"><code>mpfr_acosh</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fadd-87"><code>mpfr_add</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fadd_005fq-91"><code>mpfr_add_q</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fadd_005fsi-89"><code>mpfr_add_si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fadd_005fui-88"><code>mpfr_add_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fadd_005fz-90"><code>mpfr_add_z</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fagm-200"><code>mpfr_agm</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fasin-169"><code>mpfr_asin</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fasinh-179"><code>mpfr_asinh</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fatan-170"><code>mpfr_atan</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fatan2-171"><code>mpfr_atan2</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fatanh-180"><code>mpfr_atanh</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcan_005fround-303"><code>mpfr_can_round</code></a>: <a href="#Internals">Internals</a></li>
<li><a href="#index-mpfr_005fcbrt-114"><code>mpfr_cbrt</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fceil-216"><code>mpfr_ceil</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005fcheck_005frange-265"><code>mpfr_check_range</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclear-24"><code>mpfr_clear</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005fclear_005ferangeflag-271"><code>mpfr_clear_erangeflag</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclear_005fflags-277"><code>mpfr_clear_flags</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclear_005finexflag-270"><code>mpfr_clear_inexflag</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclear_005fnanflag-269"><code>mpfr_clear_nanflag</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclear_005foverflow-268"><code>mpfr_clear_overflow</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclear_005funderflow-267"><code>mpfr_clear_underflow</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fclears-287"><code>mpfr_clears</code></a>: <a href="#Advanced-Functions">Advanced Functions</a></li>
<li><a href="#index-mpfr_005fcmp-131"><code>mpfr_cmp</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fd-134"><code>mpfr_cmp_d</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005ff-138"><code>mpfr_cmp_f</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fld-135"><code>mpfr_cmp_ld</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fq-137"><code>mpfr_cmp_q</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fsi-133"><code>mpfr_cmp_si</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fsi_005f2exp-140"><code>mpfr_cmp_si_2exp</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fui-132"><code>mpfr_cmp_ui</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fui_005f2exp-139"><code>mpfr_cmp_ui_2exp</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmp_005fz-136"><code>mpfr_cmp_z</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fcmpabs-141"><code>mpfr_cmpabs</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fconst_005fcatalan-205"><code>mpfr_const_catalan</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fconst_005feuler-204"><code>mpfr_const_euler</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fconst_005flog2-202"><code>mpfr_const_log2</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fconst_005fpi-203"><code>mpfr_const_pi</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcopysign-241"><code>mpfr_copysign</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fcos-161"><code>mpfr_cos</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcosh-172"><code>mpfr_cosh</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcot-166"><code>mpfr_cot</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcoth-177"><code>mpfr_coth</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcsc-165"><code>mpfr_csc</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcsch-176"><code>mpfr_csch</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fcustom_005fget_005fexp-300"><code>mpfr_custom_get_exp</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-mpfr_005fcustom_005fget_005fkind-298"><code>mpfr_custom_get_kind</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-mpfr_005fcustom_005fget_005fmantissa-299"><code>mpfr_custom_get_mantissa</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-mpfr_005fcustom_005fget_005fsize-295"><code>mpfr_custom_get_size</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-mpfr_005fcustom_005finit-296"><code>mpfr_custom_init</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-mpfr_005fcustom_005finit_005fset-297"><code>mpfr_custom_init_set</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-mpfr_005fcustom_005fmove-301"><code>mpfr_custom_move</code></a>: <a href="#Custom-Interface">Custom Interface</a></li>
<li><a href="#index-MPFR_005fDECL_005fINIT-284"><code>MPFR_DECL_INIT</code></a>: <a href="#Advanced-Functions">Advanced Functions</a></li>
<li><a href="#index-mpfr_005fdim-124"><code>mpfr_dim</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv-105"><code>mpfr_div</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv_005f2exp-293"><code>mpfr_div_2exp</code></a>: <a href="#Compatibility-with-MPF">Compatibility with MPF</a></li>
<li><a href="#index-mpfr_005fdiv_005f2si-128"><code>mpfr_div_2si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv_005f2ui-127"><code>mpfr_div_2ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv_005fq-111"><code>mpfr_div_q</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv_005fsi-109"><code>mpfr_div_si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv_005fui-107"><code>mpfr_div_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fdiv_005fz-110"><code>mpfr_div_z</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005feint-184"><code>mpfr_eint</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005feq-290"><code>mpfr_eq</code></a>: <a href="#Compatibility-with-MPF">Compatibility with MPF</a></li>
