/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
*/
#include <errno.h>
#include <security/cryptoki.h>
#include <sys/crypto/ioctl.h>
#include "kernelGlobal.h"
#include "kernelObject.h"
#include "kernelSession.h"
#include "kernelEmulate.h"
CK_RV
C_SignInit(CK_SESSION_HANDLE hSession, CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey)
{
CK_RV rv;
kernel_session_t *session_p;
kernel_object_t *key_p;
boolean_t ses_lock_held = B_FALSE;
crypto_sign_init_t sign_init;
crypto_mech_type_t k_mech_type;
int r;
if (!kernel_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
if (pMechanism == NULL) {
return (CKR_ARGUMENTS_BAD);
}
/* Get the kernel's internal mechanism number. */
rv = kernel_mech(pMechanism->mechanism, &k_mech_type);
if (rv != CKR_OK) {
return (rv);
}
/* Obtain the session pointer. */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
/* Obtain the object pointer. */
HANDLE2OBJECT(hKey, key_p, rv);
if (rv != CKR_OK) {
REFRELE(session_p, ses_lock_held);
return (rv);
}
/* Check to see if key object supports signature. */
if (key_p->is_lib_obj && !(key_p->bool_attr_mask & SIGN_BOOL_ON)) {
rv = CKR_KEY_TYPE_INCONSISTENT;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
/*
* This active flag will remain ON until application calls either
* C_Sign or C_SignFinal to actually obtain the signature.
*/
session_p->sign.flags = CRYPTO_OPERATION_ACTIVE;
sign_init.si_session = session_p->k_session;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
if (!key_p->is_lib_obj) {
sign_init.si_key.ck_format = CRYPTO_KEY_REFERENCE;
sign_init.si_key.ck_obj_id = key_p->k_handle;
} else {
if (key_p->class == CKO_SECRET_KEY) {
sign_init.si_key.ck_format = CRYPTO_KEY_RAW;
sign_init.si_key.ck_data =
get_symmetric_key_value(key_p);
if (sign_init.si_key.ck_data == NULL) {
rv = CKR_HOST_MEMORY;
goto clean_exit;
}
sign_init.si_key.ck_length =
OBJ_SEC(key_p)->sk_value_len << 3;
} else if (key_p->key_type == CKK_RSA) {
rv = get_rsa_private_key(key_p, &sign_init.si_key);
if (rv != CKR_OK) {
goto clean_exit;
}
} else if (key_p->key_type == CKK_DSA) {
rv = get_dsa_private_key(key_p, &sign_init.si_key);
if (rv != CKR_OK) {
goto clean_exit;
}
} else if (key_p->key_type == CKK_EC) {
rv = get_ec_private_key(key_p, &sign_init.si_key);
if (rv != CKR_OK) {
goto clean_exit;
}
} else {
rv = CKR_KEY_TYPE_INCONSISTENT;
goto clean_exit;
}
}
sign_init.si_mech.cm_type = k_mech_type;
sign_init.si_mech.cm_param = pMechanism->pParameter;
sign_init.si_mech.cm_param_len = pMechanism->ulParameterLen;
while ((r = ioctl(kernel_fd, CRYPTO_SIGN_INIT, &sign_init)) < 0) {
if (errno != EINTR)
break;
}
if (r < 0) {
rv = CKR_FUNCTION_FAILED;
} else {
rv = crypto2pkcs11_error_number(sign_init.si_return_value);
}
if (rv == CKR_OK && SLOT_HAS_LIMITED_HMAC(session_p) &&
is_hmac(pMechanism->mechanism)) {
if (key_p->is_lib_obj && key_p->class == CKO_SECRET_KEY) {
(void) pthread_mutex_lock(&session_p->session_mutex);
session_p->sign.flags |= CRYPTO_EMULATE;
(void) pthread_mutex_unlock(&session_p->session_mutex);
rv = emulate_init(session_p, pMechanism,
&(sign_init.si_key), OP_SIGN);
} else {
rv = CKR_ARGUMENTS_BAD;
}
}
if (key_p->is_lib_obj) {
if (key_p->class == CKO_SECRET_KEY) {
free(sign_init.si_key.ck_data);
} else {
free_key_attributes(&sign_init.si_key);
}
}
if (rv != CKR_OK) {
(void) pthread_mutex_lock(&session_p->session_mutex);
session_p->sign.flags &= ~CRYPTO_OPERATION_ACTIVE;
ses_lock_held = B_TRUE;
}
clean_exit:
OBJ_REFRELE(key_p);
REFRELE(session_p, ses_lock_held);
return (rv);
}
CK_RV
C_Sign(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pData, CK_ULONG ulDataLen,
CK_BYTE_PTR pSignature, CK_ULONG_PTR pulSignatureLen)
{
CK_RV rv;
kernel_session_t *session_p;
boolean_t ses_lock_held = B_FALSE;
crypto_sign_t sign;
int r;
if (!kernel_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
if (pulSignatureLen == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
/* Application must call C_SignInit before calling C_Sign. */
if (!(session_p->sign.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, ses_lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
/*
* C_Sign must be called without intervening C_SignUpdate
* calls.
