/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1989, 2011, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley
* 4.3 BSD under license from the Regents of the University of
* California.
*/
/*
* svc.c, Server-side remote procedure call interface.
*
* There are two sets of procedures here. The xprt routines are
* for handling transport handles. The svc routines handle the
* list of service routines.
*
*/
#include "mt.h"
#include "rpc_mt.h"
#include <assert.h>
#include <errno.h>
#include <sys/types.h>
#include <stropts.h>
#include <sys/conf.h>
#include <rpc/rpc.h>
#ifdef PORTMAP
#include <rpc/pmap_clnt.h>
#endif
#include <sys/poll.h>
#include <netconfig.h>
#include <syslog.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <limits.h>
extern bool_t __svc_get_door_cred();
extern bool_t __rpc_get_local_cred();
SVCXPRT **svc_xports;
static int nsvc_xports; /* total number of svc_xports allocated */
XDR **svc_xdrs; /* common XDR receive area */
int nsvc_xdrs; /* total number of svc_xdrs allocated */
int __rpc_use_pollfd_done; /* to unlimit the number of connections */
#define NULL_SVC ((struct svc_callout *)0)
#define RQCRED_SIZE (NGRPS_LOOPBACK * sizeof (gid_t) + \
MAX_MACHINE_NAME + 1 + \
sizeof (struct authsys_parms))
/*
* The services list
* Each entry represents a set of procedures (an rpc program).
* The dispatch routine takes request structs and runs the
* appropriate procedure.
*/
static struct svc_callout {
struct svc_callout *sc_next;
rpcprog_t sc_prog;
rpcvers_t sc_vers;
char *sc_netid;
void (*sc_dispatch)();
} *svc_head;
extern rwlock_t svc_lock;
static struct svc_callout *svc_find();
int _svc_prog_dispatch();
void svc_getreq_common();
char *strdup();
extern mutex_t svc_door_mutex;
extern cond_t svc_door_waitcv;
extern int svc_ndoorfds;
extern SVCXPRT_LIST *_svc_xprtlist;
extern mutex_t xprtlist_lock;
extern void __svc_rm_from_xlist();
extern fd_set _new_svc_fdset;
/*
* If the allocated array of reactor is too small, this value is used as a
* margin. This reduces the number of allocations.
*/
#define USER_FD_INCREMENT 5
static void add_pollfd(int fd, short events);
static void remove_pollfd(int fd);
static void __svc_remove_input_of_fd(int fd);
/*
* Data used to handle reactor:
* - one file descriptor we listen to,
* - one callback we call if the fd pops,
* - and a cookie passed as a parameter to the callback.
*
* The structure is an array indexed on the file descriptor. Each entry is
* pointing to the first element of a double-linked list of callback.
* only one callback may be associated to a couple (fd, event).
*/
struct _svc_user_fd_head;
typedef struct {
struct _svc_user_fd_node *next;
struct _svc_user_fd_node *previous;
} _svc_user_link;
typedef struct _svc_user_fd_node {
/* The lnk field must be the first field. */
_svc_user_link lnk;
svc_input_id_t id;
int fd;
unsigned int events;
svc_callback_t callback;
void* cookie;
} _svc_user_fd_node;
typedef struct _svc_user_fd_head {
/* The lnk field must be the first field. */
_svc_user_link lnk;
unsigned int mask; /* logical OR of all sub-masks */
} _svc_user_fd_head;
/* Define some macros to manage the linked list. */
#define LIST_ISEMPTY(l) ((_svc_user_fd_node *) &(l.lnk) == l.lnk.next)
#define LIST_CLR(l) \
(l.lnk.previous = l.lnk.next = (_svc_user_fd_node *) &(l.lnk))
/* Array of defined reactor - indexed on file descriptor */
static _svc_user_fd_head *svc_userfds = NULL;
/* current size of file descriptor */
static int svc_nuserfds = 0;
/* Mutex to ensure MT safe operations for user fds callbacks. */
static mutex_t svc_userfds_lock = DEFAULTMUTEX;
/*
* This structure is used to have constant time alogrithms. There is an array
* of this structure as large as svc_nuserfds. When the user is registering a
* new callback, the address of the created structure is stored in a cell of
* this array. The address of this cell is the returned unique identifier.
*
* On removing, the id is given by the user, then we know if this cell is
* filled or not (with free). If it is free, we return an error. Otherwise,
* we can free the structure pointed by fd_node.
*
* On insertion, we use the linked list created by (first_free,
* next_free). In this way with a constant time computation, we can give a
* correct index to the user.
*/
typedef struct _svc_management_user_fd {
bool_t free;
union {
svc_input_id_t next_free;
_svc_user_fd_node *fd_node;
} data;
} _svc_management_user_fd;
/* index to the first free elem */
static svc_input_id_t first_free = (svc_input_id_t)-1;
/* the size of this array is the same as svc_nuserfds */
static _svc_management_user_fd* user_fd_mgt_array = NULL;
/* current size of user_fd_mgt_array */
static int svc_nmgtuserfds = 0;
/* Define some macros to access data associated to registration ids. */
#define node_from_id(id) (user_fd_mgt_array[(int)id].data.fd_node)
#define is_free_id(id) (user_fd_mgt_array[(int)id].free)
#ifndef POLLSTANDARD
#define POLLSTANDARD \
(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND| \
POLLWRBAND|POLLERR|POLLHUP|POLLNVAL)
#endif
/*
* To free an Id, we set the cell as free and insert its address in the list
* of free cell.
