/*
* Copyright (c) 2004, 2016, Oracle and/or its affiliates. All rights reserved.
*/
/* crypto/engine/e_pk11.c */
/*
* This product includes software developed by the OpenSSL Project for
* use in the OpenSSL Toolkit (http://www.openssl.org/).
*
* This project also referenced hw_pkcs11-0.9.7b.patch written by
* Afchine Madjlessi.
*/
/*
* ====================================================================
* Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <strings.h>
#include <openssl/e_os2.h>
#include <openssl/crypto.h>
#include <openssl/engine.h>
#include <openssl/dso.h>
#include <openssl/err.h>
#include <openssl/bn.h>
#include <openssl/md5.h>
#include <openssl/pem.h>
#ifndef OPENSSL_NO_RSA
#include <openssl/rsa.h>
#endif
#ifndef OPENSSL_NO_DSA
#include <openssl/dsa.h>
#endif
#ifndef OPENSSL_NO_DH
#include <openssl/dh.h>
#endif
#include <openssl/rand.h>
#include <openssl/objects.h>
#include <openssl/x509.h>
#include <openssl/aes.h>
#include <dlfcn.h>
#include <pthread.h>
#ifndef OPENSSL_NO_HW
#ifndef OPENSSL_NO_HW_PK11
/* label for debug messages printed on stderr */
#define PK11_DBG "PKCS#11 ENGINE DEBUG"
/* prints a lot of debug messages on stderr about slot selection process */
#undef DEBUG_SLOT_SELECTION
/*
* Solaris specific code. See comment at check_hw_mechanisms() for more
* information.
*/
#if defined(__SVR4) && defined(__sun)
#define SOLARIS_HW_SLOT_SELECTION
#endif
#ifdef SOLARIS_HW_SLOT_SELECTION
#include <sys/auxv.h>
#endif
#ifdef DEBUG_SLOT_SELECTION
#define DEBUG_SLOT_SEL(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_SLOT_SEL(...)
#endif
#include <security/cryptoki.h>
#include <security/pkcs11.h>
#include "e_pk11.h"
#include "e_pk11_uri.h"
static CK_BBOOL pk11_true = CK_TRUE;
static CK_BBOOL pk11_false = CK_FALSE;
#define PK11_ENGINE_LIB_NAME "PKCS#11 engine"
#include "e_pk11_err.c"
#include "e_pk11_uri.c"
#include "e_pk11_pub.c"
/*
* We use this lock to prevent multiple C_Login()s, guard getpassphrase(),
* uri_struct manipulation, and static token info. All of that is used by the
* RSA keys by reference feature.
*/
pthread_mutex_t *uri_lock = NULL;
#ifdef SOLARIS_HW_SLOT_SELECTION
/*
* Tables for symmetric ciphers and digest mechs found in the pkcs11_kernel
* library. See comment at check_hw_mechanisms() for more information.
*/
int *hw_cnids;
int *hw_dnids;
#endif /* SOLARIS_HW_SLOT_SELECTION */
/* PKCS#11 session caches and their locks for all operation types */
static PK11_CACHE session_cache[OP_MAX];
/*
* We cache the flags so that we do not have to run C_GetTokenInfo() again when
* logging into the token.
*/
CK_FLAGS pubkey_token_flags;
/*
* As stated in v2.20, 11.7 Object Management Function, in section for
* C_FindObjectsInit(), at most one search operation may be active at a given
* time in a given session. Therefore, C_Find{,Init,Final}Objects() should be
* grouped together to form one atomic search operation. This is already
* ensured by the property of unique PKCS#11 session handle used for each
* PK11_SESSION object.
*
* This is however not the biggest concern - maintaining consistency of the
* underlying object store is more important. The same section of the spec also
* says that one thread can be in the middle of a search operation while another
* thread destroys the object matching the search template which would result in
* invalid handle returned from the search operation.
*
* Hence, the following locks are used for both protection of the object stores.
* They are also used for active list protection.
*/
pthread_mutex_t *find_lock[OP_MAX] = { NULL };
/*
* lists of asymmetric key handles which are active (referenced by at least one
* PK11_SESSION structure, either held by a thread or present in free_session
* list) for given algorithm type
*/
PK11_active *active_list[OP_MAX] = { NULL };
/*
* Create all secret key objects in a global session so that they are available
* to use for other sessions. These other sessions may be opened or closed
* without losing the secret key objects.
*/
static CK_SESSION_HANDLE global_session = CK_INVALID_HANDLE;
/* Index for the supported ciphers */
enum pk11_cipher_id {
PK11_DES_CBC,
PK11_DES3_CBC,
PK11_DES_ECB,
PK11_DES3_ECB,
PK11_RC4,
PK11_AES_128_CBC,
PK11_AES_192_CBC,
PK11_AES_256_CBC,
PK11_AES_128_ECB,
PK11_AES_192_ECB,
PK11_AES_256_ECB,
PK11_BLOWFISH_CBC,
PK11_AES_128_CTR,
PK11_AES_192_CTR,
PK11_AES_256_CTR,
PK11_CIPHER_MAX
};
/* Index for the supported digests */
enum pk11_digest_id {
PK11_MD5,
PK11_SHA1,
PK11_SHA224,
PK11_SHA256,
PK11_SHA384,
PK11_SHA512,
PK11_DIGEST_MAX
};
typedef struct PK11_CIPHER_st
{
enum pk11_cipher_id id;
int nid;
int iv_len;
int min_key_len;
int max_key_len;
CK_KEY_TYPE key_type;
CK_MECHANISM_TYPE mech_type;
} PK11_CIPHER;
typedef struct PK11_DIGEST_st
{
enum pk11_digest_id id;
int nid;
CK_MECHANISM_TYPE mech_type;
} PK11_DIGEST;
/* ENGINE level stuff */
static int pk11_init(ENGINE *e);
static int pk11_library_init(ENGINE *e);
static int pk11_finish(ENGINE *e);
static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
static int pk11_destroy(ENGINE *e);
/* RAND stuff */
static void pk11_rand_seed(const void *buf, int num);
static void pk11_rand_add(const void *buf, int num, double add_entropy);
static void pk11_rand_cleanup(void);
static int pk11_rand_bytes(unsigned char *buf, int num);
static int pk11_rand_status(void);
/* These functions are also used in other files */
PK11_SESSION *pk11_get_session(PK11_OPTYPE optype);
void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype);
/* active list manipulation functions used in this file */
extern int pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type);
extern void pk11_free_active_list(PK11_OPTYPE type);
#ifndef OPENSSL_NO_RSA
int pk11_destroy_rsa_key_objects(PK11_SESSION *session);
int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
#endif
#ifndef OPENSSL_NO_DSA
int pk11_destroy_dsa_key_objects(PK11_SESSION *session);
int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
#endif
#ifndef OPENSSL_NO_DH
int pk11_destroy_dh_key_objects(PK11_SESSION *session);
int pk11_destroy_dh_object(PK11_SESSION *session, CK_BBOOL uselock);
#endif
/* Local helper functions */
static int pk11_free_all_sessions(void);
static int pk11_free_session_list(PK11_OPTYPE optype);
static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype);
static int pk11_destroy_cipher_key_objects(PK11_SESSION *session);
static int pk11_destroy_object(CK_SESSION_HANDLE handle, CK_OBJECT_HANDLE oh,
CK_BBOOL persistent);
static const char *get_PK11_LIBNAME(void);
static void free_PK11_LIBNAME(void);
static long set_PK11_LIBNAME(const char *name);
/* Symmetric cipher and digest support functions */
static int cipher_nid_to_pk11(int nid);
static int pk11_usable_ciphers(const int **nids);
static int pk11_usable_digests(const int **nids);
static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int pk11_cipher_final(PK11_SESSION *sp);
static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl);
static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx);
static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid);
static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid);
static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp);
static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
int key_len);
static int md_nid_to_pk11(int nid);
static int pk11_digest_init(EVP_MD_CTX *ctx);
static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data,
size_t count);
static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md);
static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from);
static int pk11_digest_cleanup(EVP_MD_CTX *ctx);
static int pk11_choose_slots(int *any_slot_found);
static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
CK_SLOT_ID current_slot, int *current_slot_n_cipher,
int *local_cipher_nids);
static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
CK_SLOT_ID current_slot, int *current_slot_n_digest,
int *local_digest_nids);
static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR, int slot_id,
int *current_slot_n_cipher, int *local_cipher_nids,
PK11_CIPHER *cipher);
static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
int *current_slot_n_digest, int *local_digest_nids,
PK11_DIGEST *digest);
static int pk11_init_all_locks(void);
static void pk11_free_all_locks(void);
#ifdef SOLARIS_HW_SLOT_SELECTION
static int check_hw_mechanisms(void);
static int nid_in_table(int nid, int *nid_table);
static int hw_aes_instruction_set_present(void);
#endif /* SOLARIS_HW_SLOT_SELECTION */
#define TRY_OBJ_DESTROY(sp, obj_hdl, retval, uselock, alg_type) \
{ \
if (uselock) \
LOCK_OBJSTORE(alg_type); \
if (pk11_active_delete(obj_hdl, alg_type) == 1) \
{ \
retval = pk11_destroy_object(sp->session, obj_hdl, \
sp->persistent); \
} \
if (uselock) \
UNLOCK_OBJSTORE(alg_type); \
}
static int cipher_nids[PK11_CIPHER_MAX];
static int digest_nids[PK11_DIGEST_MAX];
static int cipher_count = 0;
static int digest_count = 0;
static CK_BBOOL pk11_have_rsa = CK_FALSE;
static CK_BBOOL pk11_have_dsa = CK_FALSE;
static CK_BBOOL pk11_have_dh = CK_FALSE;
static CK_BBOOL pk11_have_random = CK_FALSE;
/*
* Static list of ciphers.
* Note, that ciphers array is indexed by member PK11_CIPHER.id,
* thus ciphers[i].id == i
* Rows must be kept in sync with enum pk11_cipher_id.
*/
static PK11_CIPHER ciphers[] =
{
{ PK11_DES_CBC, NID_des_cbc, 8, 8, 8,
CKK_DES, CKM_DES_CBC, },
{ PK11_DES3_CBC, NID_des_ede3_cbc, 8, 24, 24,
CKK_DES3, CKM_DES3_CBC, },
{ PK11_DES_ECB, NID_des_ecb, 0, 8, 8,
CKK_DES, CKM_DES_ECB, },
{ PK11_DES3_ECB, NID_des_ede3_ecb, 0, 24, 24,
CKK_DES3, CKM_DES3_ECB, },
{ PK11_RC4, NID_rc4, 0, 16, 256,
CKK_RC4, CKM_RC4, },
{ PK11_AES_128_CBC, NID_aes_128_cbc, 16, 16, 16,
CKK_AES, CKM_AES_CBC, },
{ PK11_AES_192_CBC, NID_aes_192_cbc, 16, 24, 24,
CKK_AES, CKM_AES_CBC, },
{ PK11_AES_256_CBC, NID_aes_256_cbc, 16, 32, 32,
CKK_AES, CKM_AES_CBC, },
{ PK11_AES_128_ECB, NID_aes_128_ecb, 0, 16, 16,
CKK_AES, CKM_AES_ECB, },
{ PK11_AES_192_ECB, NID_aes_192_ecb, 0, 24, 24,
CKK_AES, CKM_AES_ECB, },
{ PK11_AES_256_ECB, NID_aes_256_ecb, 0, 32, 32,
CKK_AES, CKM_AES_ECB, },
{ PK11_BLOWFISH_CBC, NID_bf_cbc, 8, 16, 16,
CKK_BLOWFISH, CKM_BLOWFISH_CBC, },
{ PK11_AES_128_CTR, NID_aes_128_ctr, 16, 16, 16,
CKK_AES, CKM_AES_CTR, },
{ PK11_AES_192_CTR, NID_aes_192_ctr, 16, 24, 24,
CKK_AES, CKM_AES_CTR, },
{ PK11_AES_256_CTR, NID_aes_256_ctr, 16, 32, 32,
CKK_AES, CKM_AES_CTR, },
};
/*
* Static list of digests.
* Note, that digests array is indexed by member PK11_DIGEST.id,
* thus digests[i].id == i
* Rows must be kept in sync with enum pk11_digest_id.
