/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
*
* Portions Copyright 2007 Chad Mynhier
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <fcntl.h>
#include <string.h>
#include <strings.h>
#include <memory.h>
#include <errno.h>
#include <dirent.h>
#include <limits.h>
#include <signal.h>
#include <atomic.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/param.h>
#include <sys/stack.h>
#include <sys/fault.h>
#include <sys/syscall.h>
#include <sys/sysmacros.h>
#include "libproc.h"
#include "Pcontrol.h"
#include "Putil.h"
#include "P32ton.h"
int _libproc_debug; /* set non-zero to enable debugging printfs */
int _libproc_no_qsort; /* set non-zero to inhibit sorting */
/* of symbol tables */
int _libproc_incore_elf; /* only use in-core elf data */
sigset_t blockable_sigs; /* signals to block when we need to be safe */
static int minfd; /* minimum file descriptor returned by dupfd(fd, 0) */
char procfs_path[PATH_MAX] = "/proc";
/*
* Function prototypes for static routines in this module.
*/
static void deadcheck(struct ps_prochandle *);
static void restore_tracing_flags(struct ps_prochandle *);
static void Lfree_internal(struct ps_prochandle *, struct ps_lwphandle *);
/*
* Read/write interface for live processes: just pread/pwrite the
* /proc/<pid>/as file:
*/
static ssize_t
Pread_live(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr)
{
return (pread(P->asfd, buf, n, (off_t)addr));
}
static ssize_t
Pwrite_live(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr)
{
return (pwrite(P->asfd, buf, n, (off_t)addr));
}
static const ps_rwops_t P_live_ops = { Pread_live, Pwrite_live };
/*
* This is the library's .init handler.
*/
#pragma init(_libproc_init)
void
_libproc_init(void)
{
_libproc_debug = getenv("LIBPROC_DEBUG") != NULL;
_libproc_no_qsort = getenv("LIBPROC_NO_QSORT") != NULL;
_libproc_incore_elf = getenv("LIBPROC_INCORE_ELF") != NULL;
(void) sigfillset(&blockable_sigs);
(void) sigdelset(&blockable_sigs, SIGKILL);
(void) sigdelset(&blockable_sigs, SIGSTOP);
}
void
Pset_procfs_path(const char *path)
{
(void) snprintf(procfs_path, sizeof (procfs_path), "%s", path);
}
/*
* Call set_minfd() once before calling dupfd() several times.
* We assume that the application will not reduce its current file
* descriptor limit lower than 512 once it has set at least that value.
*/
int
set_minfd(void)
{
static mutex_t minfd_lock = DEFAULTMUTEX;
struct rlimit rlim;
int fd;
if ((fd = minfd) < 256) {
(void) mutex_lock(&minfd_lock);
if ((fd = minfd) < 256) {
if (getrlimit(RLIMIT_NOFILE, &rlim) != 0)
rlim.rlim_cur = rlim.rlim_max = 0;
if (rlim.rlim_cur >= 512)
fd = 256;
else if ((fd = rlim.rlim_cur / 2) < 3)
fd = 3;
membar_producer();
minfd = fd;
}
(void) mutex_unlock(&minfd_lock);
}
return (fd);
}
int
dupfd(int fd, int dfd)
{
int mfd;
/*
* Make fd be greater than 255 (the 32-bit stdio limit),
* or at least make it greater than 2 so that the
* program will work when spawned by init(1m).
* Also, if dfd is non-zero, dup the fd to be dfd.
*/
if ((mfd = minfd) == 0)
mfd = set_minfd();
if (dfd > 0 || (0 <= fd && fd < mfd)) {
if (dfd <= 0)
dfd = mfd;
dfd = fcntl(fd, F_DUPFD, dfd);
(void) close(fd);
fd = dfd;
}
/*
* Mark it close-on-exec so any created process doesn't inherit it.
*/
if (fd >= 0)
(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
return (fd);
}
/*
* Create a new controlled process.
* Leave it stopped on successful exit from exec() or execve().
* Return an opaque pointer to its process control structure.
* Return NULL if process cannot be created (fork()/exec() not successful).
*/
struct ps_prochandle *
Pxcreate(const char *file, /* executable file name */
char *const *argv, /* argument vector */
char *const *envp, /* environment */
int *perr, /* pointer to error return code */
char *path, /* if non-null, holds exec path name on return */
size_t len) /* size of the path buffer */
{
char execpath[PATH_MAX];
char procname[PATH_MAX];
struct ps_prochandle *P;
pid_t pid;
int fd;
char *fname;
int rc;
int lasterrno = 0;
if (len == 0) /* zero length, no path */
path = NULL;
if (path != NULL)
*path = '\0';
if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
*perr = C_STRANGE;
return (NULL);
}
if ((pid = fork1()) == -1) {
free(P);
*perr = C_FORK;
return (NULL);
}
if (pid == 0) { /* child process */
id_t id;
extern char **environ;
/*
* If running setuid or setgid, reset credentials to normal.
*/
if ((id = getgid()) != getegid())
(void) setgid(id);
if ((id = getuid()) != geteuid())
(void) setuid(id);
Pcreate_callback(P); /* execute callback (see below) */
(void) pause(); /* wait for PRSABORT from parent */
/*
* This is ugly. There is no execvep() function that takes a
* path and an environment. We cheat here by replacing the
* global 'environ' variable right before we call this.
*/
if (envp)
environ = (char **)envp;
(void) execvp(file, argv); /* execute the program */
_exit(127);
}
/*
* Initialize the process structure.
*/
(void) memset(P, 0, sizeof (*P));
(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
P->flags |= CREATED;
P->state = PS_RUN;
P->pid = pid;
P->asfd = -1;
P->ctlfd = -1;
P->statfd = -1;
P->agentctlfd = -1;
P->agentstatfd = -1;
P->ops = &P_live_ops;
Pinitsym(P);
/*
* Open the /proc/pid files.
*/
(void) snprintf(procname, sizeof (procname), "%s/%d/",
procfs_path, (int)pid);
fname = procname + strlen(procname);
(void) set_minfd();
/*
* Exclusive write open advises others not to interfere.
* There is no reason for any of these open()s to fail.
*/
(void) strcpy(fname, "as");
if ((fd = open(procname, (O_RDWR|O_EXCL))) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
dprintf("Pcreate: failed to open %s: %s\n",
procname, strerror(errno));
rc = C_STRANGE;
goto bad;
}
P->asfd = fd;
(void) strcpy(fname, "status");
if ((fd = open(procname, O_RDONLY)) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
dprintf("Pcreate: failed to open %s: %s\n",
procname, strerror(errno));
rc = C_STRANGE;
goto bad;
}
P->statfd = fd;
(void) strcpy(fname, "ctl");
if ((fd = open(procname, O_WRONLY)) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
dprintf("Pcreate: failed to open %s: %s\n",
procname, strerror(errno));
rc = C_STRANGE;
goto bad;
}
P->ctlfd = fd;
(void) Pstop(P, 0); /* stop the controlled process */
/*
* Wait for process to sleep in pause().
* If the process has already called pause(), then it should be
* stopped (PR_REQUESTED) while asleep in pause and we are done.
* Else we set up to catch entry/exit to pause() and set the process
* running again, expecting it to stop when it reaches pause().
* There is no reason for this to fail other than an interrupt.
*/
(void) Psysentry(P, SYS_pause, 1);
(void) Psysexit(P, SYS_pause, 1);
for (;;) {
if (P->state == PS_STOP &&
P->status.pr_lwp.pr_syscall == SYS_pause &&
(P->status.pr_lwp.pr_why == PR_REQUESTED ||
P->status.pr_lwp.pr_why == PR_SYSENTRY ||
P->status.pr_lwp.pr_why == PR_SYSEXIT))
break;
if (P->state != PS_STOP || /* interrupt or process died */
Psetrun(P, 0, 0) != 0) { /* can't restart */
if (errno == EINTR || errno == ERESTART)
rc = C_INTR;
else {
dprintf("Pcreate: Psetrun failed: %s\n",
strerror(errno));
rc = C_STRANGE;
}
goto bad;
}
(void) Pwait(P, 0);
}
(void) Psysentry(P, SYS_pause, 0);
(void) Psysexit(P, SYS_pause, 0);
/*
* Kick the process off the pause() and catch
* it again on entry to exec() or exit().
*/
(void) Psysentry(P, SYS_exit, 1);
(void) Psysentry(P, SYS_execve, 1);
if (Psetrun(P, 0, PRSABORT) == -1) {
dprintf("Pcreate: Psetrun failed: %s\n", strerror(errno));
rc = C_STRANGE;
goto bad;
}
(void) Pwait(P, 0);
if (P->state != PS_STOP) {
dprintf("Pcreate: Pwait failed: %s\n", strerror(errno));
rc = C_STRANGE;
goto bad;
}
/*
* Move the process through instances of failed exec()s
* to reach the point of stopped on successful exec().
*/
(void) Psysexit(P, SYS_execve, TRUE);
while (P->state == PS_STOP &&
P->status.pr_lwp.pr_why == PR_SYSENTRY &&
P->status.pr_lwp.pr_what == SYS_execve) {
/*
* Fetch the exec path name now, before we complete
* the exec(). We may lose the process and be unable
* to get the information later.
*/
(void) Pread_string(P, execpath, sizeof (execpath),
(off_t)P->status.pr_lwp.pr_sysarg[0]);
if (path != NULL)
(void) strncpy(path, execpath, len);
/*
* Set the process running and wait for
* it to stop on exit from the exec().
*/
(void) Psetrun(P, 0, 0);
(void) Pwait(P, 0);
if (P->state == PS_LOST && /* we lost control */
Preopen(P) != 0) { /* and we can't get it back */
rc = C_PERM;
goto bad;
}
/*
* If the exec() failed, continue the loop, expecting
* there to be more attempts to exec(), based on PATH.
*/
if (P->state == PS_STOP &&
P->status.pr_lwp.pr_why == PR_SYSEXIT &&
P->status.pr_lwp.pr_what == SYS_execve &&
(lasterrno = P->status.pr_lwp.pr_errno) != 0) {
/*
* The exec() failed. Set the process running and
* wait for it to stop on entry to the next exec().
*/
(void) Psetrun(P, 0, 0);
(void) Pwait(P, 0);
continue;
}
break;
}
if (P->state == PS_STOP &&
P->status.pr_lwp.pr_why == PR_SYSEXIT &&
P->status.pr_lwp.pr_what == SYS_execve &&
P->status.pr_lwp.pr_errno == 0) {
/*
* The process is stopped on successful exec() or execve().
* Turn off all tracing flags and return success.
*/
restore_tracing_flags(P);
#ifndef _LP64
/* We must be a 64-bit process to deal with a 64-bit process */
if (P->status.pr_dmodel == PR_MODEL_LP64) {
rc = C_LP64;
goto bad;
}
#endif
/*
* Set run-on-last-close so the controlled process
* runs even if we die on a signal.
*/
(void) Psetflags(P, PR_RLC);
*perr = 0;
return (P);
}
rc = lasterrno == ENOENT ? C_NOENT : C_NOEXEC;
bad:
(void) kill(pid, SIGKILL);
if (path != NULL && rc != C_PERM && rc != C_LP64)
*path = '\0';
Pfree(P);
*perr = rc;
return (NULL);
}
struct ps_prochandle *
Pcreate(
const char *file, /* executable file name */
char *const *argv, /* argument vector */
int *perr, /* pointer to error return code */
char *path, /* if non-null, holds exec path name on return */
size_t len) /* size of the path buffer */
{
return (Pxcreate(file, argv, NULL, perr, path, len));
}
/*
* Return a printable string corresponding to a Pcreate() error return.
*/
const char *
Pcreate_error(int error)
{
const char *str;
switch (error) {
case C_FORK:
str = "cannot fork";
break;
case C_PERM:
str = "file is set-id or unreadable";
break;
case C_NOEXEC:
str = "cannot execute file";
break;
case C_INTR:
str = "operation interrupted";
break;
case C_LP64:
str = "program is _LP64, self is not";
break;
case C_STRANGE:
str = "unanticipated system error";
break;
case C_NOENT:
str = "cannot find executable file";
break;
default:
str = "unknown error";
break;
}
return (str);
}
/*
* Callback to execute in each child process created with Pcreate() after fork
* but before it execs the new process image. By default, we do nothing, but
* by calling this function we allow the client program to define its own
* version of the function which will interpose on our empty default. This
* may be useful for clients that need to modify signal dispositions, terminal
* attributes, or process group and session properties for each new victim.
*/
/*ARGSUSED*/
void
Pcreate_callback(struct ps_prochandle *P)
{
/* nothing to do here */
}
/*
* Grab an existing process.
* Return an opaque pointer to its process control structure.
*
* pid: UNIX process ID.