*/
if (session_p->sign.flags & CRYPTO_OPERATION_UPDATE) {
/*
* C_Sign can not be used to terminate a multi-part
* operation, so we'll leave the active sign operation
* flag on and let the application continue with the
* sign update operation.
*/
REFRELE(session_p, ses_lock_held);
return (CKR_FUNCTION_FAILED);
}
if (session_p->sign.flags & CRYPTO_EMULATE) {
if ((ulDataLen < SLOT_THRESHOLD(session_p)) ||
(ulDataLen > SLOT_HMAC_MAX_INDATA_LEN(session_p))) {
session_p->sign.flags |= CRYPTO_EMULATE_USING_SW;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
rv = do_soft_hmac_sign(get_spp(&session_p->sign),
pData, ulDataLen,
pSignature, pulSignatureLen, OP_SINGLE);
goto done;
} else {
free_soft_ctx(get_sp(&session_p->sign), OP_SIGN);
}
}
sign.cs_session = session_p->k_session;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
sign.cs_datalen = ulDataLen;
sign.cs_databuf = (char *)pData;
sign.cs_signlen = *pulSignatureLen;
sign.cs_signbuf = (char *)pSignature;
while ((r = ioctl(kernel_fd, CRYPTO_SIGN, &sign)) < 0) {
if (errno != EINTR)
break;
}
if (r < 0) {
rv = CKR_FUNCTION_FAILED;
} else {
rv = crypto2pkcs11_error_number(sign.cs_return_value);
}
if (rv == CKR_OK || rv == CKR_BUFFER_TOO_SMALL)
*pulSignatureLen = sign.cs_signlen;
done:
if ((rv == CKR_BUFFER_TOO_SMALL) ||
(rv == CKR_OK && pSignature == NULL)) {
/*
* We will not terminate the active sign operation flag,
* when the application-supplied buffer is too small, or
* the application asks for the length of buffer to hold
* the signature.
*/
REFRELE(session_p, ses_lock_held);
return (rv);
}
clean_exit:
/*
* Terminates the active sign operation.
* Application needs to call C_SignInit again for next
* sign operation.
*/
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
REINIT_OPBUF(&session_p->sign);
session_p->sign.flags = 0;
REFRELE(session_p, ses_lock_held);
return (rv);
}
CK_RV
C_SignUpdate(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pPart,
CK_ULONG ulPartLen)
{
CK_RV rv;
kernel_session_t *session_p;
boolean_t ses_lock_held = B_FALSE;
crypto_sign_update_t sign_update;
int r;
if (!kernel_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
if (pPart == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
/*
* Application must call C_SignInit before calling
* C_SignUpdate.
*/
if (!(session_p->sign.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, ses_lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
session_p->sign.flags |= CRYPTO_OPERATION_UPDATE;
if (session_p->sign.flags & CRYPTO_EMULATE) {
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
rv = emulate_update(session_p, pPart, ulPartLen, OP_SIGN);
goto done;
}
sign_update.su_session = session_p->k_session;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
sign_update.su_datalen = ulPartLen;
sign_update.su_databuf = (char *)pPart;
while ((r = ioctl(kernel_fd, CRYPTO_SIGN_UPDATE, &sign_update)) < 0) {
if (errno != EINTR)
break;
}
if (r < 0) {
rv = CKR_FUNCTION_FAILED;
} else {
rv = crypto2pkcs11_error_number(sign_update.su_return_value);
}
done:
if (rv == CKR_OK) {
REFRELE(session_p, ses_lock_held);
return (rv);
}
clean_exit:
/*
* After an error occurred, terminate the current sign
* operation by resetting the active and update flags.