*/
static PK11_DIGEST digests[] =
{
{PK11_MD5, NID_md5, CKM_MD5, },
{PK11_SHA1, NID_sha1, CKM_SHA_1, },
{PK11_SHA224, NID_sha224, CKM_SHA224, },
{PK11_SHA256, NID_sha256, CKM_SHA256, },
{PK11_SHA384, NID_sha384, CKM_SHA384, },
{PK11_SHA512, NID_sha512, CKM_SHA512, },
{0, NID_undef, 0xFFFF, },
};
/*
* Structure to be used for the cipher_data/md_data in
* EVP_CIPHER_CTX/EVP_MD_CTX structures in order to use the same pk11
* session in multiple cipher_update calls
*/
typedef struct PK11_CIPHER_STATE_st
{
PK11_SESSION *sp;
} PK11_CIPHER_STATE;
/*
* libcrypto EVP stuff - this is how we get wired to EVP so the engine gets
* called when libcrypto requests a cipher NID.
*
* Note how the PK11_CIPHER_STATE is used here.
*/
/* DES CBC EVP */
static const EVP_CIPHER pk11_des_cbc =
{
NID_des_cbc,
8, 8, 8,
EVP_CIPH_CBC_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
/* 3DES CBC EVP */
static const EVP_CIPHER pk11_3des_cbc =
{
NID_des_ede3_cbc,
8, 24, 8,
EVP_CIPH_CBC_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
/*
* ECB modes don't use an Initial Vector so that's why set_asn1_parameters and
* get_asn1_parameters fields are set to NULL.
*/
static const EVP_CIPHER pk11_des_ecb =
{
NID_des_ecb,
8, 8, 8,
EVP_CIPH_ECB_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
NULL,
NULL,
NULL
};
static const EVP_CIPHER pk11_3des_ecb =
{
NID_des_ede3_ecb,
8, 24, 8,
EVP_CIPH_ECB_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
NULL,
NULL,
NULL
};
static const EVP_CIPHER pk11_aes_128_cbc =
{
NID_aes_128_cbc,
16, 16, 16,
EVP_CIPH_CBC_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
static const EVP_CIPHER pk11_aes_192_cbc =
{
NID_aes_192_cbc,
16, 24, 16,
EVP_CIPH_CBC_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
static const EVP_CIPHER pk11_aes_256_cbc =
{
NID_aes_256_cbc,
16, 32, 16,
EVP_CIPH_CBC_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
/*
* ECB modes don't use IV so that's why set_asn1_parameters and
* get_asn1_parameters are set to NULL.
*/
static const EVP_CIPHER pk11_aes_128_ecb =
{
NID_aes_128_ecb,
16, 16, 0,
EVP_CIPH_ECB_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
NULL,
NULL,
NULL
};
static const EVP_CIPHER pk11_aes_192_ecb =
{
NID_aes_192_ecb,
16, 24, 0,
EVP_CIPH_ECB_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
NULL,
NULL,
NULL
};
static const EVP_CIPHER pk11_aes_256_ecb =
{
NID_aes_256_ecb,
16, 32, 0,
EVP_CIPH_ECB_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
NULL,
NULL,
NULL
};
static EVP_CIPHER pk11_aes_128_ctr =
{
NID_aes_128_ctr,
16, 16, 16,
EVP_CIPH_CTR_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
static EVP_CIPHER pk11_aes_192_ctr =
{
NID_aes_192_ctr,
16, 24, 16,
EVP_CIPH_CTR_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
static EVP_CIPHER pk11_aes_256_ctr =
{
NID_aes_256_ctr,
16, 32, 16,
EVP_CIPH_CTR_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
static const EVP_CIPHER pk11_bf_cbc =
{
NID_bf_cbc,
8, 16, 8,
EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CBC_MODE,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
NULL
};
static const EVP_CIPHER pk11_rc4 =
{
NID_rc4,
1, 16, 0,
EVP_CIPH_VARIABLE_LENGTH,
pk11_cipher_init,
pk11_cipher_do_cipher,
pk11_cipher_cleanup,
sizeof (PK11_CIPHER_STATE),
NULL,
NULL,
NULL
};
static const EVP_MD pk11_md5 =
{
NID_md5,
NID_md5WithRSAEncryption,
MD5_DIGEST_LENGTH,
0,
pk11_digest_init,
pk11_digest_update,
pk11_digest_final,
pk11_digest_copy,
pk11_digest_cleanup,
EVP_PKEY_RSA_method,
MD5_CBLOCK,
sizeof (PK11_CIPHER_STATE),
};
static const EVP_MD pk11_sha1 =
{
NID_sha1,
NID_sha1WithRSAEncryption,
SHA_DIGEST_LENGTH,
EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
pk11_digest_init,
pk11_digest_update,
pk11_digest_final,
pk11_digest_copy,
pk11_digest_cleanup,
EVP_PKEY_RSA_method,
SHA_CBLOCK,
sizeof (PK11_CIPHER_STATE),
};
static const EVP_MD pk11_sha224 =
{
NID_sha224,
NID_sha224WithRSAEncryption,
SHA224_DIGEST_LENGTH,
EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
pk11_digest_init,
pk11_digest_update,
pk11_digest_final,
pk11_digest_copy,
pk11_digest_cleanup,
EVP_PKEY_RSA_method,
/* SHA-224 uses the same cblock size as SHA-256 */
SHA256_CBLOCK,
sizeof (PK11_CIPHER_STATE),
};
static const EVP_MD pk11_sha256 =
{
NID_sha256,
NID_sha256WithRSAEncryption,
SHA256_DIGEST_LENGTH,
EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
pk11_digest_init,
pk11_digest_update,
pk11_digest_final,
pk11_digest_copy,
pk11_digest_cleanup,
EVP_PKEY_RSA_method,
SHA256_CBLOCK,
sizeof (PK11_CIPHER_STATE),
};
static const EVP_MD pk11_sha384 =
{
NID_sha384,
NID_sha384WithRSAEncryption,
SHA384_DIGEST_LENGTH,
EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
pk11_digest_init,
pk11_digest_update,
pk11_digest_final,
pk11_digest_copy,
pk11_digest_cleanup,
EVP_PKEY_RSA_method,
/* SHA-384 uses the same cblock size as SHA-512 */
SHA512_CBLOCK,
sizeof (PK11_CIPHER_STATE),
};
static const EVP_MD pk11_sha512 =
{
NID_sha512,
NID_sha512WithRSAEncryption,
SHA512_DIGEST_LENGTH,
EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
pk11_digest_init,
pk11_digest_update,
pk11_digest_final,
pk11_digest_copy,
pk11_digest_cleanup,
EVP_PKEY_RSA_method,
SHA512_CBLOCK,
sizeof (PK11_CIPHER_STATE),
};
/*
* Initialization function. Sets up various PKCS#11 library components.
* The definitions for control commands specific to this engine
*/
#define PK11_CMD_SO_PATH ENGINE_CMD_BASE
static const ENGINE_CMD_DEFN pk11_cmd_defns[] =
{
{
PK11_CMD_SO_PATH,
"SO_PATH",
"Specifies the path to the 'pkcs#11' shared library",
ENGINE_CMD_FLAG_STRING
},
{0, NULL, NULL, 0}
};
static RAND_METHOD pk11_random =
{
pk11_rand_seed,
pk11_rand_bytes,
pk11_rand_cleanup,
pk11_rand_add,
pk11_rand_bytes,
pk11_rand_status
};
/* Constants used when creating the ENGINE */
static const char *engine_pk11_id = "pkcs11";
static const char *engine_pk11_name = "PKCS #11 engine support";
CK_FUNCTION_LIST_PTR pFuncList = NULL;
static const char PK11_GET_FUNCTION_LIST[] = "C_GetFunctionList";
/*
* This is a static string constant for the DSO file name and the function
* symbol names to bind to. We set it in the Configure script based on whether
* this is 32 or 64 bit build.
*/
static const char def_PK11_LIBNAME[] = PK11_LIB_LOCATION;
/* Needed in e_pk11_pub.c as well so that's why it is not static. */
CK_SLOT_ID pubkey_SLOTID = 0;
static CK_SLOT_ID rand_SLOTID = 0;
static CK_SLOT_ID SLOTID = 0;
static CK_BBOOL pk11_library_initialized = CK_FALSE;
static CK_BBOOL pk11_atfork_initialized = CK_FALSE;
static int pk11_pid = 0;
static ENGINE* pk11_engine = NULL;
static DSO *pk11_dso = NULL;
/* allocate and initialize all locks used by the engine itself */
static int pk11_init_all_locks(void)
{
int type;
#ifndef OPENSSL_NO_RSA
find_lock[OP_RSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
if (find_lock[OP_RSA] == NULL)
goto malloc_err;
(void) pthread_mutex_init(find_lock[OP_RSA], NULL);
#endif /* OPENSSL_NO_RSA */
if ((uri_lock = OPENSSL_malloc(sizeof (pthread_mutex_t))) == NULL)
goto malloc_err;
(void) pthread_mutex_init(uri_lock, NULL);
#ifndef OPENSSL_NO_DSA
find_lock[OP_DSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
if (find_lock[OP_DSA] == NULL)
goto malloc_err;
(void) pthread_mutex_init(find_lock[OP_DSA], NULL);
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
find_lock[OP_DH] = OPENSSL_malloc(sizeof (pthread_mutex_t));
if (find_lock[OP_DH] == NULL)
goto malloc_err;
(void) pthread_mutex_init(find_lock[OP_DH], NULL);
#endif /* OPENSSL_NO_DH */
for (type = 0; type < OP_MAX; type++)
{
session_cache[type].lock =
OPENSSL_malloc(sizeof (pthread_mutex_t));
if (session_cache[type].lock == NULL)
goto malloc_err;
(void) pthread_mutex_init(session_cache[type].lock, NULL);
}
return (1);
malloc_err:
pk11_free_all_locks();
PK11err(PK11_F_INIT_ALL_LOCKS, PK11_R_MALLOC_FAILURE);
return (0);
}
static void pk11_free_all_locks(void)
{
int type;
#ifndef OPENSSL_NO_RSA
if (find_lock[OP_RSA] != NULL)
{
(void) pthread_mutex_destroy(find_lock[OP_RSA]);
OPENSSL_free(find_lock[OP_RSA]);
find_lock[OP_RSA] = NULL;
}
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
if (find_lock[OP_DSA] != NULL)
{
(void) pthread_mutex_destroy(find_lock[OP_DSA]);
OPENSSL_free(find_lock[OP_DSA]);
find_lock[OP_DSA] = NULL;
}
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
if (find_lock[OP_DH] != NULL)
{
(void) pthread_mutex_destroy(find_lock[OP_DH]);
OPENSSL_free(find_lock[OP_DH]);
find_lock[OP_DH] = NULL;
}
#endif /* OPENSSL_NO_DH */
for (type = 0; type < OP_MAX; type++)
{
if (session_cache[type].lock != NULL)
{
(void) pthread_mutex_destroy(session_cache[type].lock);
OPENSSL_free(session_cache[type].lock);
session_cache[type].lock = NULL;
}
}
/* Free uri_lock */
(void) pthread_mutex_destroy(uri_lock);
OPENSSL_free(uri_lock);
uri_lock = NULL;
}
/*
* This internal function is used by ENGINE_pk11() and "dynamic" ENGINE support.
*/
static int bind_pk11(ENGINE *e)
{
#ifndef OPENSSL_NO_RSA
const RSA_METHOD *rsa = NULL;
RSA_METHOD *pk11_rsa = PK11_RSA();
#endif /* OPENSSL_NO_RSA */
if (!pk11_library_initialized)
if (!pk11_library_init(e))
return (0);
if (!ENGINE_set_id(e, engine_pk11_id) ||
!ENGINE_set_name(e, engine_pk11_name) ||
!ENGINE_set_ciphers(e, pk11_engine_ciphers) ||
!ENGINE_set_digests(e, pk11_engine_digests))
return (0);
if (!ENGINE_set_pkey_meths(e, pk11_engine_pkey_methods))
return (0);
#ifndef OPENSSL_NO_RSA
if (pk11_have_rsa == CK_TRUE)
{
if (!ENGINE_set_RSA(e, PK11_RSA()) ||
!ENGINE_set_load_privkey_function(e, pk11_load_privkey) ||
!ENGINE_set_load_pubkey_function(e, pk11_load_pubkey))
return (0);
DEBUG_SLOT_SEL("%s: registered RSA\n", PK11_DBG);
}
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
if (pk11_have_dsa == CK_TRUE)
{
if (!ENGINE_set_DSA(e, PK11_DSA()))
return (0);
DEBUG_SLOT_SEL("%s: registered DSA\n", PK11_DBG);
}
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
if (pk11_have_dh == CK_TRUE)
{
if (!ENGINE_set_DH(e, PK11_DH()))
return (0);
DEBUG_SLOT_SEL("%s: registered DH\n", PK11_DBG);
}
#endif /* OPENSSL_NO_DH */
if (pk11_have_random)
{
if (!ENGINE_set_RAND(e, &pk11_random))
return (0);
DEBUG_SLOT_SEL("%s: registered random\n", PK11_DBG);
}
if (!ENGINE_set_init_function(e, pk11_init) ||
!ENGINE_set_destroy_function(e, pk11_destroy) ||
!ENGINE_set_finish_function(e, pk11_finish) ||
!ENGINE_set_ctrl_function(e, pk11_ctrl) ||
!ENGINE_set_cmd_defns(e, pk11_cmd_defns))
return (0);
/*
* Apache calls OpenSSL function RSA_blinding_on() once during startup
* which in turn calls bn_mod_exp. Since we do not implement bn_mod_exp
* here, we wire it back to the OpenSSL software implementation.