* flags:
* PGRAB_RETAIN Retain tracing flags (default clears all tracing flags).
* PGRAB_FORCE Grab regardless of whether process is already traced.
* PGRAB_RDONLY Open the address space file O_RDONLY instead of O_RDWR,
* and do not open the process control file.
* PGRAB_NOSTOP Open the process but do not force it to stop.
* perr: pointer to error return code.
*/
struct ps_prochandle *
Pgrab(pid_t pid, int flags, int *perr)
{
struct ps_prochandle *P;
int fd, omode;
char procname[PATH_MAX];
char *fname;
int rc = 0;
/*
* PGRAB_RDONLY means that we do not open the /proc/<pid>/control file,
* and so it implies RETAIN and NOSTOP since both require control.
*/
if (flags & PGRAB_RDONLY)
flags |= PGRAB_RETAIN | PGRAB_NOSTOP;
if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
*perr = G_STRANGE;
return (NULL);
}
P->asfd = -1;
P->ctlfd = -1;
P->statfd = -1;
again: /* Come back here if we lose it in the Window of Vulnerability */
if (P->ctlfd >= 0)
(void) close(P->ctlfd);
if (P->asfd >= 0)
(void) close(P->asfd);
if (P->statfd >= 0)
(void) close(P->statfd);
(void) memset(P, 0, sizeof (*P));
(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
P->ctlfd = -1;
P->asfd = -1;
P->statfd = -1;
P->agentctlfd = -1;
P->agentstatfd = -1;
P->ops = &P_live_ops;
Pinitsym(P);
/*
* Open the /proc/pid files
*/
(void) snprintf(procname, sizeof (procname), "%s/%d/",
procfs_path, (int)pid);
fname = procname + strlen(procname);
(void) set_minfd();
/*
* Request exclusive open to avoid grabbing someone else's
* process and to prevent others from interfering afterwards.
* If this fails and the 'PGRAB_FORCE' flag is set, attempt to
* open non-exclusively.
*/
(void) strcpy(fname, "as");
omode = (flags & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
if (((fd = open(procname, omode | O_EXCL)) < 0 &&
(fd = ((flags & PGRAB_FORCE)? open(procname, omode) : -1)) < 0) ||
(fd = dupfd(fd, 0)) < 0) {
switch (errno) {
case ENOENT:
rc = G_NOPROC;
break;
case EACCES:
case EPERM:
rc = G_PERM;
break;
case EMFILE:
rc = G_NOFD;
break;
case EBUSY:
if (!(flags & PGRAB_FORCE) || geteuid() != 0) {
rc = G_BUSY;
break;
}
/* FALLTHROUGH */
default:
dprintf("Pgrab: failed to open %s: %s\n",
procname, strerror(errno));
rc = G_STRANGE;
break;
}
goto err;
}
P->asfd = fd;
(void) strcpy(fname, "status");
if ((fd = open(procname, O_RDONLY)) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
switch (errno) {
case ENOENT:
rc = G_NOPROC;
break;
case EMFILE:
rc = G_NOFD;
break;
default:
dprintf("Pgrab: failed to open %s: %s\n",
procname, strerror(errno));
rc = G_STRANGE;
break;
}
goto err;
}
P->statfd = fd;
if (!(flags & PGRAB_RDONLY)) {
(void) strcpy(fname, "ctl");
if ((fd = open(procname, O_WRONLY)) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
switch (errno) {
case ENOENT:
rc = G_NOPROC;
break;
case EMFILE:
rc = G_NOFD;
break;
default:
dprintf("Pgrab: failed to open %s: %s\n",
procname, strerror(errno));
rc = G_STRANGE;
break;
}
goto err;
}
P->ctlfd = fd;
}
P->state = PS_RUN;
P->pid = pid;
/*
* We are now in the Window of Vulnerability (WoV). The process may
* exec() a setuid/setgid or unreadable object file between the open()
* and the PCSTOP. We will get EAGAIN in this case and must start over.
* As Pstopstatus will trigger the first read() from a /proc file,
* we also need to handle EOVERFLOW here when 32-bit as an indicator
* that this process is 64-bit. Finally, if the process has become
* a zombie (PS_UNDEAD) while we were trying to grab it, just remain
* silent about this and pretend there was no process.
*/
if (Pstopstatus(P, PCNULL, 0) != 0) {
#ifndef _LP64
if (errno == EOVERFLOW) {
rc = G_LP64;
goto err;
}
#endif
if (P->state == PS_LOST) { /* WoV */
(void) mutex_destroy(&P->proc_lock);
goto again;
}
if (P->state == PS_UNDEAD)
rc = G_NOPROC;
else
rc = G_STRANGE;
goto err;
}
/*
* If the process is a system process, we can't control it even as root
*/
if (P->status.pr_flags & PR_ISSYS) {
rc = G_SYS;
goto err;
}
#ifndef _LP64
/*
* We must be a 64-bit process to deal with a 64-bit process
*/
if (P->status.pr_dmodel == PR_MODEL_LP64) {
rc = G_LP64;
goto err;
}
#endif
/*
* Remember the status for use by Prelease().
*/
P->orig_status = P->status; /* structure copy */
/*
* Before stopping the process, make sure we are not grabbing ourselves.
* If we are, make sure we are doing it PGRAB_RDONLY.
*/
if (pid == getpid()) {
/*
* Verify that the process is really ourself:
* Set a magic number, read it through the
* /proc file and see if the results match.
*/
uint32_t magic1 = 0;
uint32_t magic2 = 2;
errno = 0;
if (Pread(P, &magic2, sizeof (magic2), (uintptr_t)&magic1)
== sizeof (magic2) &&
magic2 == 0 &&
(magic1 = 0xfeedbeef) &&
Pread(P, &magic2, sizeof (magic2), (uintptr_t)&magic1)
== sizeof (magic2) &&
magic2 == 0xfeedbeef &&
!(flags & PGRAB_RDONLY)) {
rc = G_SELF;
goto err;
}
}
/*
* If the process is already stopped or has been directed
* to stop via /proc, do not set run-on-last-close.
*/
if (!(P->status.pr_lwp.pr_flags & (PR_ISTOP|PR_DSTOP)) &&
!(flags & PGRAB_RDONLY)) {
/*
* Mark the process run-on-last-close so
* it runs even if we die from SIGKILL.
*/
if (Psetflags(P, PR_RLC) != 0) {
if (errno == EAGAIN) { /* WoV */
(void) mutex_destroy(&P->proc_lock);
goto again;
}
if (errno == ENOENT) /* No complaint about zombies */
rc = G_ZOMB;
else {
dprintf("Pgrab: failed to set RLC\n");
rc = G_STRANGE;
}
goto err;
}
}
/*
* If a stop directive is pending and the process has not yet stopped,
* then synchronously wait for the stop directive to take effect.
* Limit the time spent waiting for the process to stop by iterating
* at most 10 times. The time-out of 20 ms corresponds to the time
* between sending the stop directive and the process actually stopped
* as measured by DTrace on a slow, busy system. If the process doesn't
* stop voluntarily, clear the PR_DSTOP flag so that the code below
* forces the process to stop.
*/
if (!(flags & PGRAB_RDONLY)) {
int niter = 0;
while ((P->status.pr_lwp.pr_flags & (PR_STOPPED|PR_DSTOP)) ==
PR_DSTOP && niter < 10 &&
Pstopstatus(P, PCTWSTOP, 20) != 0) {
niter++;
if (flags & PGRAB_NOSTOP)
break;
}
if (niter == 10 && !(flags & PGRAB_NOSTOP)) {
/* Try it harder down below */
P->status.pr_lwp.pr_flags &= ~PR_DSTOP;
}
}
/*
* If the process is not already stopped or directed to stop
* and PGRAB_NOSTOP was not specified, stop the process now.
*/
if (!(P->status.pr_lwp.pr_flags & (PR_ISTOP|PR_DSTOP)) &&
!(flags & PGRAB_NOSTOP)) {
/*
* Stop the process, get its status and signal/syscall masks.
*/
if (((P->status.pr_lwp.pr_flags & PR_STOPPED) &&
Pstopstatus(P, PCDSTOP, 0) != 0) ||
Pstopstatus(P, PCSTOP, 2000) != 0) {
#ifndef _LP64
if (errno == EOVERFLOW) {
rc = G_LP64;
goto err;
}
#endif
if (P->state == PS_LOST) { /* WoV */
(void) mutex_destroy(&P->proc_lock);
goto again;
}
if ((errno != EINTR && errno != ERESTART) ||
(P->state != PS_STOP &&
!(P->status.pr_flags & PR_DSTOP))) {
if (P->state != PS_RUN && errno != ENOENT) {
dprintf("Pgrab: failed to PCSTOP\n");
rc = G_STRANGE;
} else {
rc = G_ZOMB;
}
goto err;
}
}
/*
* Process should now either be stopped via /proc or there
* should be an outstanding stop directive.
*/
if (!(P->status.pr_flags & (PR_ISTOP|PR_DSTOP))) {
dprintf("Pgrab: process is not stopped\n");
rc = G_STRANGE;
goto err;
}
#ifndef _LP64
/*
* Test this again now because the 32-bit victim process may
* have exec'd a 64-bit process in the meantime.
*/
if (P->status.pr_dmodel == PR_MODEL_LP64) {
rc = G_LP64;
goto err;
}
#endif
}
/*
* Cancel all tracing flags unless the PGRAB_RETAIN flag is set.
*/
if (!(flags & PGRAB_RETAIN)) {
(void) Psysentry(P, 0, FALSE);
(void) Psysexit(P, 0, FALSE);
(void) Psignal(P, 0, FALSE);
(void) Pfault(P, 0, FALSE);
Psync(P);
}
*perr = 0;
return (P);
err:
Pfree(P);
*perr = rc;
return (NULL);
}
/*
* Return a printable string corresponding to a Pgrab() error return.
*/
const char *
Pgrab_error(int error)
{
const char *str;
switch (error) {
case G_NOPROC:
str = "no such process";
break;
case G_NOCORE:
str = "no such core file";
break;
case G_NOPROCORCORE:
str = "no such process or core file";
break;
case G_NOEXEC:
str = "cannot find executable file";
break;
case G_ZOMB:
str = "zombie process";
break;
case G_PERM:
str = "permission denied";
break;
case G_BUSY:
str = "process is traced";
break;
case G_SYS:
str = "system process";
break;
case G_SELF:
str = "attempt to grab self";
break;
case G_INTR:
str = "operation interrupted";
break;
case G_LP64:
str = "program is _LP64, self is not";
break;
case G_FORMAT:
str = "file is not an ELF core file";
break;
case G_ELF:
str = "libelf error";
break;
case G_NOTE:
str = "core file is corrupt or missing required data";
break;
case G_STRANGE:
str = "unanticipated system error";
break;
case G_ISAINVAL:
str = "wrong ELF machine type";
break;
case G_BADLWPS:
str = "bad lwp specification";
break;
case G_NOFD:
str = "too many open files";
break;
default:
str = "unknown error";
break;
}
return (str);
}
/*
* Free a process control structure.
* Close the file descriptors but don't do the Prelease logic.
*/
void
Pfree(struct ps_prochandle *P)
{
uint_t i;
if (P->core != NULL) {
extern void __priv_free_info(void *);
lwp_info_t *nlwp, *lwp = list_next(&P->core->core_lwp_head);
for (i = 0; i < P->core->core_nlwp; i++, lwp = nlwp) {
nlwp = list_next(lwp);
if (lwp->lwp_xregs != NULL)
free(lwp->lwp_xregs);
#ifdef __sparc
if (lwp->lwp_gwins != NULL)
free(lwp->lwp_gwins);
if (lwp->lwp_asrs != NULL)
free(lwp->lwp_asrs);
if (lwp->lwp_cxregs != NULL)
free(lwp->lwp_cxregs);
#endif
free(lwp);
}
if (P->core->core_platform != NULL)
free(P->core->core_platform);
if (P->core->core_uts != NULL)
free(P->core->core_uts);
if (P->core->core_cred != NULL)
free(P->core->core_cred);
if (P->core->core_priv != NULL)
free(P->core->core_priv);
if (P->core->core_privinfo != NULL)
__priv_free_info(P->core->core_privinfo);
if (P->core->core_ppii != NULL)
free(P->core->core_ppii);
if (P->core->core_zonename != NULL)
free(P->core->core_zonename);
#if defined(__i386) || defined(__amd64)
if (P->core->core_ldt != NULL)
free(P->core->core_ldt);
#endif
free(P->core);
}
if (P->ucaddrs != NULL) {
free(P->ucaddrs);
P->ucaddrs = NULL;
P->ucnelems = 0;
}
(void) mutex_lock(&P->proc_lock);
if (P->hashtab != NULL) {
struct ps_lwphandle *L;
for (i = 0; i < HASHSIZE; i++) {
while ((L = P->hashtab[i]) != NULL)
Lfree_internal(P, L);
}
free(P->hashtab);
}
(void) mutex_unlock(&P->proc_lock);
(void) mutex_destroy(&P->proc_lock);
if (P->agentctlfd >= 0)
(void) close(P->agentctlfd);
if (P->agentstatfd >= 0)
(void) close(P->agentstatfd);
if (P->ctlfd >= 0)
(void) close(P->ctlfd);
if (P->asfd >= 0)
(void) close(P->asfd);
if (P->statfd >= 0)
(void) close(P->statfd);
Preset_maps(P);
/* clear out the structure as a precaution against reuse */
(void) memset(P, 0, sizeof (*P));
P->ctlfd = -1;
P->asfd = -1;
P->statfd = -1;
P->agentctlfd = -1;
P->agentstatfd = -1;
free(P);
}
/*
* Return the state of the process, one of the PS_* values.