<li><a href="#index-mpfr_005fequal_005fp-152"><code>mpfr_equal_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005ferangeflag_005fp-282"><code>mpfr_erangeflag_p</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005ferf-190"><code>mpfr_erf</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ferfc-191"><code>mpfr_erfc</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fexp-158"><code>mpfr_exp</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fexp10-160"><code>mpfr_exp10</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fexp2-159"><code>mpfr_exp2</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fexpm1-183"><code>mpfr_expm1</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ffac_005fui-181"><code>mpfr_fac_ui</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fintmax_005fp-82"><code>mpfr_fits_intmax_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fsint_005fp-79"><code>mpfr_fits_sint_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fslong_005fp-77"><code>mpfr_fits_slong_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fsshort_005fp-81"><code>mpfr_fits_sshort_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fuint_005fp-78"><code>mpfr_fits_uint_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fuintmax_005fp-83"><code>mpfr_fits_uintmax_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fulong_005fp-76"><code>mpfr_fits_ulong_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffits_005fushort_005fp-80"><code>mpfr_fits_ushort_p</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005ffloor-217"><code>mpfr_floor</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005ffma-198"><code>mpfr_fma</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ffms-199"><code>mpfr_fms</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ffrac-224"><code>mpfr_frac</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005ffree_005fcache-206"><code>mpfr_free_cache</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ffree_005fstr-75"><code>mpfr_free_str</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fgamma-185"><code>mpfr_gamma</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fget_005fd-62"><code>mpfr_get_d</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fd1-304"><code>mpfr_get_d1</code></a>: <a href="#Internals">Internals</a></li>
<li><a href="#index-mpfr_005fget_005fd_005f2exp-65"><code>mpfr_get_d_2exp</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fdecimal64-64"><code>mpfr_get_decimal64</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fdefault_005fprec-27"><code>mpfr_get_default_prec</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005fget_005fdefault_005frounding_005fmode-252"><code>mpfr_get_default_rounding_mode</code></a>: <a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005femax-258"><code>mpfr_get_emax</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005femax_005fmax-264"><code>mpfr_get_emax_max</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005femax_005fmin-263"><code>mpfr_get_emax_min</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005femin-257"><code>mpfr_get_emin</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005femin_005fmax-262"><code>mpfr_get_emin_max</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005femin_005fmin-261"><code>mpfr_get_emin_min</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fget_005fexp-237"><code>mpfr_get_exp</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fget_005ff-73"><code>mpfr_get_f</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fld-63"><code>mpfr_get_ld</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fld_005f2exp-66"><code>mpfr_get_ld_2exp</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fpatches-249"><code>mpfr_get_patches</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fget_005fprec-29"><code>mpfr_get_prec</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005fget_005fsi-67"><code>mpfr_get_si</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fsj-69"><code>mpfr_get_sj</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fstr-74"><code>mpfr_get_str</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fui-68"><code>mpfr_get_ui</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fuj-70"><code>mpfr_get_uj</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fversion-242"><code>mpfr_get_version</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fget_005fz-72"><code>mpfr_get_z</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fget_005fz_005fexp-71"><code>mpfr_get_z_exp</code></a>: <a href="#Conversion-Functions">Conversion Functions</a></li>
<li><a href="#index-mpfr_005fgreater_005fp-147"><code>mpfr_greater_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fgreaterequal_005fp-148"><code>mpfr_greaterequal_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fhypot-201"><code>mpfr_hypot</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005finexflag_005fp-281"><code>mpfr_inexflag_p</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005finf_005fp-143"><code>mpfr_inf_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005finit-25"><code>mpfr_init</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005finit2-23"><code>mpfr_init2</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset-52"><code>mpfr_init_set</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fd-55"><code>mpfr_init_set_d</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005ff-59"><code>mpfr_init_set_f</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fld-56"><code>mpfr_init_set_ld</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fq-58"><code>mpfr_init_set_q</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fsi-54"><code>mpfr_init_set_si</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fstr-60"><code>mpfr_init_set_str</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fui-53"><code>mpfr_init_set_ui</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finit_005fset_005fz-57"><code>mpfr_init_set_z</code></a>: <a href="#Combined-Initialization-and-Assignment-Functions">Combined Initialization and Assignment Functions</a></li>
<li><a href="#index-mpfr_005finits-285"><code>mpfr_inits</code></a>: <a href="#Advanced-Functions">Advanced Functions</a></li>
<li><a href="#index-mpfr_005finits2-286"><code>mpfr_inits2</code></a>: <a href="#Advanced-Functions">Advanced Functions</a></li>