* Since it is used only once, performance is not a concern.
*/
#ifndef OPENSSL_NO_RSA
rsa = RSA_PKCS1_SSLeay();
pk11_rsa->rsa_mod_exp = rsa->rsa_mod_exp;
pk11_rsa->bn_mod_exp = rsa->bn_mod_exp;
#endif /* OPENSSL_NO_RSA */
/* Ensure the pk11 error handling is set up */
ERR_load_pk11_strings();
return (1);
}
static int bind_helper(ENGINE *e, const char *id)
{
if (id && (strcmp(id, engine_pk11_id) != 0))
return (0);
if (!bind_pk11(e))
return (0);
return (1);
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
/*
* These are the static string constants for the DSO file name and
* the function symbol names to bind to.
*/
static const char *PK11_LIBNAME = NULL;
static const char *get_PK11_LIBNAME(void)
{
if (PK11_LIBNAME)
return (PK11_LIBNAME);
return (def_PK11_LIBNAME);
}
static void free_PK11_LIBNAME(void)
{
if (PK11_LIBNAME)
OPENSSL_free((void*)PK11_LIBNAME);
PK11_LIBNAME = NULL;
}
static long set_PK11_LIBNAME(const char *name)
{
free_PK11_LIBNAME();
return ((PK11_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
}
/* acquire all engine specific mutexes before fork */
static void pk11_fork_prepare(void)
{
int i;
if (!pk11_library_initialized)
return;
LOCK_OBJSTORE(OP_RSA);
LOCK_OBJSTORE(OP_DSA);
LOCK_OBJSTORE(OP_DH);
(void) pthread_mutex_lock(uri_lock);
for (i = 0; i < OP_MAX; i++)
{
(void) pthread_mutex_lock(session_cache[i].lock);
}
}
/* release all engine specific mutexes */
static void pk11_fork_parent(void)
{
int i;
if (!pk11_library_initialized)
return;
for (i = OP_MAX - 1; i >= 0; i--)
{
(void) pthread_mutex_unlock(session_cache[i].lock);
}
UNLOCK_OBJSTORE(OP_DH);
UNLOCK_OBJSTORE(OP_DSA);
UNLOCK_OBJSTORE(OP_RSA);
(void) pthread_mutex_unlock(uri_lock);
}
/*
* same situation as in parent - we need to unlock all locks to make them
* accessible to all threads.
*/
static void pk11_fork_child(void)
{
int i;
if (!pk11_library_initialized)
return;
/* invalidate the global session */
global_session = CK_INVALID_HANDLE;
for (i = OP_MAX - 1; i >= 0; i--)
{
(void) pthread_mutex_unlock(session_cache[i].lock);
}
UNLOCK_OBJSTORE(OP_DH);
UNLOCK_OBJSTORE(OP_DSA);
UNLOCK_OBJSTORE(OP_RSA);
(void) pthread_mutex_unlock(uri_lock);
}
/* Initialization function for the pk11 engine */
static int pk11_init(ENGINE *e)
{
return (pk11_library_init(e));
}
/*
* Helper function that unsets reference to current engine (pk11_engine = NULL).
*
* Use of local variable only seems clumsy, it needs to be this way!
* This is to prevent double free in the unlucky scenario:
* ENGINE_free calls pk11_destroy calls pk11_finish calls ENGINE_free
* Setting pk11_engine to NULL prior to ENGINE_free() avoids this.
*/
static void pk11_engine_free()
{
ENGINE* old_engine = pk11_engine;
if (old_engine) {
pk11_engine = NULL;
}
}
/*
* Initialization function. Sets up various PKCS#11 library components.
* It selects a slot based on predefined critiera. In the process, it also
* count how many ciphers and digests to support. Since the cipher and
* digest information is needed when setting default engine, this function
* needs to be called before calling ENGINE_set_default.
*/
/* ARGSUSED */
static int pk11_library_init(ENGINE *e)
{
CK_C_GetFunctionList p;
CK_RV rv = CKR_OK;
CK_INFO info;
CK_ULONG ul_state_len;
int any_slot_found;
int i;
if (e != pk11_engine)
{
pk11_engine_free();
pk11_engine = e;
}
/*
* pk11_library_initialized is set to 0 in pk11_finish() which is called
* from ENGINE_finish(). However, if there is still at least one
* existing functional reference to the engine (see engine(3) for more
* information), pk11_finish() is skipped. For example, this can happen
* if an application forgets to clear one cipher context. In case of a
* fork() when the application is finishing the engine so that it can be
* reinitialized in the child, forgotten functional reference causes
* pk11_library_initialized to stay 1. In that case we need the PID
* check so that we properly initialize the engine again.
*/
if (pk11_library_initialized)
{
if (pk11_pid == getpid())
{
return (1);
}
else
{
global_session = CK_INVALID_HANDLE;
/*
* free the locks first to prevent memory leak in case
* the application calls fork() without finishing the
* engine first.
*/
pk11_free_all_locks();
}
}
/*
* If initialization of the locks fails pk11_init_all_locks()
* will do the cleanup.
*/
if (!pk11_init_all_locks())
goto err;
for (i = 0; i < OP_MAX; i++)
session_cache[i].head = NULL;
/*
* Initialize active lists. We only use active lists
* for asymmetric ciphers.
*/
for (i = 0; i < OP_MAX; i++)
active_list[i] = NULL;
/* Attempt to load PKCS#11 library. */
if (!pk11_dso)
{
pk11_dso = DSO_load(NULL, get_PK11_LIBNAME(), NULL, 0);
if (pk11_dso == NULL)
{
PK11err(PK11_F_LOAD, PK11_R_DSO_FAILURE);
goto err;
}
}
#ifdef SOLARIS_HW_SLOT_SELECTION
if (check_hw_mechanisms() == 0)
goto err;
#endif /* SOLARIS_HW_SLOT_SELECTION */
/* get the C_GetFunctionList function from the loaded library */
p = (CK_C_GetFunctionList)DSO_bind_func(pk11_dso,
PK11_GET_FUNCTION_LIST);
if (!p)
{
PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
goto err;
}
/* get the full function list from the loaded library */
rv = p(&pFuncList);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE, rv);
goto err;
}
rv = pFuncList->C_Initialize(NULL_PTR);
if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
{
PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_INITIALIZE, rv);
goto err;
}
rv = pFuncList->C_GetInfo(&info);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_GETINFO, rv);
goto err;
}
if (pk11_choose_slots(&any_slot_found) == 0)
goto err;
/*
* The library we use, set in def_PK11_LIBNAME, may not offer any
* slot(s). In that case, we must not proceed but we must not return an
* error. The reason is that applications that try to set up the PKCS#11
* engine don't exit on error during the engine initialization just
* because no slot was present.
*/
if (any_slot_found == 0)
return (1);
if (global_session == CK_INVALID_HANDLE)
{
/* Open the global_session for the new process */
rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
NULL_PTR, NULL_PTR, &global_session);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_LIBRARY_INIT,
PK11_R_OPENSESSION, rv);
goto err;
}
}
/*
* Disable digest if C_GetOperationState is not supported since
* this function is required by OpenSSL digest copy function
*/
if (pFuncList->C_GetOperationState(global_session, NULL, &ul_state_len)
== CKR_FUNCTION_NOT_SUPPORTED) {
DEBUG_SLOT_SEL("%s: C_GetOperationState() not supported, "
"setting digest_count to 0\n", PK11_DBG);
digest_count = 0;
}
pk11_library_initialized = CK_TRUE;
pk11_pid = getpid();
if (!pk11_atfork_initialized)
{
if (pthread_atfork(pk11_fork_prepare, pk11_fork_parent,
pk11_fork_child) != 0)
{
PK11err(PK11_F_LIBRARY_INIT, PK11_R_ATFORK_FAILED);
goto err;
}
pk11_atfork_initialized = CK_TRUE;
}
return (1);
err:
return (0);
}
/* Destructor (complements the "ENGINE_pk11()" constructor) */
/* ARGSUSED */
static int pk11_destroy(ENGINE *e)
{
int rtn = 1;
free_PK11_LIBNAME();
ERR_unload_pk11_strings();
if (pk11_library_initialized == CK_TRUE)
rtn = pk11_finish(e);
return (rtn);
}
/*
* Termination function to clean up the session, the token, and the pk11
* library.
*/
/* ARGSUSED */
static int pk11_finish(ENGINE *e)
{
int i;
/*
* Make sure, right engine instance is being destroyed.
* Engine e may be the wrong instance if
* 1) either someone calls ENGINE_load_pk11 twice
* 2) or last ref. to an already finished engine is being destroyed
*/
if (e != pk11_engine)
goto err;
if (pk11_dso == NULL)
{
PK11err(PK11_F_FINISH, PK11_R_NOT_LOADED);
goto err;
}
OPENSSL_assert(pFuncList != NULL);
if (pk11_free_all_sessions() == 0)
goto err;
/* free all active lists */
for (i = 0; i < OP_MAX; i++)
pk11_free_active_list(i);
/* Global session is not present when there are no slots. */
if (global_session != CK_INVALID_HANDLE)
{
pFuncList->C_CloseSession(global_session);
global_session = CK_INVALID_HANDLE;
}
/*
* Since we are part of a library (libcrypto.so), calling this function
* may have side-effects.
*/
#if 0
pFuncList->C_Finalize(NULL);
#endif
if (!DSO_free(pk11_dso))
{
PK11err(PK11_F_FINISH, PK11_R_DSO_FAILURE);
goto err;
}
pk11_dso = NULL;
pFuncList = NULL;
pk11_library_initialized = CK_FALSE;
pk11_pid = 0;
pk11_engine_free();
/*
* There is no way how to unregister atfork handlers (other than
* unloading the library) so we just free the locks. For this reason
* the atfork handlers check if the engine is initialized and bail out
* immediately if not. This is necessary in case a process finishes
* the engine before calling fork().
