Man page generated from reStructuredText.
.
. RS \\$1 . nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin] . nr rst2man-indent-level +1 .rstReportMargin post:
.. . RE indent \\n[an-margin]
old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1 new: \\n[rst2man-indent\\n[rst2man-indent-level]]
..
.
.
"CMAKE-TOOLCHAINS" "7" "October 14, 2015" "3.3.2" "CMake"
NAME
cmake-toolchains - CMake Toolchains Reference
.
.nr rst2man-indent-level 0
.
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.rstReportMargin pre:. RS \\$1 . nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin] . nr rst2man-indent-level +1 .rstReportMargin post:
.. . RE indent \\n[an-margin]
old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1 new: \\n[rst2man-indent\\n[rst2man-indent-level]]
..
INTRODUCTION
CMake uses a toolchain of utilities to compile, link libraries and create
archives, and other tasks to drive the build. The toolchain utilities available
are determined by the languages enabled. In normal builds, CMake automatically
determines the toolchain for host builds based on system introspection and
defaults. In cross-compiling scenarios, a toolchain file may be specified
with information about compiler and utility paths.
LANGUAGES
Languages are enabled by the project() command. Language-specific
built-in variables, such as
CMAKE_CXX_COMPILER,
CMAKE_CXX_COMPILER_ID etc are set by
invoking the project() command. If no project command
is in the top-level CMakeLists file, one will be implicitly generated. By default
the enabled languages are C and CXX:
NDENT 0.0 NDENT 3.5 project(C_Only C)NINDENT NINDENT A special value of NONE can also be used with the project() command to enable no languages: NDENT 0.0 NDENT 3.5
project(MyProject NONE)NINDENT NINDENT The enable_language() command can be used to enable languages after the project() command: NDENT 0.0 NDENT 3.5
enable_language(CXX)NINDENT NINDENT When a language is enabled, CMake finds a compiler for that language, and determines some information, such as the vendor and version of the compiler, the target architecture and bitwidth, the location of corresponding utilities etc. The ENABLED_LANGUAGES global property contains the languages which are currently enabled.
VARIABLES AND PROPERTIES
Several variables relate to the language components of a toolchain which are
enabled. CMAKE_<LANG>_COMPILER is the full path to the compiler used
for <LANG>. CMAKE_<LANG>_COMPILER_ID is the identifier used
by CMake for the compiler and CMAKE_<LANG>_COMPILER_VERSION is the
version of the compiler.
The CMAKE_<LANG>_FLAGS variables and the configuration-specific
equivalents contain flags that will be added to the compile command when
compiling a file of a particular language.
As the linker is invoked by the compiler driver, CMake needs a way to determine
which compiler to use to invoke the linker. This is calculated by the
LANGUAGE of source files in the target, and in the case of static
libraries, the language of the dependent libraries. The choice CMake makes may
be overridden with the LINKER_LANGUAGE target property.
TOOLCHAIN FEATURES
CMake provides the try_compile() command and wrapper macros such as
CheckCXXSourceCompiles, CheckCXXSymbolExists and
CheckIncludeFile to test capability and availability of various
toolchain features. These APIs test the toolchain in some way and cache the
result so that the test does not have to be performed again the next time
CMake runs.
Some toolchain features have built-in handling in CMake, and do not require
compile-tests. For example, POSITION_INDEPENDENT_CODE allows
specifying that a target should be built as position-independent code, if
the compiler supports that feature. The <LANG>_VISIBILITY_PRESET
and VISIBILITY_INLINES_HIDDEN target properties add flags for
hidden visibility, if supported by the compiler.
CROSS COMPILING
If cmake(1) is invoked with the command line parameter
-DCMAKE_TOOLCHAIN_FILE=path/to/file, the file will be loaded early to set
values for the compilers.
The CMAKE_CROSSCOMPILING variable is set to true when CMake is
cross-compiling.