<li><a href="#index-mpfr_005finp_005fstr-213"><code>mpfr_inp_str</code></a>: <a href="#Input-and-Output-Functions">Input and Output Functions</a></li>
<li><a href="#index-mpfr_005finteger_005fp-227"><code>mpfr_integer_p</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005fj0-192"><code>mpfr_j0</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fj1-193"><code>mpfr_j1</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fjn-194"><code>mpfr_jn</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fless_005fp-149"><code>mpfr_less_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005flessequal_005fp-150"><code>mpfr_lessequal_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005flessgreater_005fp-151"><code>mpfr_lessgreater_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005flgamma-187"><code>mpfr_lgamma</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005flngamma-186"><code>mpfr_lngamma</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005flog-155"><code>mpfr_log</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005flog10-157"><code>mpfr_log10</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005flog1p-182"><code>mpfr_log1p</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005flog2-156"><code>mpfr_log2</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fmax-233"><code>mpfr_max</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fmin-232"><code>mpfr_min</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fmul-99"><code>mpfr_mul</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fmul_005f2exp-292"><code>mpfr_mul_2exp</code></a>: <a href="#Compatibility-with-MPF">Compatibility with MPF</a></li>
<li><a href="#index-mpfr_005fmul_005f2si-126"><code>mpfr_mul_2si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fmul_005f2ui-125"><code>mpfr_mul_2ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fmul_005fq-103"><code>mpfr_mul_q</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fmul_005fsi-101"><code>mpfr_mul_si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fmul_005fui-100"><code>mpfr_mul_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fmul_005fz-102"><code>mpfr_mul_z</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fnan_005fp-142"><code>mpfr_nan_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fnanflag_005fp-280"><code>mpfr_nanflag_p</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fneg-122"><code>mpfr_neg</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fnextabove-230"><code>mpfr_nextabove</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fnextbelow-231"><code>mpfr_nextbelow</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fnexttoward-229"><code>mpfr_nexttoward</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fnumber_005fp-144"><code>mpfr_number_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fout_005fstr-212"><code>mpfr_out_str</code></a>: <a href="#Input-and-Output-Functions">Input and Output Functions</a></li>
<li><a href="#index-mpfr_005foverflow_005fp-279"><code>mpfr_overflow_p</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fpow-116"><code>mpfr_pow</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fpow_005fsi-118"><code>mpfr_pow_si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fpow_005fui-117"><code>mpfr_pow_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fpow_005fz-119"><code>mpfr_pow_z</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fprec_005fround-253"><code>mpfr_prec_round</code></a>: <a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a></li>
<li><a href="#index-mpfr_005fprint_005frnd_005fmode-255"><code>mpfr_print_rnd_mode</code></a>: <a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a></li>
<li><a href="#index-mpfr_005frandom-235"><code>mpfr_random</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005frandom2-236"><code>mpfr_random2</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005freldiff-291"><code>mpfr_reldiff</code></a>: <a href="#Compatibility-with-MPF">Compatibility with MPF</a></li>
<li><a href="#index-mpfr_005fremainder-225"><code>mpfr_remainder</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005fremquo-226"><code>mpfr_remquo</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005frint-215"><code>mpfr_rint</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005frint_005fceil-220"><code>mpfr_rint_ceil</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005frint_005ffloor-221"><code>mpfr_rint_floor</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005frint_005fround-222"><code>mpfr_rint_round</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005frint_005ftrunc-223"><code>mpfr_rint_trunc</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005froot-115"><code>mpfr_root</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fround-218"><code>mpfr_round</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005fround_005fprec-254"><code>mpfr_round_prec</code></a>: <a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a></li>
<li><a href="#index-mpfr_005fsec-164"><code>mpfr_sec</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fsech-175"><code>mpfr_sech</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fset-31"><code>mpfr_set</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fd-36"><code>mpfr_set_d</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fdecimal64-38"><code>mpfr_set_decimal64</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fdefault_005fprec-26"><code>mpfr_set_default_prec</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005fset_005fdefault_005frounding_005fmode-251"><code>mpfr_set_default_rounding_mode</code></a>: <a href="#Rounding-Mode-Related-Functions">Rounding Mode Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005femax-260"><code>mpfr_set_emax</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005femin-259"><code>mpfr_set_emin</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005ferangeflag-276"><code>mpfr_set_erangeflag</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005fexp-238"><code>mpfr_set_exp</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fset_005ff-41"><code>mpfr_set_f</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005finexflag-275"><code>mpfr_set_inexflag</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005finf-48"><code>mpfr_set_inf</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fld-37"><code>mpfr_set_ld</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fnan-49"><code>mpfr_set_nan</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fnanflag-274"><code>mpfr_set_nanflag</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005foverflow-273"><code>mpfr_set_overflow</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005fprec-28"><code>mpfr_set_prec</code></a>: <a href="#Initialization-Functions">Initialization Functions</a></li>