*/
pk11_free_all_locks();
return (1);
err:
return (0);
}
/* Standard engine interface function to set the dynamic library path */
/* ARGSUSED */
static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
{
int initialized = ((pk11_dso == NULL) ? 0 : 1);
switch (cmd)
{
case PK11_CMD_SO_PATH:
if (p == NULL)
{
PK11err(PK11_F_CTRL, ERR_R_PASSED_NULL_PARAMETER);
return (0);
}
if (initialized)
{
PK11err(PK11_F_CTRL, PK11_R_ALREADY_LOADED);
return (0);
}
return (set_PK11_LIBNAME((const char *)p));
default:
break;
}
PK11err(PK11_F_CTRL, PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED);
return (0);
}
/* Required function by the engine random interface. It does nothing here */
static void pk11_rand_cleanup(void)
{
return;
}
/* ARGSUSED */
static void pk11_rand_add(const void *buf, int num, double add)
{
PK11_SESSION *sp;
if ((sp = pk11_get_session(OP_RAND)) == NULL)
return;
/*
* Ignore any errors (e.g. CKR_RANDOM_SEED_NOT_SUPPORTED) since
* the calling functions do not care anyway
*/
pFuncList->C_SeedRandom(sp->session, (unsigned char *) buf, num);
pk11_return_session(sp, OP_RAND);
return;
}
static void pk11_rand_seed(const void *buf, int num)
{
pk11_rand_add(buf, num, 0);
}
static int pk11_rand_bytes(unsigned char *buf, int num)
{
CK_RV rv;
PK11_SESSION *sp;
if ((sp = pk11_get_session(OP_RAND)) == NULL)
return (0);
rv = pFuncList->C_GenerateRandom(sp->session, buf, num);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_RAND_BYTES, PK11_R_GENERATERANDOM, rv);
pk11_return_session(sp, OP_RAND);
return (0);
}
pk11_return_session(sp, OP_RAND);
return (1);
}
/* Required function by the engine random interface. It does nothing here */
static int pk11_rand_status(void)
{
return (1);
}
/* Free all BIGNUM structures from PK11_SESSION. */
static void pk11_free_nums(PK11_SESSION *sp, PK11_OPTYPE optype)
{
switch (optype)
{
#ifndef OPENSSL_NO_RSA
case OP_RSA:
if (sp->opdata_rsa_n_num != NULL)
{
BN_free(sp->opdata_rsa_n_num);
sp->opdata_rsa_n_num = NULL;
}
if (sp->opdata_rsa_e_num != NULL)
{
BN_free(sp->opdata_rsa_e_num);
sp->opdata_rsa_e_num = NULL;
}
if (sp->opdata_rsa_d_num != NULL)
{
BN_free(sp->opdata_rsa_d_num);
sp->opdata_rsa_d_num = NULL;
}
break;
#endif
#ifndef OPENSSL_NO_DSA
case OP_DSA:
if (sp->opdata_dsa_pub_num != NULL)
{
BN_free(sp->opdata_dsa_pub_num);
sp->opdata_dsa_pub_num = NULL;
}
if (sp->opdata_dsa_priv_num != NULL)
{
BN_free(sp->opdata_dsa_priv_num);
sp->opdata_dsa_priv_num = NULL;
}
break;
#endif
#ifndef OPENSSL_NO_DH
case OP_DH:
if (sp->opdata_dh_priv_num != NULL)
{
BN_free(sp->opdata_dh_priv_num);
sp->opdata_dh_priv_num = NULL;
}
break;
#endif
default:
break;
}
}
/*
* Get new PK11_SESSION structure ready for use. Every process must have
* its own freelist of PK11_SESSION structures so handle fork() here
* by destroying the old and creating new freelist.
* The returned PK11_SESSION structure is disconnected from the freelist.
*/
PK11_SESSION *
pk11_get_session(PK11_OPTYPE optype)
{
PK11_SESSION *sp = NULL, *sp1, *freelist;
pthread_mutex_t *freelist_lock;
static pid_t pid = 0;
pid_t new_pid;
CK_RV rv;
switch (optype)
{
case OP_RSA:
case OP_DSA:
case OP_DH:
case OP_RAND:
case OP_DIGEST:
case OP_CIPHER:
freelist_lock = session_cache[optype].lock;
break;
default:
PK11err(PK11_F_GET_SESSION,
PK11_R_INVALID_OPERATION_TYPE);
return (NULL);
}
(void) pthread_mutex_lock(freelist_lock);
/*
* Will use it to find out if we forked. We cannot use the PID field in
* the session structure because we could get a newly allocated session
* here, with no PID information.
*/
if (pid == 0)
pid = getpid();
freelist = session_cache[optype].head;
sp = freelist;
/*
* If the free list is empty, allocate new uninitialized (filled
* with zeroes) PK11_SESSION structure otherwise return first
* structure from the freelist.
*/
if (sp == NULL)
{
if ((sp = OPENSSL_malloc(sizeof (PK11_SESSION))) == NULL)
{
PK11err(PK11_F_GET_SESSION,
PK11_R_MALLOC_FAILURE);
goto err;
}
(void) memset(sp, 0, sizeof (PK11_SESSION));
/*
* It is a new session so it will look like a cache miss to the
* code below. So, we must not try to to destroy its members so
* mark them as unused.
*/
sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
}
else
freelist = sp->next;
/*
* Check whether we have forked. In that case, we must get rid of all
* inherited sessions and start allocating new ones.
*/
if (pid != (new_pid = getpid()))
{
pid = new_pid;
/*
* We are a new process and thus need to free any inherited
* PK11_SESSION objects aside from the first session (sp) which
* is the only PK11_SESSION structure we will reuse (for the
* head of the list).
*/
while ((sp1 = freelist) != NULL)
{
freelist = sp1->next;
/*
* NOTE: we do not want to call pk11_free_all_sessions()
* here because it would close underlying PKCS#11
* sessions and destroy all objects.
*/
pk11_free_nums(sp1, optype);
OPENSSL_free(sp1);
}
/* we have to free the active list as well. */
pk11_free_active_list(optype);
/* Initialize the process */
rv = pFuncList->C_Initialize(NULL_PTR);
if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
{
PK11err_add_data(PK11_F_GET_SESSION, PK11_R_INITIALIZE,
rv);
OPENSSL_free(sp);
sp = NULL;
goto err;
}
/*
* Choose slot here since the slot table is different on this
* process. If we are here then we must have found at least one
* usable slot before so we don't need to check any_slot_found.
* See pk11_library_init()'s usage of this function for more
* information.
*/
#ifdef SOLARIS_HW_SLOT_SELECTION
if (check_hw_mechanisms() == 0)
goto err;
#endif /* SOLARIS_HW_SLOT_SELECTION */
if (pk11_choose_slots(NULL) == 0)
goto err;
/* Open the global_session for the new process */
rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
NULL_PTR, NULL_PTR, &global_session);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_GET_SESSION, PK11_R_OPENSESSION,
rv);
OPENSSL_free(sp);
sp = NULL;
goto err;
}
/*
* It is an inherited session from our parent so it needs
* re-initialization.
*/
if (pk11_setup_session(sp, optype) == 0)
{
OPENSSL_free(sp);
sp = NULL;
goto err;
}
if (pk11_token_relogin(sp->session) == 0)
{
/*
* We will keep the session in the cache list and let
* the caller cope with the situation.
*/
freelist = sp;
sp = NULL;
goto err;
}
}
if (sp->pid == 0)
{
/* It is a new session and needs initialization. */
if (pk11_setup_session(sp, optype) == 0)
{
OPENSSL_free(sp);
sp = NULL;
}
}
/* set new head for the list of PK11_SESSION objects */
session_cache[optype].head = freelist;
err:
if (sp != NULL)
sp->next = NULL;
(void) pthread_mutex_unlock(freelist_lock);
return (sp);
}
void
pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype)
{
pthread_mutex_t *freelist_lock;
PK11_SESSION *freelist;
/*
* If this is a session from the parent it will be taken care of and
* freed in pk11_get_session() as part of the post-fork clean up the
* next time we will ask for a new session.
*/
if (sp == NULL || sp->pid != getpid())
return;
switch (optype)
{
case OP_RSA:
case OP_DSA:
case OP_DH:
case OP_RAND:
case OP_DIGEST:
case OP_CIPHER:
freelist_lock = session_cache[optype].lock;
break;
default:
PK11err(PK11_F_RETURN_SESSION,
PK11_R_INVALID_OPERATION_TYPE);
return;
}
(void) pthread_mutex_lock(freelist_lock);
freelist = session_cache[optype].head;
sp->next = freelist;
session_cache[optype].head = sp;
(void) pthread_mutex_unlock(freelist_lock);
}
/* Destroy all objects. This function is called when the engine is finished */
static int pk11_free_all_sessions()
{
int ret = 1;
int type;
#ifndef OPENSSL_NO_RSA
(void) pk11_destroy_rsa_key_objects(NULL);
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
(void) pk11_destroy_dsa_key_objects(NULL);
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
(void) pk11_destroy_dh_key_objects(NULL);
#endif /* OPENSSL_NO_DH */
(void) pk11_destroy_cipher_key_objects(NULL);
/*
* We try to release as much as we can but any error means that we will
* return 0 on exit.
*/
for (type = 0; type < OP_MAX; type++)
{
if (pk11_free_session_list(type) == 0)
ret = 0;
}
return (ret);
}
/*
* Destroy session structures from the linked list specified. Free as many
* sessions as possible but any failure in C_CloseSession() means that we
* return an error on return.
*/
static int pk11_free_session_list(PK11_OPTYPE optype)
{
CK_RV rv;
PK11_SESSION *sp = NULL;
PK11_SESSION *freelist = NULL;
pid_t mypid = getpid();
pthread_mutex_t *freelist_lock;
int ret = 1;
switch (optype)
{
case OP_RSA:
case OP_DSA:
case OP_DH:
case OP_RAND:
case OP_DIGEST:
case OP_CIPHER:
freelist_lock = session_cache[optype].lock;
break;
default:
PK11err(PK11_F_FREE_ALL_SESSIONS,
PK11_R_INVALID_OPERATION_TYPE);
return (0);
}
(void) pthread_mutex_lock(freelist_lock);
freelist = session_cache[optype].head;
while ((sp = freelist) != NULL)
{
if (sp->session != CK_INVALID_HANDLE && sp->pid == mypid)
{
rv = pFuncList->C_CloseSession(sp->session);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_FREE_ALL_SESSIONS,
PK11_R_CLOSESESSION, rv);
ret = 0;
}
}
freelist = sp->next;
pk11_free_nums(sp, optype);
OPENSSL_free(sp);
}
(void) pthread_mutex_unlock(freelist_lock);
return (ret);
}
static int
pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype)
{
CK_RV rv;
CK_SLOT_ID myslot;
switch (optype)
{
case OP_RSA:
case OP_DSA:
case OP_DH:
myslot = pubkey_SLOTID;
break;
case OP_RAND:
myslot = rand_SLOTID;
break;
case OP_DIGEST:
case OP_CIPHER:
myslot = SLOTID;
break;
default:
PK11err(PK11_F_SETUP_SESSION,
PK11_R_INVALID_OPERATION_TYPE);
return (0);
}
sp->session = CK_INVALID_HANDLE;
DEBUG_SLOT_SEL("%s: myslot=%d optype=%d\n", PK11_DBG, myslot, optype);
rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
NULL_PTR, NULL_PTR, &sp->session);
if (rv == CKR_CRYPTOKI_NOT_INITIALIZED)
{
/*
* We are probably a child process so force the
* reinitialize of the session
*/
pk11_library_initialized = CK_FALSE;
if (!pk11_library_init(NULL))
return (0);
rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
NULL_PTR, NULL_PTR, &sp->session);
}
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_SETUP_SESSION, PK11_R_OPENSESSION, rv);
return (0);
}
sp->pid = getpid();
switch (optype)
{
#ifndef OPENSSL_NO_RSA
case OP_RSA:
sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
sp->opdata_rsa_pub = NULL;
sp->opdata_rsa_n_num = NULL;
sp->opdata_rsa_e_num = NULL;
sp->opdata_rsa_priv = NULL;
sp->opdata_rsa_d_num = NULL;
break;
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
case OP_DSA:
sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
sp->opdata_dsa_pub = NULL;
sp->opdata_dsa_pub_num = NULL;
sp->opdata_dsa_priv = NULL;
sp->opdata_dsa_priv_num = NULL;
break;
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
case OP_DH:
sp->opdata_dh_key = CK_INVALID_HANDLE;
sp->opdata_dh = NULL;
sp->opdata_dh_priv_num = NULL;
break;
#endif /* OPENSSL_NO_DH */
case OP_CIPHER:
sp->opdata_cipher_key = CK_INVALID_HANDLE;
sp->opdata_encrypt = -1;
break;
}
/*
* We always initialize the session as containing a non-persistent
* object. The key load functions set it to persistent if that is so.
*/
sp->persistent = CK_FALSE;
return (1);
}
#ifndef OPENSSL_NO_RSA
/*
* Destroy all non-NULL RSA parameters. For the RSA keys by reference code,
* public components 'n'/'e' are the key components we use to check for the
* cache hit even for the private keys. So, no matter whether we are destroying
* a public or a private key, we always free what we can.
*/
static void
destroy_all_rsa_params(PK11_SESSION *sp)
{
if (sp->opdata_rsa_n_num != NULL)
{
BN_free(sp->opdata_rsa_n_num);
sp->opdata_rsa_n_num = NULL;
}
if (sp->opdata_rsa_e_num != NULL)
{
BN_free(sp->opdata_rsa_e_num);
sp->opdata_rsa_e_num = NULL;
}
if (sp->opdata_rsa_d_num != NULL)
{
BN_free(sp->opdata_rsa_d_num);
sp->opdata_rsa_d_num = NULL;
}
}
/* Destroy RSA public key from single session. */
int
pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
{
int ret = 0;
if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE)
{
TRY_OBJ_DESTROY(sp, sp->opdata_rsa_pub_key,
ret, uselock, OP_RSA);
sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
sp->opdata_rsa_pub = NULL;
destroy_all_rsa_params(sp);
}
return (ret);
}
/* Destroy RSA private key from single session. */
int
pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
{
int ret = 0;
if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE)
{
TRY_OBJ_DESTROY(sp, sp->opdata_rsa_priv_key,
ret, uselock, OP_RSA);
sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
sp->opdata_rsa_priv = NULL;
destroy_all_rsa_params(sp);
}
return (ret);
}
/*
* Destroy RSA key object wrapper. If session is NULL, try to destroy all
* objects in the free list.