*/
int
Pstate(struct ps_prochandle *P)
{
return (P->state);
}
/*
* Return the open address space file descriptor for the process.
* Clients must not close this file descriptor, not use it
* after the process is freed.
*/
int
Pasfd(struct ps_prochandle *P)
{
return (P->asfd);
}
/*
* Return the open control file descriptor for the process.
* Clients must not close this file descriptor, not use it
* after the process is freed.
*/
int
Pctlfd(struct ps_prochandle *P)
{
return (P->ctlfd);
}
/*
* Return a pointer to the process psinfo structure.
* Clients should not hold on to this pointer indefinitely.
* It will become invalid on Prelease().
*/
const psinfo_t *
Ppsinfo(struct ps_prochandle *P)
{
if (P->state == PS_IDLE) {
errno = ENODATA;
return (NULL);
}
if (P->state != PS_DEAD && proc_get_psinfo(P->pid, &P->psinfo) == -1)
return (NULL);
return (&P->psinfo);
}
/*
* Return a pointer to the process status structure.
* Clients should not hold on to this pointer indefinitely.
* It will become invalid on Prelease().
*/
const pstatus_t *
Pstatus(struct ps_prochandle *P)
{
return (&P->status);
}
/*
* Fill in a pointer to a process credentials structure. The ngroups parameter
* is the number of supplementary group entries allocated in the caller's cred
* structure. It should equal zero or one unless extra space has been
* allocated for the group list by the caller.
*/
int
Pcred(struct ps_prochandle *P, prcred_t *pcrp, int ngroups)
{
if (P->state == PS_IDLE) {
errno = ENODATA;
return (-1);
}
if (P->state != PS_DEAD)
return (proc_get_cred(P->pid, pcrp, ngroups));
if (P->core->core_cred != NULL) {
/*
* Avoid returning more supplementary group data than the
* caller has allocated in their buffer. We expect them to
* check pr_ngroups afterward and potentially call us again.
*/
ngroups = MIN(ngroups, P->core->core_cred->pr_ngroups);
(void) memcpy(pcrp, P->core->core_cred,
sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
return (0);
}
errno = ENODATA;
return (-1);
}
#if defined(__i386) || defined(__amd64)
/*
* Fill in a pointer to a process LDT structure.
* The caller provides a buffer of size 'nldt * sizeof (struct ssd)';
* If pldt == NULL or nldt == 0, we return the number of existing LDT entries.
* Otherwise we return the actual number of LDT entries fetched (<= nldt).
*/
int
Pldt(struct ps_prochandle *P, struct ssd *pldt, int nldt)
{
if (P->state == PS_IDLE) {
errno = ENODATA;
return (-1);
}
if (P->state != PS_DEAD)
return (proc_get_ldt(P->pid, pldt, nldt));
if (pldt == NULL || nldt == 0)
return (P->core->core_nldt);
if (P->core->core_ldt != NULL) {
nldt = MIN(nldt, P->core->core_nldt);
(void) memcpy(pldt, P->core->core_ldt,
nldt * sizeof (struct ssd));
return (nldt);
}
errno = ENODATA;
return (-1);
}
#endif /* __i386 */
/*
* Fill in a pointer to a process privilege structure.
*/
ssize_t
Ppriv(struct ps_prochandle *P, prpriv_t *pprv, size_t size)
{
if (P->state != PS_DEAD) {
prpriv_t *pp = proc_get_priv(P->pid);
if (pp != NULL) {
if (size == 0)
return (PRIV_PRPRIV_SIZE(pp));
size = MIN(size, PRIV_PRPRIV_SIZE(pp));
(void) memcpy(pprv, pp, size);
free(pp);
return (size);
}
return (-1);
}
/* Return the actual size. */
if (size == 0)
return (P->core->core_priv_size);
if (P->core->core_priv != NULL) {
size = MIN(P->core->core_priv_size, size);
(void) memcpy(pprv, P->core->core_priv, size);
return (size);
}
errno = ENODATA;
return (-1);
}
int
Psetpriv(struct ps_prochandle *P, prpriv_t *pprv)
{
int rc;
long *ctl;
size_t sz;
if (P->state == PS_DEAD) {
errno = EBADF;
return (-1);
}
sz = PRIV_PRPRIV_SIZE(pprv) + sizeof (long);
sz = ((sz - 1) / sizeof (long) + 1) * sizeof (long);
ctl = malloc(sz);
if (ctl == NULL)
return (-1);
ctl[0] = PCSPRIV;
(void) memcpy(&ctl[1], pprv, PRIV_PRPRIV_SIZE(pprv));
if (write(P->ctlfd, ctl, sz) != sz)
rc = -1;
else
rc = 0;
free(ctl);
return (rc);
}
void *
Pprivinfo(struct ps_prochandle *P)
{
/* Use default from libc */
if (P->state != PS_DEAD)
return (NULL);
return (P->core->core_privinfo);
}
/*
* Ensure that all cached state is written to the process.
* The cached state is the LWP's signal mask and registers
* and the process's tracing flags.
*/
void
Psync(struct ps_prochandle *P)
{
int ctlfd = (P->agentctlfd >= 0)? P->agentctlfd : P->ctlfd;
long cmd[6];
iovec_t iov[12];
int n = 0;
if (P->flags & SETHOLD) {
cmd[0] = PCSHOLD;
iov[n].iov_base = (caddr_t)&cmd[0];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&P->status.pr_lwp.pr_lwphold;
iov[n++].iov_len = sizeof (P->status.pr_lwp.pr_lwphold);
}
if (P->flags & SETREGS) {
cmd[1] = PCSREG;
#ifdef __i386
/* XX64 we should probably restore REG_GS after this */
if (ctlfd == P->agentctlfd)
P->status.pr_lwp.pr_reg[GS] = 0;
#elif defined(__amd64)
/* XX64 */
#endif
iov[n].iov_base = (caddr_t)&cmd[1];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&P->status.pr_lwp.pr_reg[0];
iov[n++].iov_len = sizeof (P->status.pr_lwp.pr_reg);
}
if (P->flags & SETSIG) {
cmd[2] = PCSTRACE;
iov[n].iov_base = (caddr_t)&cmd[2];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&P->status.pr_sigtrace;
iov[n++].iov_len = sizeof (P->status.pr_sigtrace);
}
if (P->flags & SETFAULT) {
cmd[3] = PCSFAULT;
iov[n].iov_base = (caddr_t)&cmd[3];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&P->status.pr_flttrace;
iov[n++].iov_len = sizeof (P->status.pr_flttrace);
}
if (P->flags & SETENTRY) {
cmd[4] = PCSENTRY;
iov[n].iov_base = (caddr_t)&cmd[4];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&P->status.pr_sysentry;
iov[n++].iov_len = sizeof (P->status.pr_sysentry);
}
if (P->flags & SETEXIT) {
cmd[5] = PCSEXIT;
iov[n].iov_base = (caddr_t)&cmd[5];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&P->status.pr_sysexit;
iov[n++].iov_len = sizeof (P->status.pr_sysexit);
}
if (n == 0 || writev(ctlfd, iov, n) < 0)
return; /* nothing to do or write failed */
P->flags &= ~(SETSIG|SETFAULT|SETENTRY|SETEXIT|SETHOLD|SETREGS);
}
/*
* Reopen the /proc file (after PS_LOST).
*/
int
Preopen(struct ps_prochandle *P)
{
int fd;
char procname[PATH_MAX];
char *fname;
if (P->state == PS_DEAD || P->state == PS_IDLE)
return (0);
if (P->agentcnt > 0) {
P->agentcnt = 1;
Pdestroy_agent(P);
}
(void) snprintf(procname, sizeof (procname), "%s/%d/",
procfs_path, (int)P->pid);
fname = procname + strlen(procname);
(void) strcpy(fname, "as");
if ((fd = open(procname, O_RDWR)) < 0 ||
close(P->asfd) < 0 ||
(fd = dupfd(fd, P->asfd)) != P->asfd) {
dprintf("Preopen: failed to open %s: %s\n",
procname, strerror(errno));
if (fd >= 0)
(void) close(fd);
return (-1);
}
P->asfd = fd;
(void) strcpy(fname, "status");
if ((fd = open(procname, O_RDONLY)) < 0 ||
close(P->statfd) < 0 ||
(fd = dupfd(fd, P->statfd)) != P->statfd) {
dprintf("Preopen: failed to open %s: %s\n",
procname, strerror(errno));
if (fd >= 0)
(void) close(fd);
return (-1);
}
P->statfd = fd;
(void) strcpy(fname, "ctl");
if ((fd = open(procname, O_WRONLY)) < 0 ||
close(P->ctlfd) < 0 ||
(fd = dupfd(fd, P->ctlfd)) != P->ctlfd) {
dprintf("Preopen: failed to open %s: %s\n",
procname, strerror(errno));
if (fd >= 0)
(void) close(fd);
return (-1);
}
P->ctlfd = fd;
/*
* Set the state to PS_RUN and wait for the process to stop so that
* we re-read the status from the new P->statfd. If this fails, Pwait
* will reset the state to PS_LOST and we fail the reopen. Before
* returning, we also forge a bit of P->status to allow the debugger to
* see that we are PS_LOST following a successful exec.
*/
P->state = PS_RUN;
if (Pwait(P, 0) == -1) {
#ifdef _ILP32
if (errno == EOVERFLOW)
P->status.pr_dmodel = PR_MODEL_LP64;
#endif
P->status.pr_lwp.pr_why = PR_SYSEXIT;
P->status.pr_lwp.pr_what = SYS_execve;
P->status.pr_lwp.pr_errno = 0;
return (-1);
}
/*
* The process should be stopped on exec (REQUESTED)
* or else should be stopped on exit from exec() (SYSEXIT)
*/
if (P->state == PS_STOP &&
(P->status.pr_lwp.pr_why == PR_REQUESTED ||
(P->status.pr_lwp.pr_why == PR_SYSEXIT &&
P->status.pr_lwp.pr_what == SYS_execve))) {
/* fake up stop-on-exit-from-execve */
if (P->status.pr_lwp.pr_why == PR_REQUESTED) {
P->status.pr_lwp.pr_why = PR_SYSEXIT;
P->status.pr_lwp.pr_what = SYS_execve;
P->status.pr_lwp.pr_errno = 0;
}
} else {
dprintf("Preopen: expected REQUESTED or "
"SYSEXIT(SYS_execve) stop\n");
}
return (0);
}
/*
* Define all settable flags other than the microstate accounting flags.
*/
#define ALL_SETTABLE_FLAGS (PR_FORK|PR_RLC|PR_KLC|PR_ASYNC|PR_BPTADJ|PR_PTRACE)
/*
* Restore /proc tracing flags to their original values
* in preparation for releasing the process.
* Also called by Pcreate() to clear all tracing flags.