*/
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
REINIT_OPBUF(&session_p->sign);
session_p->sign.flags = 0;
REFRELE(session_p, ses_lock_held);
return (rv);
}
CK_RV
C_SignFinal(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pSignature,
CK_ULONG_PTR pulSignatureLen)
{
CK_RV rv;
kernel_session_t *session_p;
boolean_t ses_lock_held = B_FALSE;
crypto_sign_final_t sign_final;
int r;
if (!kernel_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
if (pulSignatureLen == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
/*
* Application must call C_SignInit before calling
* C_SignFinal.
*/
if (!(session_p->sign.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, ses_lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
/* The order of checks is important here */
if (session_p->sign.flags & CRYPTO_EMULATE_USING_SW) {
if (session_p->sign.flags & CRYPTO_EMULATE_UPDATE_DONE) {
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
rv = do_soft_hmac_sign(get_spp(&session_p->sign),
NULL, 0, pSignature, pulSignatureLen, OP_FINAL);
} else {
/*
* We end up here if an earlier C_SignFinal() call
* took the C_Sign() path and it had returned
* CKR_BUFFER_TOO_SMALL.
*/
digest_buf_t *bufp = session_p->sign.context;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
if (bufp == NULL || bufp->buf == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
rv = do_soft_hmac_sign(get_spp(&session_p->sign),
bufp->buf, bufp->indata_len,
pSignature, pulSignatureLen, OP_SINGLE);
}
goto done;
} else if (session_p->sign.flags & CRYPTO_EMULATE) {
digest_buf_t *bufp = session_p->sign.context;
/*
* We are emulating a single-part operation now.
* So, clear the flag.
*/
session_p->sign.flags &= ~CRYPTO_OPERATION_UPDATE;
if (bufp == NULL || bufp->buf == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
REFRELE(session_p, ses_lock_held);
rv = C_Sign(hSession, bufp->buf, bufp->indata_len,
pSignature, pulSignatureLen);
return (rv);
}
sign_final.sf_session = session_p->k_session;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
sign_final.sf_signlen = *pulSignatureLen;
sign_final.sf_signbuf = (char *)pSignature;
while ((r = ioctl(kernel_fd, CRYPTO_SIGN_FINAL, &sign_final)) < 0) {
if (errno != EINTR)
break;
}
if (r < 0) {
rv = CKR_FUNCTION_FAILED;
} else {
rv = crypto2pkcs11_error_number(sign_final.sf_return_value);
}
if (rv == CKR_OK || rv == CKR_BUFFER_TOO_SMALL)
*pulSignatureLen = sign_final.sf_signlen;
done:
if ((rv == CKR_BUFFER_TOO_SMALL) ||
(rv == CKR_OK && pSignature == NULL)) {
/*
* We will not terminate the active sign operation flag,
* when the application-supplied buffer is too small, or
* the application asks for the length of buffer to hold
* the signature.
*/
REFRELE(session_p, ses_lock_held);
return (rv);
}
clean_exit:
/* Terminates the active sign operation */
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
REINIT_OPBUF(&session_p->sign);
session_p->sign.flags = 0;
REFRELE(session_p, ses_lock_held);
return (rv);
}
CK_RV
C_SignRecoverInit(CK_SESSION_HANDLE hSession, CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey)
{
CK_RV rv;
kernel_session_t *session_p;
kernel_object_t *key_p;
boolean_t ses_lock_held = B_FALSE;
crypto_sign_recover_init_t sr_init;
crypto_mech_type_t k_mech_type;
int r;
if (!kernel_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
if (pMechanism == NULL) {
return (CKR_ARGUMENTS_BAD);
}
/* Get the kernel's internal mechanism number. */
rv = kernel_mech(pMechanism->mechanism, &k_mech_type);
if (rv != CKR_OK)
return (rv);
/* Obtain the session pointer. */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
/* Obtain the object pointer. */
HANDLE2OBJECT(hKey, key_p, rv);
if (rv != CKR_OK) {
REFRELE(session_p, ses_lock_held);
return (rv);
}
/*
* Check to see if key object is a RSA key and if it supports
* sign_recover.