*/
int
pk11_destroy_rsa_key_objects(PK11_SESSION *session)
{
int ret = 1;
PK11_SESSION *sp = NULL;
PK11_SESSION *local_free_session;
CK_BBOOL uselock = CK_TRUE;
if (session != NULL)
local_free_session = session;
else
{
(void) pthread_mutex_lock(session_cache[OP_RSA].lock);
local_free_session = session_cache[OP_RSA].head;
uselock = CK_FALSE;
}
/*
* go through the list of sessions and delete key objects
*/
while ((sp = local_free_session) != NULL)
{
local_free_session = sp->next;
/*
* Do not terminate list traversal if one of the
* destroy operations fails.
*/
if (pk11_destroy_rsa_object_pub(sp, uselock) == 0)
{
ret = 0;
continue;
}
if (pk11_destroy_rsa_object_priv(sp, uselock) == 0)
{
ret = 0;
continue;
}
}
if (session == NULL)
(void) pthread_mutex_unlock(session_cache[OP_RSA].lock);
return (ret);
}
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
/* Destroy DSA public key from single session. */
int
pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
{
int ret = 0;
if (sp->opdata_dsa_pub_key != CK_INVALID_HANDLE)
{
TRY_OBJ_DESTROY(sp, sp->opdata_dsa_pub_key,
ret, uselock, OP_DSA);
sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
sp->opdata_dsa_pub = NULL;
if (sp->opdata_dsa_pub_num != NULL)
{
BN_free(sp->opdata_dsa_pub_num);
sp->opdata_dsa_pub_num = NULL;
}
}
return (ret);
}
/* Destroy DSA private key from single session. */
int
pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
{
int ret = 0;
if (sp->opdata_dsa_priv_key != CK_INVALID_HANDLE)
{
TRY_OBJ_DESTROY(sp, sp->opdata_dsa_priv_key,
ret, uselock, OP_DSA);
sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
sp->opdata_dsa_priv = NULL;
if (sp->opdata_dsa_priv_num != NULL)
{
BN_free(sp->opdata_dsa_priv_num);
sp->opdata_dsa_priv_num = NULL;
}
}
return (ret);
}
/*
* Destroy DSA key object wrapper. If session is NULL, try to destroy all
* objects in the free list.
*/
int
pk11_destroy_dsa_key_objects(PK11_SESSION *session)
{
int ret = 1;
PK11_SESSION *sp = NULL;
PK11_SESSION *local_free_session;
CK_BBOOL uselock = CK_TRUE;
if (session != NULL)
local_free_session = session;
else
{
(void) pthread_mutex_lock(session_cache[OP_DSA].lock);
local_free_session = session_cache[OP_DSA].head;
uselock = CK_FALSE;
}
/*
* go through the list of sessions and delete key objects
*/
while ((sp = local_free_session) != NULL)
{
local_free_session = sp->next;
/*
* Do not terminate list traversal if one of the
* destroy operations fails.
*/
if (pk11_destroy_dsa_object_pub(sp, uselock) == 0)
{
ret = 0;
continue;
}
if (pk11_destroy_dsa_object_priv(sp, uselock) == 0)
{
ret = 0;
continue;
}
}
if (session == NULL)
(void) pthread_mutex_unlock(session_cache[OP_DSA].lock);
return (ret);
}
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
/* Destroy DH key from single session. */
int
pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock)
{
int ret = 0;
if (sp->opdata_dh_key != CK_INVALID_HANDLE)
{
TRY_OBJ_DESTROY(sp, sp->opdata_dh_key,
ret, uselock, OP_DH);
sp->opdata_dh_key = CK_INVALID_HANDLE;
sp->opdata_dh = NULL;
if (sp->opdata_dh_priv_num != NULL)
{
BN_free(sp->opdata_dh_priv_num);
sp->opdata_dh_priv_num = NULL;
}
}
return (ret);
}
/*
* Destroy DH key object wrapper.
*
* arg0: pointer to PKCS#11 engine session structure
* if session is NULL, try to destroy all objects in the free list
*/
int
pk11_destroy_dh_key_objects(PK11_SESSION *session)
{
int ret = 1;
PK11_SESSION *sp = NULL;
PK11_SESSION *local_free_session;
CK_BBOOL uselock = CK_TRUE;
if (session != NULL)
local_free_session = session;
else
{
(void) pthread_mutex_lock(session_cache[OP_DH].lock);
local_free_session = session_cache[OP_DH].head;
uselock = CK_FALSE;
}
while ((sp = local_free_session) != NULL)
{
local_free_session = sp->next;
/*
* Do not terminate list traversal if one of the
* destroy operations fails.
*/
if (pk11_destroy_dh_object(sp, uselock) == 0)
{
ret = 0;
continue;
}
}
if (session == NULL)
(void) pthread_mutex_unlock(session_cache[OP_DH].lock);
return (ret);
}
#endif /* OPENSSL_NO_DH */
static int
pk11_destroy_object(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE oh,
CK_BBOOL persistent)
{
CK_RV rv;
/*
* We never try to destroy persistent objects which are the objects
* stored in the keystore. Also, we always use read-only sessions so
* C_DestroyObject() would be returning CKR_SESSION_READ_ONLY here.
*/
if (persistent == CK_TRUE)
return (1);
rv = pFuncList->C_DestroyObject(session, oh);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DESTROY_OBJECT, PK11_R_DESTROYOBJECT,
rv);
return (0);
}
return (1);
}
/* Symmetric ciphers and digests support functions */
static int
cipher_nid_to_pk11(int nid)
{
int i;
for (i = 0; i < PK11_CIPHER_MAX; i++)
if (ciphers[i].nid == nid)
return (ciphers[i].id);
return (-1);
}
static int
pk11_usable_ciphers(const int **nids)
{
if (cipher_count > 0)
*nids = cipher_nids;
else
*nids = NULL;
return (cipher_count);
}
static int
pk11_usable_digests(const int **nids)
{
if (digest_count > 0)
*nids = digest_nids;
else
*nids = NULL;
return (digest_count);
}
/*
* Init context for encryption or decryption using a symmetric key.
*/
static int pk11_init_symmetric(EVP_CIPHER_CTX *ctx, PK11_CIPHER *pcipher,
PK11_SESSION *sp, CK_MECHANISM_PTR pmech)
{
CK_RV rv;
CK_AES_CTR_PARAMS ctr_params;
/*
* We expect pmech->mechanism to be already set and
* pParameter/ulParameterLen initialized to NULL/0 before
* pk11_init_symmetric() is called.
*/
OPENSSL_assert(pmech->mechanism != NULL);
OPENSSL_assert(pmech->pParameter == NULL);
OPENSSL_assert(pmech->ulParameterLen == 0);
if (ctx->cipher->nid == NID_aes_128_ctr ||
ctx->cipher->nid == NID_aes_192_ctr ||
ctx->cipher->nid == NID_aes_256_ctr)
{
pmech->pParameter = (void *)(&ctr_params);
pmech->ulParameterLen = sizeof (ctr_params);
/*
* For now, we are limited to the fixed length of the counter,
* it covers the whole counter block. That's what RFC 4344
* needs. For more information on internal structure of the
* counter block, see RFC 3686. If needed in the future, we can
* add code so that the counter length can be set via
* ENGINE_ctrl() function.
*/
ctr_params.ulCounterBits = AES_BLOCK_SIZE * 8;
OPENSSL_assert(pcipher->iv_len == AES_BLOCK_SIZE);
(void) memcpy(ctr_params.cb, ctx->iv, AES_BLOCK_SIZE);
}
else
{
if (pcipher->iv_len > 0)
{
pmech->pParameter = (void *)ctx->iv;
pmech->ulParameterLen = pcipher->iv_len;
}
}
/* if we get here, the encryption needs to be reinitialized */
if (ctx->encrypt)
rv = pFuncList->C_EncryptInit(sp->session, pmech,
sp->opdata_cipher_key);
else
rv = pFuncList->C_DecryptInit(sp->session, pmech,
sp->opdata_cipher_key);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CIPHER_INIT, ctx->encrypt ?
PK11_R_ENCRYPTINIT : PK11_R_DECRYPTINIT, rv);
pk11_return_session(sp, OP_CIPHER);
return (0);
}
return (1);
}
/* ARGSUSED */
static int
pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
CK_MECHANISM mech;
int index;
PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
PK11_SESSION *sp;
PK11_CIPHER *p_ciph_table_row;
state->sp = NULL;
index = cipher_nid_to_pk11(ctx->cipher->nid);
if (index < 0 || index >= PK11_CIPHER_MAX)
return (0);
p_ciph_table_row = &ciphers[index];
/*
* iv_len in the ctx->cipher structure is the maximum IV length for the
* current cipher and it must be less or equal to the IV length in our
* ciphers table. The key length must be in the allowed interval. From
* all cipher modes that the PKCS#11 engine supports only RC4 allows a
* key length to be in some range, all other NIDs have a precise key
* length. Every application can define its own EVP functions so this
* code serves as a sanity check.
*
* Note that the reason why the IV length in ctx->cipher might be
* greater than the actual length is that OpenSSL uses BLOCK_CIPHER_defs
* macro to define functions that return EVP structures for all DES
* modes. So, even ECB modes get 8 byte IV.
*/
if (ctx->cipher->iv_len < p_ciph_table_row->iv_len ||
ctx->key_len < p_ciph_table_row->min_key_len ||
ctx->key_len > p_ciph_table_row->max_key_len) {
PK11err(PK11_F_CIPHER_INIT, PK11_R_KEY_OR_IV_LEN_PROBLEM);
return (0);
}
if ((sp = pk11_get_session(OP_CIPHER)) == NULL)
return (0);
/* if applicable, the mechanism parameter is used for IV */
mech.mechanism = p_ciph_table_row->mech_type;
mech.pParameter = NULL;
mech.ulParameterLen = 0;
/* The key object is destroyed here if it is not the current key. */
(void) check_new_cipher_key(sp, key, ctx->key_len);
/*
* If the key is the same and the encryption is also the same, then
* just reuse it. However, we must not forget to reinitialize the
* context that was finalized in pk11_cipher_cleanup().
*/
if (sp->opdata_cipher_key != CK_INVALID_HANDLE &&
sp->opdata_encrypt == ctx->encrypt)
{
state->sp = sp;
if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
return (0);
return (1);
}
/*
* Check if the key has been invalidated. If so, a new key object
* needs to be created.
*/
if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
{
sp->opdata_cipher_key = pk11_get_cipher_key(
ctx, key, p_ciph_table_row->key_type, sp);
}
if (sp->opdata_encrypt != ctx->encrypt && sp->opdata_encrypt != -1)
{
/*
* The previous encryption/decryption is different. Need to
* terminate the previous * active encryption/decryption here.
*/
if (!pk11_cipher_final(sp))
{
pk11_return_session(sp, OP_CIPHER);
return (0);
}
}
if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
{
pk11_return_session(sp, OP_CIPHER);
return (0);
}
/* now initialize the context with a new key */
if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
return (0);
sp->opdata_encrypt = ctx->encrypt;
state->sp = sp;
return (1);
}
/*
* When reusing the same key in an encryption/decryption session for a
* decryption/encryption session, we need to close the active session
* and recreate a new one. Note that the key is in the global session so
* that it needs not be recreated.
*
* It is more appropriate to use C_En/DecryptFinish here. At the time of this
* development, these two functions in the PKCS#11 libraries used return
* unexpected errors when passing in 0 length output. It may be a good
* idea to try them again if performance is a problem here and fix
* C_En/DecryptFinial if there are bugs there causing the problem.
*/
static int
pk11_cipher_final(PK11_SESSION *sp)
{
CK_RV rv;
rv = pFuncList->C_CloseSession(sp->session);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_CLOSESESSION, rv);
return (0);
}
rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
NULL_PTR, NULL_PTR, &sp->session);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_OPENSESSION, rv);
return (0);
}
return (1);
}
/*
* An engine interface function. The calling function allocates sufficient
* memory for the output buffer "out" to hold the results.