*/
static void
restore_tracing_flags(struct ps_prochandle *P)
{
long flags;
long cmd[4];
iovec_t iov[8];
if (P->flags & CREATED) {
/* we created this process; clear all tracing flags */
premptyset(&P->status.pr_sigtrace);
premptyset(&P->status.pr_flttrace);
premptyset(&P->status.pr_sysentry);
premptyset(&P->status.pr_sysexit);
if ((P->status.pr_flags & ALL_SETTABLE_FLAGS) != 0)
(void) Punsetflags(P, ALL_SETTABLE_FLAGS);
} else {
/* we grabbed the process; restore its tracing flags */
P->status.pr_sigtrace = P->orig_status.pr_sigtrace;
P->status.pr_flttrace = P->orig_status.pr_flttrace;
P->status.pr_sysentry = P->orig_status.pr_sysentry;
P->status.pr_sysexit = P->orig_status.pr_sysexit;
if ((P->status.pr_flags & ALL_SETTABLE_FLAGS) !=
(flags = (P->orig_status.pr_flags & ALL_SETTABLE_FLAGS))) {
(void) Punsetflags(P, ALL_SETTABLE_FLAGS);
if (flags)
(void) Psetflags(P, flags);
}
}
cmd[0] = PCSTRACE;
iov[0].iov_base = (caddr_t)&cmd[0];
iov[0].iov_len = sizeof (long);
iov[1].iov_base = (caddr_t)&P->status.pr_sigtrace;
iov[1].iov_len = sizeof (P->status.pr_sigtrace);
cmd[1] = PCSFAULT;
iov[2].iov_base = (caddr_t)&cmd[1];
iov[2].iov_len = sizeof (long);
iov[3].iov_base = (caddr_t)&P->status.pr_flttrace;
iov[3].iov_len = sizeof (P->status.pr_flttrace);
cmd[2] = PCSENTRY;
iov[4].iov_base = (caddr_t)&cmd[2];
iov[4].iov_len = sizeof (long);
iov[5].iov_base = (caddr_t)&P->status.pr_sysentry;
iov[5].iov_len = sizeof (P->status.pr_sysentry);
cmd[3] = PCSEXIT;
iov[6].iov_base = (caddr_t)&cmd[3];
iov[6].iov_len = sizeof (long);
iov[7].iov_base = (caddr_t)&P->status.pr_sysexit;
iov[7].iov_len = sizeof (P->status.pr_sysexit);
(void) writev(P->ctlfd, iov, 8);
P->flags &= ~(SETSIG|SETFAULT|SETENTRY|SETEXIT);
}
/*
* Release the process. Frees the process control structure.
* flags:
* PRELEASE_CLEAR Clear all tracing flags.
* PRELEASE_RETAIN Retain current tracing flags.
* PRELEASE_HANG Leave the process stopped and abandoned.
* PRELEASE_KILL Terminate the process with SIGKILL.
*/
void
Prelease(struct ps_prochandle *P, int flags)
{
if (P->state == PS_DEAD) {
dprintf("Prelease: releasing handle %p PS_DEAD of pid %d\n",
(void *)P, (int)P->pid);
Pfree(P);
return;
}
if (P->state == PS_IDLE) {
file_info_t *fptr = list_next(&P->file_head);
dprintf("Prelease: releasing handle %p PS_IDLE of file %s\n",
(void *)P, fptr->file_pname);
Pfree(P);
return;
}
dprintf("Prelease: releasing handle %p pid %d\n",
(void *)P, (int)P->pid);
if (P->ctlfd == -1) {
Pfree(P);
return;
}
if (P->agentcnt > 0) {
P->agentcnt = 1;
Pdestroy_agent(P);
}
/*
* Attempt to stop the process.
*/
P->state = PS_RUN;
(void) Pstop(P, 1000);
if (flags & PRELEASE_KILL) {
if (P->state == PS_STOP)
(void) Psetrun(P, SIGKILL, 0);
(void) kill(P->pid, SIGKILL);
Pfree(P);
return;
}
/*
* If we lost control, all we can do now is close the files.
* In this case, the last close sets the process running.
*/
if (P->state != PS_STOP &&
(P->status.pr_lwp.pr_flags & (PR_ISTOP|PR_DSTOP)) == 0) {
Pfree(P);
return;
}
/*
* We didn't lose control; we do more.
*/
Psync(P);
if (flags & PRELEASE_CLEAR)
P->flags |= CREATED;
if (!(flags & PRELEASE_RETAIN))
restore_tracing_flags(P);
if (flags & PRELEASE_HANG) {
/* Leave the process stopped and abandoned */
(void) Punsetflags(P, PR_RLC|PR_KLC);
Pfree(P);
return;
}
/*
* Set the process running if we created it or if it was
* not originally stopped or directed to stop via /proc
* or if we were given the PRELEASE_CLEAR flag.
*/
if ((P->flags & CREATED) ||
(P->orig_status.pr_lwp.pr_flags & (PR_ISTOP|PR_DSTOP)) == 0) {
(void) Psetflags(P, PR_RLC);
/*
* We do this repeatedly because the process may have
* more than one LWP stopped on an event of interest.
* This makes sure all of them are set running.
*/
do {
if (Psetrun(P, 0, 0) == -1 && errno == EBUSY)
break; /* Agent LWP may be stuck */
} while (Pstopstatus(P, PCNULL, 0) == 0 &&
P->status.pr_lwp.pr_flags & (PR_ISTOP|PR_DSTOP));
if (P->status.pr_lwp.pr_flags & (PR_ISTOP|PR_DSTOP))
dprintf("Prelease: failed to set process running\n");
}
Pfree(P);
}
/* debugging */
void
prldump(const char *caller, lwpstatus_t *lsp)
{
char name[32];
uint32_t bits;
switch (lsp->pr_why) {
case PR_REQUESTED:
dprintf("%s: REQUESTED\n", caller);
break;
case PR_SIGNALLED:
dprintf("%s: SIGNALLED %s\n", caller,
proc_signame(lsp->pr_what, name, sizeof (name)));
break;
case PR_FAULTED:
dprintf("%s: FAULTED %s\n", caller,
proc_fltname(lsp->pr_what, name, sizeof (name)));
break;
case PR_SYSENTRY:
dprintf("%s: SYSENTRY %s\n", caller,
proc_sysname(lsp->pr_what, name, sizeof (name)));
break;
case PR_SYSEXIT:
dprintf("%s: SYSEXIT %s\n", caller,
proc_sysname(lsp->pr_what, name, sizeof (name)));
break;
case PR_JOBCONTROL:
dprintf("%s: JOBCONTROL %s\n", caller,
proc_signame(lsp->pr_what, name, sizeof (name)));
break;
case PR_SUSPENDED:
dprintf("%s: SUSPENDED\n", caller);
break;
default:
dprintf("%s: Unknown\n", caller);
break;
}
if (lsp->pr_cursig)
dprintf("%s: p_cursig = %d\n", caller, lsp->pr_cursig);
bits = *((uint32_t *)&lsp->pr_lwppend);
if (bits)
dprintf("%s: pr_lwppend = 0x%.8X\n", caller, bits);
}
/* debugging */
static void
prdump(struct ps_prochandle *P)
{
uint32_t bits;
prldump("Pstopstatus", &P->status.pr_lwp);
bits = *((uint32_t *)&P->status.pr_sigpend);
if (bits)
dprintf("Pstopstatus: pr_sigpend = 0x%.8X\n", bits);
}
/*
* Wait for the specified process to stop or terminate.
* Or, just get the current status (PCNULL).
* Or, direct it to stop and get the current status (PCDSTOP).
* If the agent LWP exists, do these things to the agent,
* else do these things to the process as a whole.
*/
int
Pstopstatus(struct ps_prochandle *P,
long request, /* PCNULL, PCDSTOP, PCSTOP, PCWSTOP */
uint_t msec) /* if non-zero, timeout in milliseconds */
{
int ctlfd = (P->agentctlfd >= 0)? P->agentctlfd : P->ctlfd;
long ctl[3];
ssize_t rc;
int err;
int old_state = P->state;
switch (P->state) {
case PS_RUN:
break;
case PS_STOP:
if (request != PCNULL && request != PCDSTOP)
return (0);
break;
case PS_LOST:
if (request != PCNULL) {
errno = EAGAIN;
return (-1);
}
break;
case PS_UNDEAD:
case PS_DEAD:
case PS_IDLE:
if (request != PCNULL) {
errno = ENOENT;
return (-1);
}
break;
default: /* corrupted state */
dprintf("Pstopstatus: corrupted state: %d\n", P->state);
errno = EINVAL;
return (-1);
}
ctl[0] = PCDSTOP;
ctl[1] = PCTWSTOP;
ctl[2] = (long)msec;
rc = 0;
switch (request) {
case PCSTOP:
rc = write(ctlfd, &ctl[0], 3*sizeof (long));
break;
case PCWSTOP:
rc = write(ctlfd, &ctl[1], 2*sizeof (long));
break;
case PCDSTOP:
rc = write(ctlfd, &ctl[0], 1*sizeof (long));
break;
case PCNULL:
if (P->state == PS_DEAD || P->state == PS_IDLE)
return (0);
break;
default: /* programming error */
errno = EINVAL;
return (-1);
}
err = (rc < 0)? errno : 0;
Psync(P);
if (P->agentstatfd < 0) {
if (pread(P->statfd, &P->status,
sizeof (P->status), (off_t)0) < 0)
err = errno;
} else {
if (pread(P->agentstatfd, &P->status.pr_lwp,
sizeof (P->status.pr_lwp), (off_t)0) < 0)
err = errno;
P->status.pr_flags = P->status.pr_lwp.pr_flags;
}
if (err) {
switch (err) {
case EINTR: /* user typed ctl-C */
case ERESTART:
dprintf("Pstopstatus: EINTR\n");
break;
case EAGAIN: /* we lost control of the the process */
case EOVERFLOW:
dprintf("Pstopstatus: PS_LOST, errno=%d\n", err);
P->state = PS_LOST;
break;
default: /* check for dead process */
if (_libproc_debug) {
const char *errstr;
switch (request) {
case PCNULL:
errstr = "Pstopstatus PCNULL"; break;
case PCSTOP:
errstr = "Pstopstatus PCSTOP"; break;
case PCDSTOP:
errstr = "Pstopstatus PCDSTOP"; break;
case PCWSTOP:
errstr = "Pstopstatus PCWSTOP"; break;
default:
errstr = "Pstopstatus PC???"; break;
}
dprintf("%s: %s\n", errstr, strerror(err));
}
deadcheck(P);
break;
}
if (err != EINTR && err != ERESTART) {
errno = err;
return (-1);
}
}
if (!(P->status.pr_flags & PR_STOPPED)) {
P->state = PS_RUN;
if (request == PCNULL || request == PCDSTOP || msec != 0)
return (0);
dprintf("Pstopstatus: process is not stopped\n");
errno = EPROTO;
return (-1);
}
P->state = PS_STOP;
if (_libproc_debug) /* debugging */
prdump(P);
/*
* If the process was already stopped coming into Pstopstatus(),
* then don't use its PC to set P->sysaddr since it may have been
* changed since the time the process originally stopped.
*/
if (old_state == PS_STOP)
return (0);
switch (P->status.pr_lwp.pr_why) {
case PR_SYSENTRY:
case PR_SYSEXIT:
if (Pissyscall_prev(P, P->status.pr_lwp.pr_reg[R_PC],
&P->sysaddr) == 0)
P->sysaddr = P->status.pr_lwp.pr_reg[R_PC];
break;
case PR_REQUESTED:
case PR_SIGNALLED:
case PR_FAULTED:
case PR_JOBCONTROL:
case PR_SUSPENDED:
break;
default:
errno = EPROTO;
return (-1);
}
return (0);
}
/*
* Wait for the process to stop for any reason.
*/
int
Pwait(struct ps_prochandle *P, uint_t msec)
{
return (Pstopstatus(P, PCWSTOP, msec));
}
/*
* Direct the process to stop; wait for it to stop.
*/
int
Pstop(struct ps_prochandle *P, uint_t msec)
{
return (Pstopstatus(P, PCSTOP, msec));
}
/*
* Direct the process to stop; don't wait.
*/
int
Pdstop(struct ps_prochandle *P)
{
return (Pstopstatus(P, PCDSTOP, 0));
}
static void
deadcheck(struct ps_prochandle *P)
{
int fd;
void *buf;
size_t size;
if (P->statfd < 0)
P->state = PS_UNDEAD;
else {
if (P->agentstatfd < 0) {
fd = P->statfd;
buf = &P->status;
size = sizeof (P->status);
} else {
fd = P->agentstatfd;
buf = &P->status.pr_lwp;
size = sizeof (P->status.pr_lwp);
}
while (pread(fd, buf, size, (off_t)0) != size) {
switch (errno) {
default:
P->state = PS_UNDEAD;
break;
case EINTR:
case ERESTART:
continue;
case EAGAIN:
P->state = PS_LOST;
break;
}
break;
}
P->status.pr_flags = P->status.pr_lwp.pr_flags;
}
}
/*
* Get the value of one register from stopped process.
*/
int
Pgetareg(struct ps_prochandle *P, int regno, prgreg_t *preg)
{
if (regno < 0 || regno >= NPRGREG) {
errno = EINVAL;
return (-1);
}
if (P->state == PS_IDLE) {
errno = ENODATA;
return (-1);
}
if (P->state != PS_STOP && P->state != PS_DEAD) {
errno = EBUSY;
return (-1);
}
*preg = P->status.pr_lwp.pr_reg[regno];
return (0);
}
/*
* Put value of one register into stopped process.