*/
if (key_p->is_lib_obj && !((key_p->key_type == CKK_RSA) &&
(key_p->bool_attr_mask & SIGN_RECOVER_BOOL_ON))) {
rv = CKR_KEY_TYPE_INCONSISTENT;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
/*
* This active flag will remain ON until application calls
* C_SignRecover to actually obtain the signature.
*/
session_p->sign.flags = CRYPTO_OPERATION_ACTIVE;
/* Set up the key data */
if (!key_p->is_lib_obj) {
sr_init.ri_key.ck_format = CRYPTO_KEY_REFERENCE;
sr_init.ri_key.ck_obj_id = key_p->k_handle;
} else {
if (key_p->key_type == CKK_RSA) {
if (get_rsa_private_key(key_p, &sr_init.ri_key) !=
CKR_OK) {
rv = CKR_HOST_MEMORY;
goto clean_exit;
}
} else {
rv = CKR_KEY_TYPE_INCONSISTENT;
goto clean_exit;
}
}
sr_init.ri_session = session_p->k_session;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
sr_init.ri_mech.cm_type = k_mech_type;
sr_init.ri_mech.cm_param = pMechanism->pParameter;
sr_init.ri_mech.cm_param_len = pMechanism->ulParameterLen;
while ((r = ioctl(kernel_fd, CRYPTO_SIGN_RECOVER_INIT, &sr_init)) < 0) {
if (errno != EINTR)
break;
}
if (r < 0) {
rv = CKR_FUNCTION_FAILED;
} else {
rv = crypto2pkcs11_error_number(sr_init.ri_return_value);
}
if (key_p->is_lib_obj) {
free_key_attributes(&sr_init.ri_key);
}
if (rv != CKR_OK) {
(void) pthread_mutex_lock(&session_p->session_mutex);
session_p->sign.flags &= ~CRYPTO_OPERATION_ACTIVE;
ses_lock_held = B_TRUE;
}
clean_exit:
OBJ_REFRELE(key_p);
REFRELE(session_p, ses_lock_held);
return (rv);
}
CK_RV
C_SignRecover(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pData,
CK_ULONG ulDataLen, CK_BYTE_PTR pSignature, CK_ULONG_PTR pulSignatureLen)
{
CK_RV rv;
kernel_session_t *session_p;
boolean_t ses_lock_held = B_FALSE;
crypto_sign_recover_t sign_recover;
int r;
if (!kernel_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
if (pulSignatureLen == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
/* Application must call C_SignInit before calling C_Sign. */
if (!(session_p->sign.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, ses_lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
sign_recover.sr_session = session_p->k_session;
(void) pthread_mutex_unlock(&session_p->session_mutex);
ses_lock_held = B_FALSE;
sign_recover.sr_datalen = ulDataLen;
sign_recover.sr_databuf = (char *)pData;
sign_recover.sr_signlen = *pulSignatureLen;
sign_recover.sr_signbuf = (char *)pSignature;
while ((r = ioctl(kernel_fd, CRYPTO_SIGN_RECOVER, &sign_recover)) < 0) {
if (errno != EINTR)
break;
}
if (r < 0) {
rv = CKR_FUNCTION_FAILED;
} else {
rv = crypto2pkcs11_error_number(sign_recover.sr_return_value);
}
if (rv == CKR_OK || rv == CKR_BUFFER_TOO_SMALL)
*pulSignatureLen = sign_recover.sr_signlen;
if ((rv == CKR_BUFFER_TOO_SMALL) ||
(rv == CKR_OK && pSignature == NULL)) {
/*
* We will not terminate the active sign operation flag,
* when the application-supplied buffer is too small, or
* the application asks for the length of buffer to hold
* the signature.
*/
REFRELE(session_p, ses_lock_held);
return (rv);
}
clean_exit:
/*
* Terminates the active sign operation.
* Application needs to call C_SignInit again for next
* sign operation.
*/
(void) pthread_mutex_lock(&session_p->session_mutex);
ses_lock_held = B_TRUE;
session_p->sign.flags = 0;
REFRELE(session_p, ses_lock_held);
return (rv);
}