*/
static int
pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
PK11_SESSION *sp;
CK_RV rv;
unsigned long outl = inl;
if (state == NULL || state->sp == NULL)
return (0);
sp = (PK11_SESSION *) state->sp;
if (!inl)
return (1);
/* RC4 is the only stream cipher we support */
if (ctx->cipher->nid != NID_rc4 && (inl % ctx->cipher->block_size) != 0)
return (0);
if (ctx->encrypt)
{
rv = pFuncList->C_EncryptUpdate(sp->session,
(unsigned char *)in, inl, out, &outl);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
PK11_R_ENCRYPTUPDATE, rv);
return (0);
}
}
else
{
rv = pFuncList->C_DecryptUpdate(sp->session,
(unsigned char *)in, inl, out, &outl);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
PK11_R_DECRYPTUPDATE, rv);
return (0);
}
}
/*
* For DES_CBC, DES3_CBC, AES_CBC, and RC4, the output size is always
* the same size of input.
* The application has guaranteed to call the block ciphers with
* correctly aligned buffers.
*/
if (inl != outl)
return (0);
return (1);
}
/*
* Return the session to the pool. Calling C_EncryptFinal() and C_DecryptFinal()
* here is the right thing because in EVP_DecryptFinal_ex(), engine's
* do_cipher() is not even called, and in EVP_EncryptFinal_ex() it is called but
* the engine can't find out that it's the finalizing call. We wouldn't
* necessarily have to finalize the context here since reinitializing it with
* C_(Encrypt|Decrypt)Init() should be fine but for the sake of correctness,
* let's do it. Some implementations might leak memory if the previously used
* context is initialized without finalizing it first.
*/
static int
pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx)
{
CK_RV rv;
CK_ULONG len = EVP_MAX_BLOCK_LENGTH;
CK_BYTE buf[EVP_MAX_BLOCK_LENGTH];
PK11_CIPHER_STATE *state = ctx->cipher_data;
if (state != NULL && state->sp != NULL)
{
/*
* We are not interested in the data here, we just need to get
* rid of the context.
*/
if (ctx->encrypt)
rv = pFuncList->C_EncryptFinal(
state->sp->session, buf, &len);
else
rv = pFuncList->C_DecryptFinal(
state->sp->session, buf, &len);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CIPHER_CLEANUP, ctx->encrypt ?
PK11_R_ENCRYPTFINAL : PK11_R_DECRYPTFINAL, rv);
pk11_return_session(state->sp, OP_CIPHER);
return (0);
}
pk11_return_session(state->sp, OP_CIPHER);
state->sp = NULL;
}
return (1);
}
/*
* Registered by the ENGINE when used to find out how to deal with
* a particular NID in the ENGINE. This says what we'll do at the
* top level - note, that list is restricted by what we answer with
*/
/* ARGSUSED */
static int
pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid)
{
if (!cipher)
return (pk11_usable_ciphers(nids));
switch (nid)
{
case NID_des_ede3_cbc:
*cipher = &pk11_3des_cbc;
break;
case NID_des_cbc:
*cipher = &pk11_des_cbc;
break;
case NID_des_ede3_ecb:
*cipher = &pk11_3des_ecb;
break;
case NID_des_ecb:
*cipher = &pk11_des_ecb;
break;
case NID_aes_128_cbc:
*cipher = &pk11_aes_128_cbc;
break;
case NID_aes_192_cbc:
*cipher = &pk11_aes_192_cbc;
break;
case NID_aes_256_cbc:
*cipher = &pk11_aes_256_cbc;
break;
case NID_aes_128_ecb:
*cipher = &pk11_aes_128_ecb;
break;
case NID_aes_192_ecb:
*cipher = &pk11_aes_192_ecb;
break;
case NID_aes_256_ecb:
*cipher = &pk11_aes_256_ecb;
break;
case NID_aes_128_ctr:
*cipher = &pk11_aes_128_ctr;
break;
case NID_aes_192_ctr:
*cipher = &pk11_aes_192_ctr;
break;
case NID_aes_256_ctr:
*cipher = &pk11_aes_256_ctr;
break;
case NID_bf_cbc:
*cipher = &pk11_bf_cbc;
break;
case NID_rc4:
*cipher = &pk11_rc4;
break;
default:
*cipher = NULL;
break;
}
return (*cipher != NULL);
}
/* ARGSUSED */
static int
pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid)
{
if (!digest)
return (pk11_usable_digests(nids));
switch (nid)
{
case NID_md5:
*digest = &pk11_md5;
break;
/*
* A special case. For "openssl dgst -dss1 -engine pkcs11 ...",
* OpenSSL calls EVP_get_digestbyname() on "dss1" which ends up
* calling pk11_engine_digests() for NID_dsa. Internally, if an
* engine is not used, OpenSSL uses SHA1_Init() as expected for
* DSA. So, we must return pk11_sha1() for NID_dsa as well. Note
* that this must have changed between 0.9.8 and 1.0.0 since we
* did not have the problem with the 0.9.8 version.
*/
case NID_sha1:
case NID_dsa:
*digest = &pk11_sha1;
break;
case NID_sha224:
*digest = &pk11_sha224;
break;
case NID_sha256:
*digest = &pk11_sha256;
break;
case NID_sha384:
*digest = &pk11_sha384;
break;
case NID_sha512:
*digest = &pk11_sha512;
break;
default:
*digest = NULL;
break;
}
return (*digest != NULL);
}
/* Create a secret key object in a PKCS#11 session */
static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp)
{
CK_RV rv;
CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
CK_OBJECT_CLASS obj_key = CKO_SECRET_KEY;
CK_ULONG ul_key_attr_count = 6;
CK_ATTRIBUTE a_key_template[] =
{
{CKA_CLASS, (void*) NULL, sizeof (CK_OBJECT_CLASS)},
{CKA_KEY_TYPE, (void*) NULL, sizeof (CK_KEY_TYPE)},
{CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
{CKA_ENCRYPT, &pk11_true, sizeof (pk11_true)},
{CKA_DECRYPT, &pk11_true, sizeof (pk11_true)},
{CKA_VALUE, (void*) NULL, 0},
};
/*
* Create secret key object in global_session. All other sessions
* can use the key handles. Here is why:
* OpenSSL will call EncryptInit and EncryptUpdate using a secret key.
* It may then call DecryptInit and DecryptUpdate using the same key.
* To use the same key object, we need to call EncryptFinal with
* a 0 length message. Currently, this does not work for 3DES
* mechanism. To get around this problem, we close the session and
* then create a new session to use the same key object. When a session
* is closed, all the object handles will be invalid. Thus, create key
* objects in a global session, an individual session may be closed to
* terminate the active operation.
*/
CK_SESSION_HANDLE session = global_session;
a_key_template[0].pValue = &obj_key;
a_key_template[1].pValue = &key_type;
a_key_template[5].pValue = (void *) key;
a_key_template[5].ulValueLen = (unsigned long) ctx->key_len;
rv = pFuncList->C_CreateObject(session,
a_key_template, ul_key_attr_count, &h_key);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_GET_CIPHER_KEY, PK11_R_CREATEOBJECT,
rv);
goto err;
}
/*
* Save the key information used in this session.
* The max can be saved is PK11_KEY_LEN_MAX.
*/
sp->opdata_key_len = ctx->key_len > PK11_KEY_LEN_MAX ?
PK11_KEY_LEN_MAX : ctx->key_len;
(void) memcpy(sp->opdata_key, key, sp->opdata_key_len);
err:
return (h_key);
}
static int
md_nid_to_pk11(int nid)
{
int i;
for (i = 0; i < PK11_DIGEST_MAX; i++)
if (digests[i].nid == nid)
return (digests[i].id);
return (-1);
}
static int
pk11_digest_init(EVP_MD_CTX *ctx)
{
CK_RV rv;
CK_MECHANISM mech;
int index;
PK11_SESSION *sp;
PK11_DIGEST *pdp;
PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
state->sp = NULL;
index = md_nid_to_pk11(ctx->digest->type);
if (index < 0 || index >= PK11_DIGEST_MAX)
return (0);
pdp = &digests[index];
if ((sp = pk11_get_session(OP_DIGEST)) == NULL)
return (0);
/* at present, no parameter is needed for supported digests */
mech.mechanism = pdp->mech_type;
mech.pParameter = NULL;
mech.ulParameterLen = 0;
rv = pFuncList->C_DigestInit(sp->session, &mech);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DIGEST_INIT, PK11_R_DIGESTINIT, rv);
pk11_return_session(sp, OP_DIGEST);
return (0);
}
state->sp = sp;
return (1);
}
static int
pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count)
{
CK_RV rv;
PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
/* 0 length message will cause a failure in C_DigestFinal */
if (count == 0)
return (1);
if (state == NULL || state->sp == NULL)
return (0);
rv = pFuncList->C_DigestUpdate(state->sp->session, (CK_BYTE *) data,
count);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DIGEST_UPDATE, PK11_R_DIGESTUPDATE, rv);
pk11_return_session(state->sp, OP_DIGEST);
state->sp = NULL;
return (0);
}
return (1);
}
static int
pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
{
CK_RV rv;
unsigned long len;
PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
len = ctx->digest->md_size;
if (state == NULL || state->sp == NULL)
return (0);
rv = pFuncList->C_DigestFinal(state->sp->session, md, &len);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DIGEST_FINAL, PK11_R_DIGESTFINAL, rv);
pk11_return_session(state->sp, OP_DIGEST);
state->sp = NULL;
return (0);
}
if (ctx->digest->md_size != len)
return (0);
/*
* Final is called and digest is returned, so return the session
* to the pool
*/
pk11_return_session(state->sp, OP_DIGEST);
state->sp = NULL;
return (1);
}
static int
pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
{
CK_RV rv;
int ret = 0;
PK11_CIPHER_STATE *state, *state_to;
CK_BYTE_PTR pstate = NULL;
CK_ULONG ul_state_len;
if (from->md_data == NULL || to->digest->ctx_size == 0)
return (1);
/* The copy-from state */
state = (PK11_CIPHER_STATE *) from->md_data;
if (state->sp == NULL)
goto err;
/* Initialize the copy-to state */
if (!pk11_digest_init(to))
goto err;
state_to = (PK11_CIPHER_STATE *) to->md_data;
/* Get the size of the operation state of the copy-from session */
rv = pFuncList->C_GetOperationState(state->sp->session, NULL,
&ul_state_len);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
rv);
goto err;
}
if (ul_state_len == 0)
{
goto err;
}
pstate = OPENSSL_malloc(ul_state_len);
if (pstate == NULL)
{
PK11err(PK11_F_DIGEST_COPY, PK11_R_MALLOC_FAILURE);
goto err;
}
/* Get the operation state of the copy-from session */
rv = pFuncList->C_GetOperationState(state->sp->session, pstate,
&ul_state_len);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
rv);
goto err;
}
/* Set the operation state of the copy-to session */
rv = pFuncList->C_SetOperationState(state_to->sp->session, pstate,
ul_state_len, 0, 0);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_DIGEST_COPY,
PK11_R_SET_OPERATION_STATE, rv);
goto err;
}
ret = 1;
err:
if (pstate != NULL)
OPENSSL_free(pstate);
return (ret);
}
/* Return any pending session state to the pool */
static int
pk11_digest_cleanup(EVP_MD_CTX *ctx)
{
PK11_CIPHER_STATE *state = ctx->md_data;
unsigned char buf[EVP_MAX_MD_SIZE];
if (state != NULL && state->sp != NULL)
{
/*
* If state->sp is not NULL then pk11_digest_final() has not
* been called yet. We must call it now to free any memory
* that might have been allocated in the token when
* pk11_digest_init() was called. pk11_digest_final()
* will return the session to the cache.
*/
if (!pk11_digest_final(ctx, buf))
return (0);
}
return (1);
}
/*
* Check if the new key is the same as the key object in the session. If the key
* is the same, no need to create a new key object. Otherwise, the old key
* object needs to be destroyed and a new one will be created. Return 1 for
* cache hit, 0 for cache miss. Note that we must check the key length first
* otherwise we could end up reusing a different, longer key with the same
* prefix.