*/
int
Pputareg(struct ps_prochandle *P, int regno, prgreg_t reg)
{
if (regno < 0 || regno >= NPRGREG) {
errno = EINVAL;
return (-1);
}
if (P->state != PS_STOP) {
errno = EBUSY;
return (-1);
}
P->status.pr_lwp.pr_reg[regno] = reg;
P->flags |= SETREGS; /* set registers before continuing */
return (0);
}
int
Psetrun(struct ps_prochandle *P,
int sig, /* signal to pass to process */
int flags) /* PRSTEP|PRSABORT|PRSTOP|PRCSIG|PRCFAULT */
{
int ctlfd = (P->agentctlfd >= 0) ? P->agentctlfd : P->ctlfd;
int sbits = (PR_DSTOP | PR_ISTOP | PR_ASLEEP);
long ctl[1 + /* PCCFAULT */
1 + sizeof (siginfo_t)/sizeof (long) + /* PCSSIG/PCCSIG */
2 ]; /* PCRUN */
long *ctlp = ctl;
size_t size;
if (P->state != PS_STOP && (P->status.pr_lwp.pr_flags & sbits) == 0) {
errno = EBUSY;
return (-1);
}
Psync(P); /* flush tracing flags and registers */
if (flags & PRCFAULT) { /* clear current fault */
*ctlp++ = PCCFAULT;
flags &= ~PRCFAULT;
}
if (flags & PRCSIG) { /* clear current signal */
*ctlp++ = PCCSIG;
flags &= ~PRCSIG;
} else if (sig && sig != P->status.pr_lwp.pr_cursig) {
/* make current signal */
siginfo_t *infop;
*ctlp++ = PCSSIG;
infop = (siginfo_t *)ctlp;
(void) memset(infop, 0, sizeof (*infop));
infop->si_signo = sig;
ctlp += sizeof (siginfo_t) / sizeof (long);
}
*ctlp++ = PCRUN;
*ctlp++ = flags;
size = (char *)ctlp - (char *)ctl;
P->info_valid = 0; /* will need to update map and file info */
/*
* If we've cached ucontext-list information while we were stopped,
* free it now.
*/
if (P->ucaddrs != NULL) {
free(P->ucaddrs);
P->ucaddrs = NULL;
P->ucnelems = 0;
}
if (write(ctlfd, ctl, size) != size) {
/* If it is dead or lost, return the real status, not PS_RUN */
if (errno == ENOENT || errno == EAGAIN) {
(void) Pstopstatus(P, PCNULL, 0);
return (0);
}
/* If it is not in a jobcontrol stop, issue an error message */
if (errno != EBUSY ||
P->status.pr_lwp.pr_why != PR_JOBCONTROL) {
dprintf("Psetrun: %s\n", strerror(errno));
return (-1);
}
/* Otherwise pretend that the job-stopped process is running */
}
P->state = PS_RUN;
return (0);
}
ssize_t
Pread(struct ps_prochandle *P,
void *buf, /* caller's buffer */
size_t nbyte, /* number of bytes to read */
uintptr_t address) /* address in process */
{
return (P->ops->p_pread(P, buf, nbyte, address));
}
ssize_t
Pread_string(struct ps_prochandle *P,
char *buf, /* caller's buffer */
size_t size, /* upper limit on bytes to read */
uintptr_t addr) /* address in process */
{
enum { STRSZ = 40 };
char string[STRSZ + 1];
ssize_t leng = 0;
int nbyte;
if (size < 2) {
errno = EINVAL;
return (-1);
}
size--; /* ensure trailing null fits in buffer */
*buf = '\0';
string[STRSZ] = '\0';
for (nbyte = STRSZ; nbyte == STRSZ && leng < size; addr += STRSZ) {
if ((nbyte = P->ops->p_pread(P, string, STRSZ, addr)) <= 0) {
buf[leng] = '\0';
return (leng ? leng : -1);
}
if ((nbyte = strlen(string)) > 0) {
if (leng + nbyte > size)
nbyte = size - leng;
(void) strncpy(buf + leng, string, nbyte);
leng += nbyte;
}
}
buf[leng] = '\0';
return (leng);
}
ssize_t
Pwrite(struct ps_prochandle *P,
const void *buf, /* caller's buffer */
size_t nbyte, /* number of bytes to write */
uintptr_t address) /* address in process */
{
return (P->ops->p_pwrite(P, buf, nbyte, address));
}
int
Pclearsig(struct ps_prochandle *P)
{
int ctlfd = (P->agentctlfd >= 0)? P->agentctlfd : P->ctlfd;
long ctl = PCCSIG;
if (write(ctlfd, &ctl, sizeof (ctl)) != sizeof (ctl))
return (-1);
P->status.pr_lwp.pr_cursig = 0;
return (0);
}
int
Pclearfault(struct ps_prochandle *P)
{
int ctlfd = (P->agentctlfd >= 0)? P->agentctlfd : P->ctlfd;
long ctl = PCCFAULT;
if (write(ctlfd, &ctl, sizeof (ctl)) != sizeof (ctl))
return (-1);
return (0);
}
/*
* Set a breakpoint trap, return original instruction.
*/
int
Psetbkpt(struct ps_prochandle *P, uintptr_t address, ulong_t *saved)
{
long ctl[1 + sizeof (priovec_t) / sizeof (long) + /* PCREAD */
1 + sizeof (priovec_t) / sizeof (long)]; /* PCWRITE */
long *ctlp = ctl;
size_t size;
priovec_t *iovp;
instr_t bpt = BPT;
instr_t old;
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE) {
errno = ENOENT;
return (-1);
}
/* fetch the old instruction */
*ctlp++ = PCREAD;
iovp = (priovec_t *)ctlp;
iovp->pio_base = &old;
iovp->pio_len = sizeof (old);
iovp->pio_offset = address;
ctlp += sizeof (priovec_t) / sizeof (long);
/* write the BPT instruction */
*ctlp++ = PCWRITE;
iovp = (priovec_t *)ctlp;
iovp->pio_base = &bpt;
iovp->pio_len = sizeof (bpt);
iovp->pio_offset = address;
ctlp += sizeof (priovec_t) / sizeof (long);
size = (char *)ctlp - (char *)ctl;
if (write(P->ctlfd, ctl, size) != size)
return (-1);
/*
* Fail if there was already a breakpoint there from another debugger
* or DTrace's user-level tracing on x86.
*/
if (old == BPT) {
errno = EBUSY;
return (-1);
}
*saved = (ulong_t)old;
return (0);
}
/*
* Restore original instruction where a breakpoint was set.
*/
int
Pdelbkpt(struct ps_prochandle *P, uintptr_t address, ulong_t saved)
{
instr_t old = (instr_t)saved;
instr_t cur;
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE) {
errno = ENOENT;
return (-1);
}
/*
* If the breakpoint instruction we had placed has been overwritten
* with a new instruction, then don't try to replace it with the
* old instruction. Doing do can cause problems with self-modifying
* code -- PLTs for example. If the Pread() fails, we assume that we
* should proceed though most likely the Pwrite() will also fail.
*/
if (Pread(P, &cur, sizeof (cur), address) == sizeof (cur) &&
cur != BPT)
return (0);
if (Pwrite(P, &old, sizeof (old), address) != sizeof (old))
return (-1);
return (0);
}
/*
* Common code for Pxecbkpt() and Lxecbkpt().
* Develop the array of requests that will do the job, then
* write them to the specified control file descriptor.
* Return the non-zero errno if the write fails.
*/
static int
execute_bkpt(
int ctlfd, /* process or LWP control file descriptor */
const fltset_t *faultset, /* current set of traced faults */
const sigset_t *sigmask, /* current signal mask */
uintptr_t address, /* address of breakpint */
ulong_t saved) /* the saved instruction */
{
long ctl[
1 + sizeof (sigset_t) / sizeof (long) + /* PCSHOLD */
1 + sizeof (fltset_t) / sizeof (long) + /* PCSFAULT */
1 + sizeof (priovec_t) / sizeof (long) + /* PCWRITE */
2 + /* PCRUN */
1 + /* PCWSTOP */
1 + /* PCCFAULT */
1 + sizeof (priovec_t) / sizeof (long) + /* PCWRITE */
1 + sizeof (fltset_t) / sizeof (long) + /* PCSFAULT */
1 + sizeof (sigset_t) / sizeof (long)]; /* PCSHOLD */
long *ctlp = ctl;
sigset_t unblock;
size_t size;
ssize_t ssize;
priovec_t *iovp;
sigset_t *holdp;
fltset_t *faultp;
instr_t old = (instr_t)saved;
instr_t bpt = BPT;
int error = 0;
/* block our signals for the duration */
(void) sigprocmask(SIG_BLOCK, &blockable_sigs, &unblock);
/* hold posted signals */
*ctlp++ = PCSHOLD;
holdp = (sigset_t *)ctlp;
prfillset(holdp);
prdelset(holdp, SIGKILL);
prdelset(holdp, SIGSTOP);
ctlp += sizeof (sigset_t) / sizeof (long);
/* force tracing of FLTTRACE */
if (!(prismember(faultset, FLTTRACE))) {
*ctlp++ = PCSFAULT;
faultp = (fltset_t *)ctlp;
*faultp = *faultset;
praddset(faultp, FLTTRACE);
ctlp += sizeof (fltset_t) / sizeof (long);
}
/* restore the old instruction */
*ctlp++ = PCWRITE;
iovp = (priovec_t *)ctlp;
iovp->pio_base = &old;
iovp->pio_len = sizeof (old);
iovp->pio_offset = address;
ctlp += sizeof (priovec_t) / sizeof (long);
/* clear current signal and fault; set running w/ single-step */
*ctlp++ = PCRUN;
*ctlp++ = PRCSIG | PRCFAULT | PRSTEP;
/* wait for stop, cancel the fault */
*ctlp++ = PCWSTOP;
*ctlp++ = PCCFAULT;
/* restore the breakpoint trap */
*ctlp++ = PCWRITE;
iovp = (priovec_t *)ctlp;
iovp->pio_base = &bpt;
iovp->pio_len = sizeof (bpt);
iovp->pio_offset = address;
ctlp += sizeof (priovec_t) / sizeof (long);
/* restore fault tracing set */
if (!(prismember(faultset, FLTTRACE))) {
*ctlp++ = PCSFAULT;
*(fltset_t *)ctlp = *faultset;
ctlp += sizeof (fltset_t) / sizeof (long);
}
/* restore the hold mask */
*ctlp++ = PCSHOLD;
*(sigset_t *)ctlp = *sigmask;
ctlp += sizeof (sigset_t) / sizeof (long);
size = (char *)ctlp - (char *)ctl;
if ((ssize = write(ctlfd, ctl, size)) != size)
error = (ssize == -1)? errno : EINTR;
(void) sigprocmask(SIG_SETMASK, &unblock, NULL);
return (error);
}
/*
* Step over a breakpoint, i.e., execute the instruction that
* really belongs at the breakpoint location (the current %pc)
* and leave the process stopped at the next instruction.
*/
int
Pxecbkpt(struct ps_prochandle *P, ulong_t saved)
{
int ctlfd = (P->agentctlfd >= 0)? P->agentctlfd : P->ctlfd;
int rv, error;
if (P->state != PS_STOP) {
errno = EBUSY;
return (-1);
}
Psync(P);
error = execute_bkpt(ctlfd,
&P->status.pr_flttrace, &P->status.pr_lwp.pr_lwphold,
P->status.pr_lwp.pr_reg[R_PC], saved);
rv = Pstopstatus(P, PCNULL, 0);
if (error != 0) {
if (P->status.pr_lwp.pr_why == PR_JOBCONTROL &&
error == EBUSY) { /* jobcontrol stop -- back off */
P->state = PS_RUN;
return (0);
}
if (error == ENOENT)
return (0);
errno = error;
return (-1);
}
return (rv);
}
/*
* Install the watchpoint described by wp.
*/
int
Psetwapt(struct ps_prochandle *P, const prwatch_t *wp)
{
long ctl[1 + sizeof (prwatch_t) / sizeof (long)];
prwatch_t *cwp = (prwatch_t *)&ctl[1];
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE) {
errno = ENOENT;
return (-1);
}
ctl[0] = PCWATCH;
cwp->pr_vaddr = wp->pr_vaddr;
cwp->pr_size = wp->pr_size;
cwp->pr_wflags = wp->pr_wflags;
if (write(P->ctlfd, ctl, sizeof (ctl)) != sizeof (ctl))
return (-1);
return (0);
}
/*
* Remove the watchpoint described by wp.
*/
int
Pdelwapt(struct ps_prochandle *P, const prwatch_t *wp)
{
long ctl[1 + sizeof (prwatch_t) / sizeof (long)];
prwatch_t *cwp = (prwatch_t *)&ctl[1];
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE) {
errno = ENOENT;
return (-1);
}
ctl[0] = PCWATCH;
cwp->pr_vaddr = wp->pr_vaddr;
cwp->pr_size = wp->pr_size;
cwp->pr_wflags = 0;
if (write(P->ctlfd, ctl, sizeof (ctl)) != sizeof (ctl))
return (-1);
return (0);
}
/*
* Common code for Pxecwapt() and Lxecwapt(). Develop the array of requests
* that will do the job, then write them to the specified control file
* descriptor. Return the non-zero errno if the write fails.