Cross Compiling for Linux
A typical cross-compiling toolchain for Linux has content such
as:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME Linux) set(CMAKE_SYSTEM_PROCESSOR arm) set(CMAKE_SYSROOT /home/devel/rasp-pi-rootfs) set(CMAKE_STAGING_PREFIX /home/devel/stage) set(tools /home/devel/gcc-4.7-linaro-rpi-gnueabihf) set(CMAKE_C_COMPILER ${tools}/bin/arm-linux-gnueabihf-gcc) set(CMAKE_CXX_COMPILER ${tools}/bin/arm-linux-gnueabihf-g++) set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)NINDENT NINDENT The CMAKE_SYSTEM_NAME is the CMake-identifier of the target platform to build for. The CMAKE_SYSTEM_PROCESSOR is the CMake-identifier of the target architecture to build for. The CMAKE_SYSROOT is optional, and may be specified if a sysroot is available. The CMAKE_STAGING_PREFIX is also optional. It may be used to specify a path on the host to install to. The CMAKE_INSTALL_PREFIX is always the runtime installation location, even when cross-compiling. The CMAKE_<LANG>_COMPILER variables may be set to full paths, or to names of compilers to search for in standard locations. In cases where CMake does not have enough information to extract information from the compiler, the CMakeForceCompiler module can be used to bypass some of the checks. CMake find_* commands will look in the sysroot, and the CMAKE_FIND_ROOT_PATH entries by default in all cases, as well as looking in the host system root prefix. Although this can be controlled on a case-by-case basis, when cross-compiling, it can be useful to exclude looking in either the host or the target for particular artifacts. Generally, includes, libraries and packages should be found in the target system prefixes, whereas executables which must be run as part of the build should be found only on the host and not on the target. This is the purpose of the CMAKE_FIND_ROOT_PATH_MODE_* variables.
Cross Compiling using Clang
Some compilers such as Clang are inherently cross compilers.
The CMAKE_<LANG>_COMPILER_TARGET can be set to pass a
value to those supported compilers when compiling:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME Linux) set(CMAKE_SYSTEM_PROCESSOR arm) set(triple arm-linux-gnueabihf) set(CMAKE_C_COMPILER clang) set(CMAKE_C_COMPILER_TARGET ${triple}) set(CMAKE_CXX_COMPILER clang++) set(CMAKE_CXX_COMPILER_TARGET ${triple})NINDENT NINDENT Similarly, some compilers do not ship their own supplementary utilities such as linkers, but provide a way to specify the location of the external toolchain which will be used by the compiler driver. The CMAKE_<LANG>_COMPILER_EXTERNAL_TOOLCHAIN variable can be set in a toolchain file to pass the path to the compiler driver.
Cross Compiling for QNX
As the Clang compiler the QNX QCC compile is inherently a cross compiler.
And the CMAKE_<LANG>_COMPILER_TARGET can be set to pass a
value to those supported compilers when compiling:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME QNX) set(arch gcc_ntoarmv7le) set(CMAKE_C_COMPILER qcc) set(CMAKE_C_COMPILER_TARGET ${arch}) set(CMAKE_CXX_COMPILER QCC) set(CMAKE_CXX_COMPILER_TARGET ${arch})NINDENT NINDENT
Cross Compiling for Windows CE
Cross compiling for Windows CE requires the corresponding SDK being
installed on your system. These SDKs are usually installed under
C:/Program Files (x86)/Windows CE Tools/SDKs.
A toolchain file to configure a Visual Studio generator for
Windows CE may look like this:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME WindowsCE) set(CMAKE_SYSTEM_VERSION 8.0) set(CMAKE_SYSTEM_PROCESSOR arm) set(CMAKE_GENERATOR_TOOLSET CE800) # Can be omitted for 8.0 set(CMAKE_GENERATOR_PLATFORM SDK_AM335X_SK_WEC2013_V310)NINDENT NINDENT The CMAKE_GENERATOR_PLATFORM tells the generator which SDK to use. Further CMAKE_SYSTEM_VERSION tells the generator what version of Windows CE to use. Currently version 8.0 (Windows Embedded Compact 2013) is supported out of the box. Other versions may require one to set CMAKE_GENERATOR_TOOLSET to the correct value.
Cross Compiling for Windows Phone
A toolchain file to configure a Visual Studio generator for
Windows Phone may look like this:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME WindowsPhone) set(CMAKE_SYSTEM_VERSION 8.1)NINDENT NINDENT
Cross Compiling for Windows Store
A toolchain file to configure a Visual Studio generator for
Windows Store may look like this:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME WindowsStore) set(CMAKE_SYSTEM_VERSION 8.1)NINDENT NINDENT
Cross Compiling using NVIDIA Nsight Tegra
A toolchain file to configure a Visual Studio generator to
build using NVIDIA Nsight Tegra targeting Android may look
like this:
NDENT 0.0 NDENT 3.5 set(CMAKE_SYSTEM_NAME Android)NINDENT NINDENT The CMAKE_GENERATOR_TOOLSET may be set to select the Nsight Tegra "Toolchain Version" value. See the ANDROID_API_MIN, ANDROID_API and ANDROID_GUI target properties to configure targets within the project.
COPYRIGHT
2000-2015 Kitware, Inc.
Generated by docutils manpage writer..