<li><a href="#index-mpfr_005fset_005fprec_005fraw-289"><code>mpfr_set_prec_raw</code></a>: <a href="#Compatibility-with-MPF">Compatibility with MPF</a></li>
<li><a href="#index-mpfr_005fset_005fq-40"><code>mpfr_set_q</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fsi-33"><code>mpfr_set_si</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fsi_005f2exp-43"><code>mpfr_set_si_2exp</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fsj-35"><code>mpfr_set_sj</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fsj_005f2exp-45"><code>mpfr_set_sj_2exp</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fstr-46"><code>mpfr_set_str</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fui-32"><code>mpfr_set_ui</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fui_005f2exp-42"><code>mpfr_set_ui_2exp</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fuj-34"><code>mpfr_set_uj</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005fuj_005f2exp-44"><code>mpfr_set_uj_2exp</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fset_005funderflow-272"><code>mpfr_set_underflow</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fset_005fz-39"><code>mpfr_set_z</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fsetsign-240"><code>mpfr_setsign</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fsgn-146"><code>mpfr_sgn</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fsi_005fdiv-108"><code>mpfr_si_div</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsi_005fsub-95"><code>mpfr_si_sub</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsignbit-239"><code>mpfr_signbit</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fsin-162"><code>mpfr_sin</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fsin_005fcos-167"><code>mpfr_sin_cos</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fsinh-173"><code>mpfr_sinh</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fsqr-104"><code>mpfr_sqr</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsqrt-112"><code>mpfr_sqrt</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsqrt_005fui-113"><code>mpfr_sqrt_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fstrtofr-47"><code>mpfr_strtofr</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-mpfr_005fsub-92"><code>mpfr_sub</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsub_005fq-98"><code>mpfr_sub_q</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsub_005fsi-96"><code>mpfr_sub_si</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsub_005fui-94"><code>mpfr_sub_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsub_005fz-97"><code>mpfr_sub_z</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fsubnormalize-266"><code>mpfr_subnormalize</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005fsum-207"><code>mpfr_sum</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fswap-50"><code>mpfr_swap</code></a>: <a href="#Assignment-Functions">Assignment Functions</a></li>
<li><a href="#index-g_t_0040code_007bmpfr_005ft_007d-12"><code>mpfr_t</code></a>: <a href="#MPFR-Basics">MPFR Basics</a></li>
<li><a href="#index-mpfr_005ftan-163"><code>mpfr_tan</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ftanh-174"><code>mpfr_tanh</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005ftrunc-219"><code>mpfr_trunc</code></a>: <a href="#Integer-Related-Functions">Integer Related Functions</a></li>
<li><a href="#index-mpfr_005fui_005fdiv-106"><code>mpfr_ui_div</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fui_005fpow-121"><code>mpfr_ui_pow</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fui_005fpow_005fui-120"><code>mpfr_ui_pow_ui</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005fui_005fsub-93"><code>mpfr_ui_sub</code></a>: <a href="#Basic-Arithmetic-Functions">Basic Arithmetic Functions</a></li>
<li><a href="#index-mpfr_005funderflow_005fp-278"><code>mpfr_underflow_p</code></a>: <a href="#Exception-Related-Functions">Exception Related Functions</a></li>
<li><a href="#index-mpfr_005funordered_005fp-153"><code>mpfr_unordered_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005furandomb-234"><code>mpfr_urandomb</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-MPFR_005fVERSION-243"><code>MPFR_VERSION</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-MPFR_005fVERSION_005fMAJOR-244"><code>MPFR_VERSION_MAJOR</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-MPFR_005fVERSION_005fMINOR-245"><code>MPFR_VERSION_MINOR</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-MPFR_005fVERSION_005fNUM-248"><code>MPFR_VERSION_NUM</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-MPFR_005fVERSION_005fPATCHLEVEL-246"><code>MPFR_VERSION_PATCHLEVEL</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-MPFR_005fVERSION_005fSTRING-247"><code>MPFR_VERSION_STRING</code></a>: <a href="#Miscellaneous-Functions">Miscellaneous Functions</a></li>
<li><a href="#index-mpfr_005fy0-195"><code>mpfr_y0</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fy1-196"><code>mpfr_y1</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fyn-197"><code>mpfr_yn</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fzero_005fp-145"><code>mpfr_zero_p</code></a>: <a href="#Comparison-Functions">Comparison Functions</a></li>
<li><a href="#index-mpfr_005fzeta-188"><code>mpfr_zeta</code></a>: <a href="#Special-Functions">Special Functions</a></li>
<li><a href="#index-mpfr_005fzeta_005fui-189"><code>mpfr_zeta_ui</code></a>: <a href="#Special-Functions">Special Functions</a></li>
</ul></body></html>
<!--
Local Variables:
coding: iso-8859-1
End:
-->