*/
static int
execute_wapt(
int ctlfd, /* process or LWP control file descriptor */
const fltset_t *faultset, /* current set of traced faults */
const sigset_t *sigmask, /* current signal mask */
const prwatch_t *wp) /* watchpoint descriptor */
{
long ctl[
1 + sizeof (sigset_t) / sizeof (long) + /* PCSHOLD */
1 + sizeof (fltset_t) / sizeof (long) + /* PCSFAULT */
1 + sizeof (prwatch_t) / sizeof (long) + /* PCWATCH */
2 + /* PCRUN */
1 + /* PCWSTOP */
1 + /* PCCFAULT */
1 + sizeof (prwatch_t) / sizeof (long) + /* PCWATCH */
1 + sizeof (fltset_t) / sizeof (long) + /* PCSFAULT */
1 + sizeof (sigset_t) / sizeof (long)]; /* PCSHOLD */
long *ctlp = ctl;
int error = 0;
sigset_t unblock;
sigset_t *holdp;
fltset_t *faultp;
prwatch_t *prw;
ssize_t ssize;
size_t size;
(void) sigprocmask(SIG_BLOCK, &blockable_sigs, &unblock);
/*
* Hold all posted signals in the victim process prior to stepping.
*/
*ctlp++ = PCSHOLD;
holdp = (sigset_t *)ctlp;
prfillset(holdp);
prdelset(holdp, SIGKILL);
prdelset(holdp, SIGSTOP);
ctlp += sizeof (sigset_t) / sizeof (long);
/*
* Force tracing of FLTTRACE since we need to single step.
*/
if (!(prismember(faultset, FLTTRACE))) {
*ctlp++ = PCSFAULT;
faultp = (fltset_t *)ctlp;
*faultp = *faultset;
praddset(faultp, FLTTRACE);
ctlp += sizeof (fltset_t) / sizeof (long);
}
/*
* Clear only the current watchpoint by setting pr_wflags to zero.
*/
*ctlp++ = PCWATCH;
prw = (prwatch_t *)ctlp;
prw->pr_vaddr = wp->pr_vaddr;
prw->pr_size = wp->pr_size;
prw->pr_wflags = 0;
ctlp += sizeof (prwatch_t) / sizeof (long);
/*
* Clear the current signal and fault; set running with single-step.
* Then wait for the victim to stop and cancel the FLTTRACE.
*/
*ctlp++ = PCRUN;
*ctlp++ = PRCSIG | PRCFAULT | PRSTEP;
*ctlp++ = PCWSTOP;
*ctlp++ = PCCFAULT;
/*
* Restore the current watchpoint.
*/
*ctlp++ = PCWATCH;
(void) memcpy(ctlp, wp, sizeof (prwatch_t));
ctlp += sizeof (prwatch_t) / sizeof (long);
/*
* Restore fault tracing set if we modified it.
*/
if (!(prismember(faultset, FLTTRACE))) {
*ctlp++ = PCSFAULT;
*(fltset_t *)ctlp = *faultset;
ctlp += sizeof (fltset_t) / sizeof (long);
}
/*
* Restore the hold mask to the current hold mask (i.e. the one
* before we executed any of the previous operations).
*/
*ctlp++ = PCSHOLD;
*(sigset_t *)ctlp = *sigmask;
ctlp += sizeof (sigset_t) / sizeof (long);
size = (char *)ctlp - (char *)ctl;
if ((ssize = write(ctlfd, ctl, size)) != size)
error = (ssize == -1)? errno : EINTR;
(void) sigprocmask(SIG_SETMASK, &unblock, NULL);
return (error);
}
/*
* Step over a watchpoint, i.e., execute the instruction that was stopped by
* the watchpoint, and then leave the LWP stopped at the next instruction.
*/
int
Pxecwapt(struct ps_prochandle *P, const prwatch_t *wp)
{
int ctlfd = (P->agentctlfd >= 0)? P->agentctlfd : P->ctlfd;
int rv, error;
if (P->state != PS_STOP) {
errno = EBUSY;
return (-1);
}
Psync(P);
error = execute_wapt(ctlfd,
&P->status.pr_flttrace, &P->status.pr_lwp.pr_lwphold, wp);
rv = Pstopstatus(P, PCNULL, 0);
if (error != 0) {
if (P->status.pr_lwp.pr_why == PR_JOBCONTROL &&
error == EBUSY) { /* jobcontrol stop -- back off */
P->state = PS_RUN;
return (0);
}
if (error == ENOENT)
return (0);
errno = error;
return (-1);
}
return (rv);
}
int
Psetflags(struct ps_prochandle *P, long flags)
{
int rc;
long ctl[2];
ctl[0] = PCSET;
ctl[1] = flags;
if (write(P->ctlfd, ctl, 2*sizeof (long)) != 2*sizeof (long)) {
rc = -1;
} else {
P->status.pr_flags |= flags;
P->status.pr_lwp.pr_flags |= flags;
rc = 0;
}
return (rc);
}
int
Punsetflags(struct ps_prochandle *P, long flags)
{
int rc;
long ctl[2];
ctl[0] = PCUNSET;
ctl[1] = flags;
if (write(P->ctlfd, ctl, 2*sizeof (long)) != 2*sizeof (long)) {
rc = -1;
} else {
P->status.pr_flags &= ~flags;
P->status.pr_lwp.pr_flags &= ~flags;
rc = 0;
}
return (rc);
}
/*
* Common function to allow clients to manipulate the action to be taken
* on receipt of a signal, receipt of machine fault, entry to a system call,
* or exit from a system call. We make use of our private prset_* functions
* in order to make this code be common. The 'which' parameter identifies
* the code for the event of interest (0 means change the entire set), and
* the 'stop' parameter is a boolean indicating whether the process should
* stop when the event of interest occurs. The previous value is returned
* to the caller; -1 is returned if an error occurred.
*/
static int
Psetaction(struct ps_prochandle *P, void *sp, size_t size,
uint_t flag, int max, int which, int stop)
{
int oldval;
if (which < 0 || which > max) {
errno = EINVAL;
return (-1);
}
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE) {
errno = ENOENT;
return (-1);
}
oldval = prset_ismember(sp, size, which) ? TRUE : FALSE;
if (stop) {
if (which == 0) {
prset_fill(sp, size);
P->flags |= flag;
} else if (!oldval) {
prset_add(sp, size, which);
P->flags |= flag;
}
} else {
if (which == 0) {
prset_empty(sp, size);
P->flags |= flag;
} else if (oldval) {
prset_del(sp, size, which);
P->flags |= flag;
}
}
if (P->state == PS_RUN)
Psync(P);
return (oldval);
}
/*
* Set action on specified signal.
*/
int
Psignal(struct ps_prochandle *P, int which, int stop)
{
int oldval;
if (which == SIGKILL && stop != 0) {
errno = EINVAL;
return (-1);
}
oldval = Psetaction(P, &P->status.pr_sigtrace, sizeof (sigset_t),
SETSIG, PRMAXSIG, which, stop);
if (oldval != -1 && which == 0 && stop != 0)
prdelset(&P->status.pr_sigtrace, SIGKILL);
return (oldval);
}
/*
* Set all signal tracing flags.
*/
void
Psetsignal(struct ps_prochandle *P, const sigset_t *set)
{
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE)
return;
P->status.pr_sigtrace = *set;
P->flags |= SETSIG;
if (P->state == PS_RUN)
Psync(P);
}
/*
* Set action on specified fault.
*/
int
Pfault(struct ps_prochandle *P, int which, int stop)
{
return (Psetaction(P, &P->status.pr_flttrace, sizeof (fltset_t),
SETFAULT, PRMAXFAULT, which, stop));
}
/*
* Set all machine fault tracing flags.
*/
void
Psetfault(struct ps_prochandle *P, const fltset_t *set)
{
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE)
return;
P->status.pr_flttrace = *set;
P->flags |= SETFAULT;
if (P->state == PS_RUN)
Psync(P);
}
/*
* Set action on specified system call entry.
*/
int
Psysentry(struct ps_prochandle *P, int which, int stop)
{
return (Psetaction(P, &P->status.pr_sysentry, sizeof (sysset_t),
SETENTRY, PRMAXSYS, which, stop));
}
/*
* Set all system call entry tracing flags.
*/
void
Psetsysentry(struct ps_prochandle *P, const sysset_t *set)
{
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE)
return;
P->status.pr_sysentry = *set;
P->flags |= SETENTRY;
if (P->state == PS_RUN)
Psync(P);
}
/*
* Set action on specified system call exit.
*/
int
Psysexit(struct ps_prochandle *P, int which, int stop)
{
return (Psetaction(P, &P->status.pr_sysexit, sizeof (sysset_t),
SETEXIT, PRMAXSYS, which, stop));
}
/*
* Set all system call exit tracing flags.
*/
void
Psetsysexit(struct ps_prochandle *P, const sysset_t *set)
{
if (P->state == PS_DEAD || P->state == PS_UNDEAD ||
P->state == PS_IDLE)
return;
P->status.pr_sysexit = *set;
P->flags |= SETEXIT;
if (P->state == PS_RUN)
Psync(P);
}
/*
* Utility function to read the contents of a file that contains a
* prheader_t at the start (/proc/pid/lstatus or /proc/pid/lpsinfo).
* Returns a malloc()d buffer or NULL on failure.
*/
static prheader_t *
read_lfile(struct ps_prochandle *P, const char *lname)
{
prheader_t *Lhp;
char lpath[PATH_MAX];
struct stat64 statb;
int fd;
size_t size;
ssize_t rval;
(void) snprintf(lpath, sizeof (lpath), "%s/%d/%s", procfs_path,
(int)P->status.pr_pid, lname);
if ((fd = open(lpath, O_RDONLY)) < 0 || fstat64(fd, &statb) != 0) {
if (fd >= 0)
(void) close(fd);
return (NULL);
}
/*
* 'size' is just the initial guess at the buffer size.
* It will have to grow if the number of lwps increases
* while we are looking at the process.
* 'size' must be larger than the actual file size.
*/
size = statb.st_size + 32;
for (;;) {
if ((Lhp = malloc(size)) == NULL)
break;
if ((rval = pread(fd, Lhp, size, 0)) < 0 ||
rval <= sizeof (prheader_t)) {
free(Lhp);
Lhp = NULL;
break;
}
if (rval < size)
break;
/* need a bigger buffer */
free(Lhp);
size *= 2;
}
(void) close(fd);
return (Lhp);
}
/*
* LWP iteration interface.
*/
int
Plwp_iter(struct ps_prochandle *P, proc_lwp_f *func, void *cd)
{
prheader_t *Lhp;
lwpstatus_t *Lsp;
long nlwp;
int rv;
switch (P->state) {
case PS_RUN:
(void) Pstopstatus(P, PCNULL, 0);
break;
case PS_STOP:
Psync(P);
break;
case PS_IDLE:
errno = ENODATA;
return (-1);
}
/*
* For either live processes or cores, the single LWP case is easy:
* the pstatus_t contains the lwpstatus_t for the only LWP.
*/
if (P->status.pr_nlwp <= 1)
return (func(cd, &P->status.pr_lwp));
/*
* For the core file multi-LWP case, we just iterate through the
* list of LWP structs we read in from the core file.
*/
if (P->state == PS_DEAD) {
lwp_info_t *lwp = list_prev(&P->core->core_lwp_head);
uint_t i;
for (i = 0; i < P->core->core_nlwp; i++, lwp = list_prev(lwp)) {
if (lwp->lwp_psinfo.pr_sname != 'Z' &&
(rv = func(cd, &lwp->lwp_status)) != 0)
break;
}
return (rv);
}
/*
* For the live process multi-LWP case, we have to work a little
* harder: the /proc/pid/lstatus file has the array of LWP structs.
*/
if ((Lhp = read_lfile(P, "lstatus")) == NULL)
return (-1);
for (nlwp = Lhp->pr_nent, Lsp = (lwpstatus_t *)(uintptr_t)(Lhp + 1);
nlwp > 0;
nlwp--, Lsp = (lwpstatus_t *)((uintptr_t)Lsp + Lhp->pr_entsize)) {
if ((rv = func(cd, Lsp)) != 0)
break;
}
free(Lhp);
return (rv);
}
/*
* Extended LWP iteration interface.
* Iterate over all LWPs, active and zombie.