*/
static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
int key_len)
{
if (sp->opdata_key_len != key_len ||
memcmp(sp->opdata_key, key, key_len) != 0)
{
(void) pk11_destroy_cipher_key_objects(sp);
return (0);
}
return (1);
}
/* Destroy one or more secret key objects. */
static int pk11_destroy_cipher_key_objects(PK11_SESSION *session)
{
int ret = 0;
PK11_SESSION *sp = NULL;
PK11_SESSION *local_free_session;
if (session != NULL)
local_free_session = session;
else
{
(void) pthread_mutex_lock(session_cache[OP_CIPHER].lock);
local_free_session = session_cache[OP_CIPHER].head;
}
while ((sp = local_free_session) != NULL)
{
local_free_session = sp->next;
if (sp->opdata_cipher_key != CK_INVALID_HANDLE)
{
/*
* The secret key object is created in the
* global_session. See pk11_get_cipher_key().
*/
if (pk11_destroy_object(global_session,
sp->opdata_cipher_key, CK_FALSE) == 0)
goto err;
sp->opdata_cipher_key = CK_INVALID_HANDLE;
}
}
ret = 1;
err:
if (session == NULL)
(void) pthread_mutex_unlock(session_cache[OP_CIPHER].lock);
return (ret);
}
/*
* Public key mechanisms optionally supported
*
* CKM_RSA_X_509
* CKM_RSA_PKCS
* CKM_DSA
*
* The first slot that supports at least one of those mechanisms is chosen as a
* public key slot.
*
* Symmetric ciphers optionally supported
*
* CKM_DES3_CBC
* CKM_DES_CBC
* CKM_AES_CBC
* CKM_DES3_ECB
* CKM_DES_ECB
* CKM_AES_ECB
* CKM_AES_CTR
* CKM_RC4
* CKM_BLOWFISH_CBC
*
* Digests optionally supported
*
* CKM_MD5
* CKM_SHA_1
* CKM_SHA224
* CKM_SHA256
* CKM_SHA384
* CKM_SHA512
*
* The output of this function is a set of global variables indicating which
* mechanisms from RSA, DSA, DH and RAND are present, and also two arrays of
* mechanisms, one for symmetric ciphers and one for digests. Also, 3 global
* variables carry information about which slot was chosen for (a) public key
* mechanisms, (b) random operations, and (c) symmetric ciphers and digests.
*/
static int
pk11_choose_slots(int *any_slot_found)
{
CK_SLOT_ID_PTR pSlotList = NULL_PTR;
CK_ULONG ulSlotCount = 0;
CK_MECHANISM_INFO mech_info;
CK_TOKEN_INFO token_info;
int i;
CK_RV rv;
CK_SLOT_ID best_slot_sofar;
CK_BBOOL found_candidate_slot = CK_FALSE;
int slot_n_cipher = 0;
int slot_n_digest = 0;
CK_SLOT_ID current_slot = 0;
int current_slot_n_cipher = 0;
int current_slot_n_digest = 0;
int local_cipher_nids[PK11_CIPHER_MAX];
int local_digest_nids[PK11_DIGEST_MAX];
/* let's initialize the output parameter */
if (any_slot_found != NULL)
*any_slot_found = 0;
/* Get slot list for memory allocation */
rv = pFuncList->C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
return (0);
}
/* it's not an error if we didn't find any providers */
if (ulSlotCount == 0)
{
DEBUG_SLOT_SEL("%s: no crypto providers found\n", PK11_DBG);
return (1);
}
pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
if (pSlotList == NULL)
{
PK11err(PK11_F_CHOOSE_SLOT, PK11_R_MALLOC_FAILURE);
return (0);
}
/* Get the slot list for processing */
rv = pFuncList->C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);
if (rv != CKR_OK)
{
PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
OPENSSL_free(pSlotList);
return (0);
}
DEBUG_SLOT_SEL("%s: provider: %s\n", PK11_DBG, def_PK11_LIBNAME);
DEBUG_SLOT_SEL("%s: number of slots: %d\n", PK11_DBG, ulSlotCount);
DEBUG_SLOT_SEL("%s: == checking rand slots ==\n", PK11_DBG);
for (i = 0; i < ulSlotCount; i++)
{
current_slot = pSlotList[i];
DEBUG_SLOT_SEL("%s: checking slot: %d\n", PK11_DBG, i);
/* Check if slot has random support. */
rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
if (rv != CKR_OK)
continue;
DEBUG_SLOT_SEL("%s: token label: %.32s\n", PK11_DBG,
token_info.label);
if (token_info.flags & CKF_RNG)
{
DEBUG_SLOT_SEL(
"%s: this token has CKF_RNG flag\n", PK11_DBG);
pk11_have_random = CK_TRUE;
rand_SLOTID = current_slot;
break;
}
}
DEBUG_SLOT_SEL("%s: == checking pubkey slots ==\n", PK11_DBG);
pubkey_SLOTID = pSlotList[0];
for (i = 0; i < ulSlotCount; i++)
{
CK_BBOOL slot_has_rsa = CK_FALSE;
CK_BBOOL slot_has_dsa = CK_FALSE;
CK_BBOOL slot_has_dh = CK_FALSE;
current_slot = pSlotList[i];
DEBUG_SLOT_SEL("%s: checking slot: %d\n", PK11_DBG, i);
rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
if (rv != CKR_OK)
continue;
DEBUG_SLOT_SEL("%s: token label: %.32s\n", PK11_DBG,
token_info.label);
#ifndef OPENSSL_NO_RSA
/*
* Check if this slot is capable of signing and
* verifying with CKM_RSA_PKCS.
*/
rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_PKCS,
&mech_info);
if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
(mech_info.flags & CKF_VERIFY)))
{
/*
* Check if this slot is capable of encryption,
* decryption, sign, and verify with CKM_RSA_X_509.
*/
rv = pFuncList->C_GetMechanismInfo(current_slot,
CKM_RSA_X_509, &mech_info);
if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
(mech_info.flags & CKF_VERIFY) &&
(mech_info.flags & CKF_ENCRYPT) &&
(mech_info.flags & CKF_VERIFY_RECOVER) &&
(mech_info.flags & CKF_DECRYPT)))
{
slot_has_rsa = CK_TRUE;
}
}
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
/*
* Check if this slot is capable of signing and
* verifying with CKM_DSA.
*/
rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DSA,
&mech_info);
if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
(mech_info.flags & CKF_VERIFY)))
{
slot_has_dsa = CK_TRUE;
}
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
/*
* Check if this slot is capable of DH key generataion and
* derivation.
*/
rv = pFuncList->C_GetMechanismInfo(current_slot,
CKM_DH_PKCS_KEY_PAIR_GEN, &mech_info);
if (rv == CKR_OK && (mech_info.flags & CKF_GENERATE_KEY_PAIR))
{
rv = pFuncList->C_GetMechanismInfo(current_slot,
CKM_DH_PKCS_DERIVE, &mech_info);
if (rv == CKR_OK && (mech_info.flags & CKF_DERIVE))
{
slot_has_dh = CK_TRUE;
}
}
#endif /* OPENSSL_NO_DH */
if (!found_candidate_slot &&
(slot_has_rsa || slot_has_dsa || slot_has_dh))
{
DEBUG_SLOT_SEL(
"%s: potential slot: %d\n", PK11_DBG, current_slot);
best_slot_sofar = current_slot;
pk11_have_rsa = slot_has_rsa;
pk11_have_dsa = slot_has_dsa;
pk11_have_dh = slot_has_dh;
found_candidate_slot = CK_TRUE;
/*
* Cache the flags for later use. We might need those if
* RSA keys by reference feature is used.
*/
pubkey_token_flags = token_info.flags;
DEBUG_SLOT_SEL(
"%s: setting found_candidate_slot to CK_TRUE\n",
PK11_DBG);
DEBUG_SLOT_SEL("%s: best slot so far: %d\n", PK11_DBG,
best_slot_sofar);
DEBUG_SLOT_SEL("%s: pubkey flags changed to "
"%lu.\n", PK11_DBG, pubkey_token_flags);
}
else
{
DEBUG_SLOT_SEL("%s: no rsa/dsa/dh\n", PK11_DBG);
}
} /* for */
if (found_candidate_slot == CK_TRUE)
{
pubkey_SLOTID = best_slot_sofar;
}
found_candidate_slot = CK_FALSE;
best_slot_sofar = 0;
DEBUG_SLOT_SEL("%s: == checking cipher/digest ==\n", PK11_DBG);
SLOTID = pSlotList[0];
for (i = 0; i < ulSlotCount; i++)
{
DEBUG_SLOT_SEL("%s: checking slot: %d\n", PK11_DBG, i);
current_slot = pSlotList[i];
current_slot_n_cipher = 0;
current_slot_n_digest = 0;
(void) memset(local_cipher_nids, 0, sizeof (local_cipher_nids));
(void) memset(local_digest_nids, 0, sizeof (local_digest_nids));
pk11_find_symmetric_ciphers(pFuncList, current_slot,
&current_slot_n_cipher, local_cipher_nids);
pk11_find_digests(pFuncList, current_slot,
&current_slot_n_digest, local_digest_nids);
DEBUG_SLOT_SEL("%s: current_slot_n_cipher %d\n", PK11_DBG,
current_slot_n_cipher);
DEBUG_SLOT_SEL("%s: current_slot_n_digest %d\n", PK11_DBG,
current_slot_n_digest);
DEBUG_SLOT_SEL("%s: best cipher/digest slot so far: %d\n",
PK11_DBG, best_slot_sofar);
/*
* If the current slot supports more ciphers/digests than
* the previous best one we change the current best to this one,
* otherwise leave it where it is.