*/
int
Plwp_iter_all(struct ps_prochandle *P, proc_lwp_all_f *func, void *cd)
{
prheader_t *Lhp = NULL;
lwpstatus_t *Lsp;
lwpstatus_t *sp;
prheader_t *Lphp = NULL;
lwpsinfo_t *Lpsp;
long nstat;
long ninfo;
int rv;
retry:
if (Lhp != NULL)
free(Lhp);
if (Lphp != NULL)
free(Lphp);
if (P->state == PS_RUN)
(void) Pstopstatus(P, PCNULL, 0);
(void) Ppsinfo(P);
if (P->state == PS_STOP)
Psync(P);
/*
* For either live processes or cores, the single LWP case is easy:
* the pstatus_t contains the lwpstatus_t for the only LWP and
* the psinfo_t contains the lwpsinfo_t for the only LWP.
*/
if (P->status.pr_nlwp + P->status.pr_nzomb <= 1)
return (func(cd, &P->status.pr_lwp, &P->psinfo.pr_lwp));
/*
* For the core file multi-LWP case, we just iterate through the
* list of LWP structs we read in from the core file.
*/
if (P->state == PS_DEAD) {
lwp_info_t *lwp = list_prev(&P->core->core_lwp_head);
uint_t i;
for (i = 0; i < P->core->core_nlwp; i++, lwp = list_prev(lwp)) {
sp = (lwp->lwp_psinfo.pr_sname == 'Z')? NULL :
&lwp->lwp_status;
if ((rv = func(cd, sp, &lwp->lwp_psinfo)) != 0)
break;
}
return (rv);
}
/*
* For the live process multi-LWP case, we have to work a little
* harder: the /proc/pid/lstatus file has the array of lwpstatus_t's
* and the /proc/pid/lpsinfo file has the array of lwpsinfo_t's.
*/
if ((Lhp = read_lfile(P, "lstatus")) == NULL)
return (-1);
if ((Lphp = read_lfile(P, "lpsinfo")) == NULL) {
free(Lhp);
return (-1);
}
/*
* If we are looking at a running process, or one we do not control,
* the active and zombie lwps in the process may have changed since
* we read the process status structure. If so, just start over.
*/
if (Lhp->pr_nent != P->status.pr_nlwp ||
Lphp->pr_nent != P->status.pr_nlwp + P->status.pr_nzomb)
goto retry;
/*
* To be perfectly safe, prescan the two arrays, checking consistency.
* We rely on /proc giving us lwpstatus_t's and lwpsinfo_t's in the
* same order (the lwp directory order) in their respective files.
* We also rely on there being (possibly) more lwpsinfo_t's than
* lwpstatus_t's (the extra lwpsinfo_t's are for zombie lwps).
*/
Lsp = (lwpstatus_t *)(uintptr_t)(Lhp + 1);
Lpsp = (lwpsinfo_t *)(uintptr_t)(Lphp + 1);
nstat = Lhp->pr_nent;
for (ninfo = Lphp->pr_nent; ninfo != 0; ninfo--) {
if (Lpsp->pr_sname != 'Z') {
/*
* Not a zombie lwp; check for matching lwpids.
*/
if (nstat == 0 || Lsp->pr_lwpid != Lpsp->pr_lwpid)
goto retry;
Lsp = (lwpstatus_t *)((uintptr_t)Lsp + Lhp->pr_entsize);
nstat--;
}
Lpsp = (lwpsinfo_t *)((uintptr_t)Lpsp + Lphp->pr_entsize);
}
if (nstat != 0)
goto retry;
/*
* Rescan, this time for real.
*/
Lsp = (lwpstatus_t *)(uintptr_t)(Lhp + 1);
Lpsp = (lwpsinfo_t *)(uintptr_t)(Lphp + 1);
for (ninfo = Lphp->pr_nent; ninfo != 0; ninfo--) {
if (Lpsp->pr_sname != 'Z') {
sp = Lsp;
Lsp = (lwpstatus_t *)((uintptr_t)Lsp + Lhp->pr_entsize);
} else {
sp = NULL;
}
if ((rv = func(cd, sp, Lpsp)) != 0)
break;
Lpsp = (lwpsinfo_t *)((uintptr_t)Lpsp + Lphp->pr_entsize);
}
free(Lhp);
free(Lphp);
return (rv);
}
core_content_t
Pcontent(struct ps_prochandle *P)
{
if (P->state == PS_DEAD)
return (P->core->core_content);
if (P->state == PS_IDLE)
return (CC_CONTENT_TEXT | CC_CONTENT_DATA | CC_CONTENT_CTF);
return (CC_CONTENT_ALL);
}
/*
* =================================================================
* The remainder of the functions in this file are for the
* control of individual LWPs in the controlled process.
* =================================================================
*/
/*
* Find an entry in the process hash table for the specified lwpid.
* The entry will either point to an existing struct ps_lwphandle
* or it will point to an empty slot for a new struct ps_lwphandle.
*/
static struct ps_lwphandle **
Lfind(struct ps_prochandle *P, lwpid_t lwpid)
{
struct ps_lwphandle **Lp;
struct ps_lwphandle *L;
for (Lp = &P->hashtab[lwpid % (HASHSIZE - 1)];
(L = *Lp) != NULL; Lp = &L->lwp_hash)
if (L->lwp_id == lwpid)
break;
return (Lp);
}
/*
* Grab an LWP contained within the controlled process.
* Return an opaque pointer to its LWP control structure.
* perr: pointer to error return code.
*/
struct ps_lwphandle *
Lgrab(struct ps_prochandle *P, lwpid_t lwpid, int *perr)
{
struct ps_lwphandle **Lp;
struct ps_lwphandle *L;
int fd;
char procname[PATH_MAX];
char *fname;
int rc = 0;
(void) mutex_lock(&P->proc_lock);
if (P->state == PS_UNDEAD || P->state == PS_IDLE)
rc = G_NOPROC;
else if (P->hashtab == NULL &&
(P->hashtab = calloc(HASHSIZE, sizeof (struct ps_lwphandle *)))
== NULL)
rc = G_STRANGE;
else if (*(Lp = Lfind(P, lwpid)) != NULL)
rc = G_BUSY;
else if ((L = malloc(sizeof (struct ps_lwphandle))) == NULL)
rc = G_STRANGE;
if (rc) {
*perr = rc;
(void) mutex_unlock(&P->proc_lock);
return (NULL);
}
(void) memset(L, 0, sizeof (*L));
L->lwp_ctlfd = -1;
L->lwp_statfd = -1;
L->lwp_proc = P;
L->lwp_id = lwpid;
*Lp = L; /* insert into the hash table */
if (P->state == PS_DEAD) { /* core file */
if (getlwpstatus(P, lwpid, &L->lwp_status) == -1) {
rc = G_NOPROC;
goto err;
}
L->lwp_state = PS_DEAD;
*perr = 0;
(void) mutex_unlock(&P->proc_lock);
return (L);
}
/*
* Open the /proc/<pid>/lwp/<lwpid> files
*/
(void) snprintf(procname, sizeof (procname), "%s/%d/lwp/%d/",
procfs_path, (int)P->pid, (int)lwpid);
fname = procname + strlen(procname);
(void) set_minfd();
(void) strcpy(fname, "lwpstatus");
if ((fd = open(procname, O_RDONLY)) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
switch (errno) {
case ENOENT:
rc = G_NOPROC;
break;
default:
dprintf("Lgrab: failed to open %s: %s\n",
procname, strerror(errno));
rc = G_STRANGE;
break;
}
goto err;
}
L->lwp_statfd = fd;
if (pread(fd, &L->lwp_status, sizeof (L->lwp_status), (off_t)0) < 0) {
switch (errno) {
case ENOENT:
rc = G_NOPROC;
break;
default:
dprintf("Lgrab: failed to read %s: %s\n",
procname, strerror(errno));
rc = G_STRANGE;
break;
}
goto err;
}
(void) strcpy(fname, "lwpctl");
if ((fd = open(procname, O_WRONLY)) < 0 ||
(fd = dupfd(fd, 0)) < 0) {
switch (errno) {
case ENOENT:
rc = G_NOPROC;
break;
default:
dprintf("Lgrab: failed to open %s: %s\n",
procname, strerror(errno));
rc = G_STRANGE;
break;
}
goto err;
}
L->lwp_ctlfd = fd;
L->lwp_state =
((L->lwp_status.pr_flags & (PR_STOPPED|PR_ISTOP))
== (PR_STOPPED|PR_ISTOP))?
PS_STOP : PS_RUN;
*perr = 0;
(void) mutex_unlock(&P->proc_lock);
return (L);
err:
Lfree_internal(P, L);
*perr = rc;
(void) mutex_unlock(&P->proc_lock);
return (NULL);
}
/*
* Return a printable string corresponding to an Lgrab() error return.
*/
const char *
Lgrab_error(int error)
{
const char *str;
switch (error) {
case G_NOPROC:
str = "no such LWP";
break;
case G_BUSY:
str = "LWP already grabbed";
break;
case G_STRANGE:
str = "unanticipated system error";
break;
default:
str = "unknown error";
break;
}
return (str);
}
/*
* Free an LWP control structure.
*/
void
Lfree(struct ps_lwphandle *L)
{
struct ps_prochandle *P = L->lwp_proc;
(void) mutex_lock(&P->proc_lock);
Lfree_internal(P, L);
(void) mutex_unlock(&P->proc_lock);
}
static void
Lfree_internal(struct ps_prochandle *P, struct ps_lwphandle *L)
{
*Lfind(P, L->lwp_id) = L->lwp_hash; /* delete from hash table */
if (L->lwp_ctlfd >= 0)
(void) close(L->lwp_ctlfd);
if (L->lwp_statfd >= 0)
(void) close(L->lwp_statfd);
/* clear out the structure as a precaution against reuse */
(void) memset(L, 0, sizeof (*L));
L->lwp_ctlfd = -1;
L->lwp_statfd = -1;
free(L);
}
/*
* Return the state of the process, one of the PS_* values.
*/
int
Lstate(struct ps_lwphandle *L)
{
return (L->lwp_state);
}
/*
* Return the open control file descriptor for the LWP.
* Clients must not close this file descriptor, nor use it
* after the LWP is freed.
*/
int
Lctlfd(struct ps_lwphandle *L)
{
return (L->lwp_ctlfd);
}
/*
* Return a pointer to the LWP lwpsinfo structure.
* Clients should not hold on to this pointer indefinitely.
* It will become invalid on Lfree().
*/
const lwpsinfo_t *
Lpsinfo(struct ps_lwphandle *L)
{
if (Plwp_getpsinfo(L->lwp_proc, L->lwp_id, &L->lwp_psinfo) == -1)
return (NULL);
return (&L->lwp_psinfo);
}
/*
* Return a pointer to the LWP status structure.
* Clients should not hold on to this pointer indefinitely.
* It will become invalid on Lfree().
*/
const lwpstatus_t *
Lstatus(struct ps_lwphandle *L)
{
return (&L->lwp_status);
}
/*
* Given an LWP handle, return the process handle.
*/
struct ps_prochandle *
Lprochandle(struct ps_lwphandle *L)
{
return (L->lwp_proc);
}
/*
* Ensure that all cached state is written to the LWP.
* The cached state is the LWP's signal mask and registers.
*/
void
Lsync(struct ps_lwphandle *L)
{
int ctlfd = L->lwp_ctlfd;
long cmd[2];
iovec_t iov[4];
int n = 0;
if (L->lwp_flags & SETHOLD) {
cmd[0] = PCSHOLD;
iov[n].iov_base = (caddr_t)&cmd[0];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&L->lwp_status.pr_lwphold;
iov[n++].iov_len = sizeof (L->lwp_status.pr_lwphold);
}
if (L->lwp_flags & SETREGS) {
cmd[1] = PCSREG;
iov[n].iov_base = (caddr_t)&cmd[1];
iov[n++].iov_len = sizeof (long);
iov[n].iov_base = (caddr_t)&L->lwp_status.pr_reg[0];
iov[n++].iov_len = sizeof (L->lwp_status.pr_reg);
}
if (n == 0 || writev(ctlfd, iov, n) < 0)
return; /* nothing to do or write failed */
L->lwp_flags &= ~(SETHOLD|SETREGS);
}
/*
* Wait for the specified LWP to stop or terminate.
* Or, just get the current status (PCNULL).
* Or, direct it to stop and get the current status (PCDSTOP).