*/
if ((current_slot_n_cipher + current_slot_n_digest) >
(slot_n_cipher + slot_n_digest))
{
DEBUG_SLOT_SEL("%s: changing best slot to %d\n",
PK11_DBG, current_slot);
best_slot_sofar = SLOTID = current_slot;
cipher_count = slot_n_cipher = current_slot_n_cipher;
digest_count = slot_n_digest = current_slot_n_digest;
(void) memcpy(cipher_nids, local_cipher_nids,
sizeof (local_cipher_nids));
(void) memcpy(digest_nids, local_digest_nids,
sizeof (local_digest_nids));
}
}
DEBUG_SLOT_SEL("%s: chosen pubkey slot: %d\n", PK11_DBG, pubkey_SLOTID);
DEBUG_SLOT_SEL("%s: chosen rand slot: %d\n", PK11_DBG, rand_SLOTID);
DEBUG_SLOT_SEL("%s: chosen cipher/digest slot: %d\n", PK11_DBG, SLOTID);
DEBUG_SLOT_SEL("%s: pk11_have_rsa %d\n", PK11_DBG, pk11_have_rsa);
DEBUG_SLOT_SEL("%s: pk11_have_dsa %d\n", PK11_DBG, pk11_have_dsa);
DEBUG_SLOT_SEL("%s: pk11_have_dh %d\n", PK11_DBG, pk11_have_dh);
DEBUG_SLOT_SEL("%s: pk11_have_random %d\n", PK11_DBG, pk11_have_random);
DEBUG_SLOT_SEL("%s: cipher_count %d\n", PK11_DBG, cipher_count);
DEBUG_SLOT_SEL("%s: digest_count %d\n", PK11_DBG, digest_count);
if (pSlotList != NULL)
OPENSSL_free(pSlotList);
#ifdef SOLARIS_HW_SLOT_SELECTION
OPENSSL_free(hw_cnids);
OPENSSL_free(hw_dnids);
#endif /* SOLARIS_HW_SLOT_SELECTION */
if (any_slot_found != NULL)
*any_slot_found = 1;
return (1);
}
static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist,
int slot_id, int *current_slot_n_cipher, int *local_cipher_nids,
PK11_CIPHER *cipher)
{
CK_MECHANISM_INFO mech_info;
CK_RV rv;
DEBUG_SLOT_SEL("%s: checking mech: %x", PK11_DBG, cipher->mech_type);
rv = pflist->C_GetMechanismInfo(slot_id, cipher->mech_type, &mech_info);
if (rv != CKR_OK)
{
DEBUG_SLOT_SEL(" not found\n");
return;
}
if ((mech_info.flags & CKF_ENCRYPT) &&
(mech_info.flags & CKF_DECRYPT))
{
if (mech_info.ulMinKeySize > cipher->min_key_len ||
mech_info.ulMaxKeySize < cipher->max_key_len)
{
DEBUG_SLOT_SEL(" engine key size range <%i-%i> does not"
" match mech range <%lu-%lu>\n",
cipher->min_key_len, cipher->max_key_len,
mech_info.ulMinKeySize, mech_info.ulMaxKeySize);
return;
}
#ifdef SOLARIS_HW_SLOT_SELECTION
if (nid_in_table(cipher->nid, hw_cnids))
#endif /* SOLARIS_HW_SLOT_SELECTION */
{
DEBUG_SLOT_SEL(" usable\n");
local_cipher_nids[(*current_slot_n_cipher)++] =
cipher->nid;
}
#ifdef SOLARIS_HW_SLOT_SELECTION
else
{
DEBUG_SLOT_SEL(
" rejected, software implementation only\n");
}
#endif /* SOLARIS_HW_SLOT_SELECTION */
}
else
{
DEBUG_SLOT_SEL(" unusable\n");
}
return;
}
static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
int *current_slot_n_digest, int *local_digest_nids, PK11_DIGEST *digest)
{
CK_MECHANISM_INFO mech_info;
CK_RV rv;
DEBUG_SLOT_SEL("%s: checking mech: %x", PK11_DBG, digest->mech_type);
rv = pflist->C_GetMechanismInfo(slot_id, digest->mech_type, &mech_info);
if (rv != CKR_OK)
{
DEBUG_SLOT_SEL(" not found\n");
return;
}
if (mech_info.flags & CKF_DIGEST)
{
#ifdef SOLARIS_HW_SLOT_SELECTION
if (nid_in_table(digest->nid, hw_dnids))
#endif /* SOLARIS_HW_SLOT_SELECTION */
{
DEBUG_SLOT_SEL(" usable\n");
local_digest_nids[(*current_slot_n_digest)++] =
digest->nid;
}
#ifdef SOLARIS_HW_SLOT_SELECTION
else
{
DEBUG_SLOT_SEL(
" rejected, software implementation only\n");
}
#endif /* SOLARIS_HW_SLOT_SELECTION */
}
else
{
DEBUG_SLOT_SEL(" unusable\n");
}
return;
}
/* Find what symmetric ciphers this slot supports. */
static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids)
{
int i;
for (i = 0; i < PK11_CIPHER_MAX; ++i)
{
pk11_get_symmetric_cipher(pflist, current_slot,
current_slot_n_cipher, local_cipher_nids, &ciphers[i]);
}
}
/* Find what digest algorithms this slot supports. */
static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids)
{
int i;
for (i = 0; i < PK11_DIGEST_MAX; ++i)
{
pk11_get_digest(pflist, current_slot, current_slot_n_digest,
local_digest_nids, &digests[i]);
}
}
#ifdef SOLARIS_HW_SLOT_SELECTION
/*
* It would be great if we could use pkcs11_kernel directly since this library
* offers hardware slots only. That's the easiest way to achieve the situation
* where we use the hardware accelerators when present and OpenSSL native code
* otherwise. That presumes the fact that OpenSSL native code is faster than the
* code in the soft token. It's a logical assumption - Crypto Framework has some
* inherent overhead so going there for the software implementation of a
* mechanism should be logically slower in contrast to the OpenSSL native code,
* presuming that both implementations are of similar speed. For example, the
* soft token for AES is roughly three times slower than OpenSSL for 64 byte
* blocks and still 20% slower for 8KB blocks. So, if we want to ship products
* that use the PKCS#11 engine by default, we must somehow avoid that regression
* on machines without hardware acceleration. That's why switching to the
* pkcs11_kernel library seems like a very good idea.
*
* The problem is that OpenSSL built with SunStudio is roughly 2x slower for
* asymmetric operations (RSA/DSA/DH) than the soft token built with the same
* compiler. That means that if we switched to pkcs11_kernel from the libpkcs11
* library, we would have had a performance regression on machines without
* hardware acceleration for asymmetric operations for all applications that use
* the PKCS#11 engine. There is one such application - Apache web server since
* it's shipped configured to use the PKCS#11 engine by default. Having said
* that, we can't switch to the pkcs11_kernel library now and have to come with
* a solution that, on non-accelerated machines, uses the OpenSSL native code
* for all symmetric ciphers and digests while it uses the soft token for
* asymmetric operations.
*
* This is the idea: dlopen() pkcs11_kernel directly and find out what
* mechanisms are there. We don't care about duplications (more slots can
* support the same mechanism), we just want to know what mechanisms can be
* possibly supported in hardware on that particular machine. As said before,
* pkcs11_kernel will show you hardware providers only.
*
* Then, we rely on the fact that since we use libpkcs11 library we will find
* the metaslot. When we go through the metaslot's mechanisms for symmetric
* ciphers and digests, we check that any found mechanism is in the table
* created using the pkcs11_kernel library. So, as a result we have two arrays
* of mechanisms that were advertised as supported in hardware which was the
* goal of that whole exercise. Thus, we can use libpkcs11 but avoid soft token
* code for symmetric ciphers and digests. See pk11_choose_slots() for more
* information.
*
* This is Solaris specific code, if SOLARIS_HW_SLOT_SELECTION is not defined
* the code won't be used.
*/
#if defined(__sparcv9) || defined(__x86_64) || defined(__amd64)
static const char pkcs11_kernel[] = "/usr/lib/security/64/pkcs11_kernel.so.1";
#else
static const char pkcs11_kernel[] = "/usr/lib/security/pkcs11_kernel.so.1";
#endif
/*
* Check hardware capabilities of the machines. The output are two lists,
* hw_cnids and hw_dnids, that contain hardware mechanisms found in all hardware
* providers together. They are not sorted and may contain duplicate mechanisms.
*/
static int check_hw_mechanisms(void)
{
int i;
CK_RV rv;
void *handle;
CK_C_GetFunctionList p;
CK_TOKEN_INFO token_info;
CK_ULONG ulSlotCount = 0;
int n_cipher = 0, n_digest = 0;
CK_FUNCTION_LIST_PTR pflist = NULL;
CK_SLOT_ID_PTR pSlotList = NULL_PTR;
int *tmp_hw_cnids = NULL, *tmp_hw_dnids = NULL;
int hw_ctable_size, hw_dtable_size;
DEBUG_SLOT_SEL("%s: SOLARIS_HW_SLOT_SELECTION code running\n",
PK11_DBG);
/*
* Use RTLD_GROUP to limit the pkcs11_kernel provider to its own
* symbols, which prevents it from mistakenly accessing C_* functions
* from the top-level PKCS#11 library.
*/
if ((handle = dlopen(pkcs11_kernel, RTLD_LAZY | RTLD_GROUP)) == NULL)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
goto err;
}
if ((p = (CK_C_GetFunctionList)dlsym(handle,
PK11_GET_FUNCTION_LIST)) == NULL)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
goto err;
}
/* get the full function list from the loaded library */
if (p(&pflist) != CKR_OK)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
goto err;
}
rv = pflist->C_Initialize(NULL_PTR);
if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
{
PK11err_add_data(PK11_F_CHECK_HW_MECHANISMS,
PK11_R_INITIALIZE, rv);
goto err;
}
if (pflist->C_GetSlotList(0, NULL_PTR, &ulSlotCount) != CKR_OK)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
goto err;
}
/* no slots, set the hw mechanism tables as empty */
if (ulSlotCount == 0)
{
DEBUG_SLOT_SEL("%s: no hardware mechanisms found\n", PK11_DBG);
hw_cnids = OPENSSL_malloc(sizeof (int));
hw_dnids = OPENSSL_malloc(sizeof (int));
if (hw_cnids == NULL || hw_dnids == NULL)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS,
PK11_R_MALLOC_FAILURE);
return (0);
}
/* this means empty tables */
hw_cnids[0] = NID_undef;
hw_dnids[0] = NID_undef;
return (1);
}
pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
if (pSlotList == NULL)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
goto err;
}
/* Get the slot list for processing */
if (pflist->C_GetSlotList(0, pSlotList, &ulSlotCount) != CKR_OK)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
goto err;
}
/*
* We don't care about duplicate mechanisms in multiple slots and also
* reserve one slot for the terminal NID_undef which we use to stop the
* search.
*/
hw_ctable_size = ulSlotCount * PK11_CIPHER_MAX + 1;
hw_dtable_size = ulSlotCount * PK11_DIGEST_MAX + 1;
tmp_hw_cnids = OPENSSL_malloc(hw_ctable_size * sizeof (int));
tmp_hw_dnids = OPENSSL_malloc(hw_dtable_size * sizeof (int));
if (tmp_hw_cnids == NULL || tmp_hw_dnids == NULL)
{
PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
goto err;
}
/*
* Do not use memset since we should not rely on the fact that NID_undef
* is zero now.
*/
for (i = 0; i < hw_ctable_size; ++i)
tmp_hw_cnids[i] = NID_undef;
for (i = 0; i < hw_dtable_size; ++i)
tmp_hw_dnids[i] = NID_undef;
DEBUG_SLOT_SEL("%s: provider: %s\n", PK11_DBG, pkcs11_kernel);
DEBUG_SLOT_SEL("%s: found %d hardware slots\n", PK11_DBG, ulSlotCount);
DEBUG_SLOT_SEL("%s: now looking for mechs supported in hw\n",
PK11_DBG);
for (i = 0; i < ulSlotCount; i++)
{
if (pflist->C_GetTokenInfo(pSlotList[i], &token_info) != CKR_OK)
continue;
DEBUG_SLOT_SEL("%s: token label: %.32s\n", PK11_DBG,
token_info.label);
/*
* We are filling the hw mech tables here. Global tables are
* still NULL so all mechanisms are put into tmp tables.
*/
pk11_find_symmetric_ciphers(pflist, pSlotList[i],
&n_cipher, tmp_hw_cnids);
pk11_find_digests(pflist, pSlotList[i],
&n_digest, tmp_hw_dnids);
}
/*
* Since we are part of a library (libcrypto.so), calling this function
* may have side-effects. Also, C_Finalize() is triggered by
* dlclose(3C).
*/
#if 0
pflist->C_Finalize(NULL);
#endif
OPENSSL_free(pSlotList);
(void) dlclose(handle);
hw_cnids = tmp_hw_cnids;
hw_dnids = tmp_hw_dnids;
DEBUG_SLOT_SEL("%s: hw mechs check complete\n", PK11_DBG);
return (1);
err:
if (pSlotList != NULL)
OPENSSL_free(pSlotList);
if (tmp_hw_cnids != NULL)
OPENSSL_free(tmp_hw_cnids);
if (tmp_hw_dnids != NULL)
OPENSSL_free(tmp_hw_dnids);
return (0);
}
/*
* Check presence of a NID in the table of NIDs unless the mechanism is
* supported directly in a CPU instruction set. The table may be NULL (i.e.,
* non-existent).
*/
static int nid_in_table(int nid, int *nid_table)
{
int i = 0;
/*
* Special case first. NULL means that we are initializing a new table.
*/
if (nid_table == NULL)
return (1);
#if defined(__x86)
/*
* On Intel, if we have AES-NI instruction set we route AES to the
* Crypto Framework. Intel CPUs do not have other instruction sets for
* HW crypto acceleration so we check the HW NID table for any other
* mechanism.
*/
if (hw_aes_instruction_set_present() == 1)
{
switch (nid)
{
case NID_aes_128_ecb:
case NID_aes_192_ecb:
case NID_aes_256_ecb:
case NID_aes_128_cbc:
case NID_aes_192_cbc:
case NID_aes_256_cbc:
case NID_aes_128_ctr:
case NID_aes_192_ctr:
case NID_aes_256_ctr:
return (1);
}
}
#elif defined(__sparc)
if (hw_aes_instruction_set_present() == 1)
return (1);
#endif
/* The table is never full, there is always at least one NID_undef. */
while (nid_table[i] != NID_undef)
{
if (nid_table[i++] == nid)
{
DEBUG_SLOT_SEL(" (NID %d in hw table, idx %d)", nid, i);
return (1);
}
}
return (0);
}
/* Do we have an AES instruction set? */
static int
hw_aes_instruction_set_present(void)
{
static int present = -1;
if (present == -1)
{
uint_t ui = 0;
(void) getisax(&ui, 1);
#if defined(__amd64) || defined(__i386)
present = (ui & (AV_386_AES)) > 0;
#elif defined(__sparc)
present = (ui & (AV_SPARC_AES|AV_SPARC_FJAES)) > 0;
#endif
}
return (present);
}
#endif /* SOLARIS_HW_SLOT_SELECTION */
#endif /* OPENSSL_NO_HW_PK11 */
#endif /* OPENSSL_NO_HW */