*/
static int
Lstopstatus(struct ps_lwphandle *L,
long request, /* PCNULL, PCDSTOP, PCSTOP, PCWSTOP */
uint_t msec) /* if non-zero, timeout in milliseconds */
{
int ctlfd = L->lwp_ctlfd;
long ctl[3];
ssize_t rc;
int err;
switch (L->lwp_state) {
case PS_RUN:
break;
case PS_STOP:
if (request != PCNULL && request != PCDSTOP)
return (0);
break;
case PS_LOST:
if (request != PCNULL) {
errno = EAGAIN;
return (-1);
}
break;
case PS_UNDEAD:
case PS_DEAD:
if (request != PCNULL) {
errno = ENOENT;
return (-1);
}
break;
default: /* corrupted state */
dprintf("Lstopstatus: corrupted state: %d\n", L->lwp_state);
errno = EINVAL;
return (-1);
}
ctl[0] = PCDSTOP;
ctl[1] = PCTWSTOP;
ctl[2] = (long)msec;
rc = 0;
switch (request) {
case PCSTOP:
rc = write(ctlfd, &ctl[0], 3*sizeof (long));
break;
case PCWSTOP:
rc = write(ctlfd, &ctl[1], 2*sizeof (long));
break;
case PCDSTOP:
rc = write(ctlfd, &ctl[0], 1*sizeof (long));
break;
case PCNULL:
if (L->lwp_state == PS_DEAD)
return (0); /* Nothing else to do for cores */
break;
default: /* programming error */
errno = EINVAL;
return (-1);
}
err = (rc < 0)? errno : 0;
Lsync(L);
if (pread(L->lwp_statfd, &L->lwp_status,
sizeof (L->lwp_status), (off_t)0) < 0)
err = errno;
if (err) {
switch (err) {
case EINTR: /* user typed ctl-C */
case ERESTART:
dprintf("Lstopstatus: EINTR\n");
break;
case EAGAIN: /* we lost control of the the process */
dprintf("Lstopstatus: EAGAIN\n");
L->lwp_state = PS_LOST;
errno = err;
return (-1);
default:
if (_libproc_debug) {
const char *errstr;
switch (request) {
case PCNULL:
errstr = "Lstopstatus PCNULL"; break;
case PCSTOP:
errstr = "Lstopstatus PCSTOP"; break;
case PCDSTOP:
errstr = "Lstopstatus PCDSTOP"; break;
case PCWSTOP:
errstr = "Lstopstatus PCWSTOP"; break;
default:
errstr = "Lstopstatus PC???"; break;
}
dprintf("%s: %s\n", errstr, strerror(err));
}
L->lwp_state = PS_UNDEAD;
errno = err;
return (-1);
}
}
if ((L->lwp_status.pr_flags & (PR_STOPPED|PR_ISTOP))
!= (PR_STOPPED|PR_ISTOP)) {
L->lwp_state = PS_RUN;
if (request == PCNULL || request == PCDSTOP || msec != 0)
return (0);
dprintf("Lstopstatus: LWP is not stopped\n");
errno = EPROTO;
return (-1);
}
L->lwp_state = PS_STOP;
if (_libproc_debug) /* debugging */
prldump("Lstopstatus", &L->lwp_status);
switch (L->lwp_status.pr_why) {
case PR_SYSENTRY:
case PR_SYSEXIT:
case PR_REQUESTED:
case PR_SIGNALLED:
case PR_FAULTED:
case PR_JOBCONTROL:
case PR_SUSPENDED:
break;
default:
errno = EPROTO;
return (-1);
}
return (0);
}
/*
* Wait for the LWP to stop for any reason.
*/
int
Lwait(struct ps_lwphandle *L, uint_t msec)
{
return (Lstopstatus(L, PCWSTOP, msec));
}
/*
* Direct the LWP to stop; wait for it to stop.
*/
int
Lstop(struct ps_lwphandle *L, uint_t msec)
{
return (Lstopstatus(L, PCSTOP, msec));
}
/*
* Direct the LWP to stop; don't wait.
*/
int
Ldstop(struct ps_lwphandle *L)
{
return (Lstopstatus(L, PCDSTOP, 0));
}
/*
* Get the value of one register from stopped LWP.
*/
int
Lgetareg(struct ps_lwphandle *L, int regno, prgreg_t *preg)
{
if (regno < 0 || regno >= NPRGREG) {
errno = EINVAL;
return (-1);
}
if (L->lwp_state != PS_STOP) {
errno = EBUSY;
return (-1);
}
*preg = L->lwp_status.pr_reg[regno];
return (0);
}
/*
* Put value of one register into stopped LWP.
*/
int
Lputareg(struct ps_lwphandle *L, int regno, prgreg_t reg)
{
if (regno < 0 || regno >= NPRGREG) {
errno = EINVAL;
return (-1);
}
if (L->lwp_state != PS_STOP) {
errno = EBUSY;
return (-1);
}
L->lwp_status.pr_reg[regno] = reg;
L->lwp_flags |= SETREGS; /* set registers before continuing */
return (0);
}
int
Lsetrun(struct ps_lwphandle *L,
int sig, /* signal to pass to LWP */
int flags) /* PRSTEP|PRSABORT|PRSTOP|PRCSIG|PRCFAULT */
{
int ctlfd = L->lwp_ctlfd;
int sbits = (PR_DSTOP | PR_ISTOP | PR_ASLEEP);
long ctl[1 + /* PCCFAULT */
1 + sizeof (siginfo_t)/sizeof (long) + /* PCSSIG/PCCSIG */
2 ]; /* PCRUN */
long *ctlp = ctl;
size_t size;
if (L->lwp_state != PS_STOP &&
(L->lwp_status.pr_flags & sbits) == 0) {
errno = EBUSY;
return (-1);
}
Lsync(L); /* flush registers */
if (flags & PRCFAULT) { /* clear current fault */
*ctlp++ = PCCFAULT;
flags &= ~PRCFAULT;
}
if (flags & PRCSIG) { /* clear current signal */
*ctlp++ = PCCSIG;
flags &= ~PRCSIG;
} else if (sig && sig != L->lwp_status.pr_cursig) {
/* make current signal */
siginfo_t *infop;
*ctlp++ = PCSSIG;
infop = (siginfo_t *)ctlp;
(void) memset(infop, 0, sizeof (*infop));
infop->si_signo = sig;
ctlp += sizeof (siginfo_t) / sizeof (long);
}
*ctlp++ = PCRUN;
*ctlp++ = flags;
size = (char *)ctlp - (char *)ctl;
L->lwp_proc->info_valid = 0; /* will need to update map and file info */
L->lwp_proc->state = PS_RUN;
L->lwp_state = PS_RUN;
if (write(ctlfd, ctl, size) != size) {
/* Pretend that a job-stopped LWP is running */
if (errno != EBUSY || L->lwp_status.pr_why != PR_JOBCONTROL)
return (Lstopstatus(L, PCNULL, 0));
}
return (0);
}
int
Lclearsig(struct ps_lwphandle *L)
{
int ctlfd = L->lwp_ctlfd;
long ctl = PCCSIG;
if (write(ctlfd, &ctl, sizeof (ctl)) != sizeof (ctl))
return (-1);
L->lwp_status.pr_cursig = 0;
return (0);
}
int
Lclearfault(struct ps_lwphandle *L)
{
int ctlfd = L->lwp_ctlfd;
long ctl = PCCFAULT;
if (write(ctlfd, &ctl, sizeof (ctl)) != sizeof (ctl))
return (-1);
return (0);
}
/*
* Step over a breakpoint, i.e., execute the instruction that
* really belongs at the breakpoint location (the current %pc)
* and leave the LWP stopped at the next instruction.
*/
int
Lxecbkpt(struct ps_lwphandle *L, ulong_t saved)
{
struct ps_prochandle *P = L->lwp_proc;
int rv, error;
if (L->lwp_state != PS_STOP) {
errno = EBUSY;
return (-1);
}
Lsync(L);
error = execute_bkpt(L->lwp_ctlfd,
&P->status.pr_flttrace, &L->lwp_status.pr_lwphold,
L->lwp_status.pr_reg[R_PC], saved);
rv = Lstopstatus(L, PCNULL, 0);
if (error != 0) {
if (L->lwp_status.pr_why == PR_JOBCONTROL &&
error == EBUSY) { /* jobcontrol stop -- back off */
L->lwp_state = PS_RUN;
return (0);
}
if (error == ENOENT)
return (0);
errno = error;
return (-1);
}
return (rv);
}
/*
* Step over a watchpoint, i.e., execute the instruction that was stopped by
* the watchpoint, and then leave the LWP stopped at the next instruction.
*/
int
Lxecwapt(struct ps_lwphandle *L, const prwatch_t *wp)
{
struct ps_prochandle *P = L->lwp_proc;
int rv, error;
if (L->lwp_state != PS_STOP) {
errno = EBUSY;
return (-1);
}
Lsync(L);
error = execute_wapt(L->lwp_ctlfd,
&P->status.pr_flttrace, &L->lwp_status.pr_lwphold, wp);
rv = Lstopstatus(L, PCNULL, 0);
if (error != 0) {
if (L->lwp_status.pr_why == PR_JOBCONTROL &&
error == EBUSY) { /* jobcontrol stop -- back off */
L->lwp_state = PS_RUN;
return (0);
}
if (error == ENOENT)
return (0);
errno = error;
return (-1);
}
return (rv);
}
int
Lstack(struct ps_lwphandle *L, stack_t *stkp)
{
struct ps_prochandle *P = L->lwp_proc;
uintptr_t addr = L->lwp_status.pr_ustack;
if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
if (Pread(P, stkp, sizeof (*stkp), addr) != sizeof (*stkp))
return (-1);
#ifdef _LP64
} else {
stack32_t stk32;
if (Pread(P, &stk32, sizeof (stk32), addr) != sizeof (stk32))
return (-1);
stack_32_to_n(&stk32, stkp);
#endif
}
return (0);
}
int
Lmain_stack(struct ps_lwphandle *L, stack_t *stkp)
{
struct ps_prochandle *P = L->lwp_proc;
if (Lstack(L, stkp) != 0)
return (-1);
/*
* If the SS_ONSTACK flag is set then this LWP is operating on the
* alternate signal stack. We can recover the original stack from
* pr_oldcontext.
*/
if (!(stkp->ss_flags & SS_ONSTACK))
return (0);
if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
ucontext_t *ctxp = (void *)L->lwp_status.pr_oldcontext;
if (Pread(P, stkp, sizeof (*stkp),
(uintptr_t)&ctxp->uc_stack) != sizeof (*stkp))
return (-1);
#ifdef _LP64
} else {
ucontext32_t *ctxp = (void *)L->lwp_status.pr_oldcontext;
stack32_t stk32;
if (Pread(P, &stk32, sizeof (stk32),
(uintptr_t)&ctxp->uc_stack) != sizeof (stk32))
return (-1);
stack_32_to_n(&stk32, stkp);
#endif
}
return (0);
}
int
Lalt_stack(struct ps_lwphandle *L, stack_t *stkp)
{
if (L->lwp_status.pr_altstack.ss_flags & SS_DISABLE) {
errno = ENODATA;
return (-1);
}
*stkp = L->lwp_status.pr_altstack;
return (0);
}
/*
* Add a mapping to the given proc handle. Resizes the array as appropriate and
* manages reference counts on the given file_info_t.
*
* The 'map_relocate' member is used to tell Psort_mappings() that the
* associated file_map pointer needs to be relocated after the mappings have
* been sorted. It is only set for the first mapping, and has no meaning
* outside these two functions.
*/
int
Padd_mapping(struct ps_prochandle *P, off64_t off, file_info_t *fp,
prmap_t *pmap)
{
map_info_t *mp;
if (P->map_count == P->map_alloc) {
size_t next = P->map_alloc ? P->map_alloc * 2 : 16;
if ((P->mappings = realloc(P->mappings,
next * sizeof (map_info_t))) == NULL)
return (-1);
P->map_alloc = next;
}
mp = &P->mappings[P->map_count++];
mp->map_offset = off;
mp->map_pmap = *pmap;
mp->map_relocate = 0;
if ((mp->map_file = fp) != NULL) {
if (fp->file_map == NULL) {
fp->file_map = mp;
mp->map_relocate = 1;
}
fp->file_ref++;
}
return (0);
}
static int
map_sort(const void *a, const void *b)
{
const map_info_t *ap = a, *bp = b;
if (ap->map_pmap.pr_vaddr < bp->map_pmap.pr_vaddr)
return (-1);
else if (ap->map_pmap.pr_vaddr > bp->map_pmap.pr_vaddr)
return (1);
else
return (0);
}
/*
* Sort the current set of mappings. Should be called during target
* initialization after all calls to Padd_mapping() have been made.
*/
void
Psort_mappings(struct ps_prochandle *P)
{
int i;
map_info_t *mp;
qsort(P->mappings, P->map_count, sizeof (map_info_t), map_sort);
/*
* Update all the file_map pointers to refer to the new locations.
*/
for (i = 0; i < P->map_count; i++) {
mp = &P->mappings[i];
if (mp->map_relocate)
mp->map_file->file_map = mp;
mp->map_relocate = 0;
}
}