*/
static void
_svc_free_id(const svc_input_id_t id)
{
assert(((int)id >= 0) && ((int)id < svc_nmgtuserfds));
user_fd_mgt_array[(int)id].free = TRUE;
user_fd_mgt_array[(int)id].data.next_free = first_free;
first_free = id;
}
/*
* To get a free cell, we just have to take it from the free linked list and
* set the flag to "not free". This function also allocates new memory if
* necessary
*/
static svc_input_id_t
_svc_attribute_new_id(_svc_user_fd_node *node)
{
int selected_index = (int)first_free;
assert(node != NULL);
if (selected_index == -1) {
/* Allocate new entries */
int L_inOldSize = svc_nmgtuserfds;
int i;
svc_nmgtuserfds += USER_FD_INCREMENT;
user_fd_mgt_array = (_svc_management_user_fd *)
realloc(user_fd_mgt_array, svc_nmgtuserfds
* sizeof (_svc_management_user_fd));
if (user_fd_mgt_array == NULL) {
syslog(LOG_ERR, "_svc_attribute_new_id: out of memory");
errno = ENOMEM;
return ((svc_input_id_t)-1);
}
for (i = svc_nmgtuserfds - 1; i >= L_inOldSize; i--)
_svc_free_id((svc_input_id_t)i);
selected_index = (int)first_free;
}
node->id = (svc_input_id_t)selected_index;
first_free = user_fd_mgt_array[selected_index].data.next_free;
user_fd_mgt_array[selected_index].data.fd_node = node;
user_fd_mgt_array[selected_index].free = FALSE;
return ((svc_input_id_t)selected_index);
}
/*
* Access to a pollfd treatment. Scan all the associated callbacks that have
* at least one bit in their mask that masks a received event.
*
* If event POLLNVAL is received, we check that one callback processes it, if
* not, then remove the file descriptor from the poll. If there is one, let
* the user do the work.
*/
void
__svc_getreq_user(struct pollfd *pfd)
{
int fd = pfd->fd;
short revents = pfd->revents;
bool_t invalHandled = FALSE;
_svc_user_fd_node *node;
(void) mutex_lock(&svc_userfds_lock);
if ((fd < 0) || (fd >= svc_nuserfds)) {
(void) mutex_unlock(&svc_userfds_lock);
return;
}
node = svc_userfds[fd].lnk.next;
/* check if at least one mask fits */
if (0 == (revents & svc_userfds[fd].mask)) {
(void) mutex_unlock(&svc_userfds_lock);
return;
}
while ((svc_userfds[fd].mask != 0) &&
((_svc_user_link *)node != &(svc_userfds[fd].lnk))) {
/*
* If one of the received events maps the ones the node listens
* to
*/
_svc_user_fd_node *next = node->lnk.next;
if (node->callback != NULL) {
if (node->events & revents) {
if (revents & POLLNVAL) {
invalHandled = TRUE;
}
/*
* The lock must be released before calling the
* user function, as this function can call
* svc_remove_input() for example.
*/
(void) mutex_unlock(&svc_userfds_lock);
node->callback(node->id, node->fd,
node->events & revents, node->cookie);
/*
* Do not use the node structure anymore, as it
* could have been deallocated by the previous
* callback.
*/
(void) mutex_lock(&svc_userfds_lock);
}
}
node = next;
}
if ((revents & POLLNVAL) && !invalHandled)
__svc_remove_input_of_fd(fd);
(void) mutex_unlock(&svc_userfds_lock);
}
/*
* Check if a file descriptor is associated with a user reactor.
* To do this, just check that the array indexed on fd has a non-void linked
* list (ie. first element is not NULL)
*/
bool_t
__is_a_userfd(int fd)
{
/* Checks argument */
if ((fd < 0) || (fd >= svc_nuserfds))
return (FALSE);
return ((svc_userfds[fd].mask == 0x0000)? FALSE:TRUE);
}
/* free everything concerning user fd */
/* used in svc_run.c => no static */
void
__destroy_userfd(void)
{
int one_fd;
/* Clean user fd */
if (svc_userfds != NULL) {
for (one_fd = 0; one_fd < svc_nuserfds; one_fd++) {
_svc_user_fd_node *node;
node = svc_userfds[one_fd].lnk.next;
while ((_svc_user_link *) node
!= (_svc_user_link *) &(svc_userfds[one_fd])) {
_svc_free_id(node->id);
node = node->lnk.next;
free(node->lnk.previous);
}
}
free(user_fd_mgt_array);
user_fd_mgt_array = NULL;
first_free = (svc_input_id_t)-1;
free(svc_userfds);
svc_userfds = NULL;
svc_nuserfds = 0;
}
}
/*
* Remove all the callback associated with a fd => useful when the fd is
* closed for instance
*/
static void
__svc_remove_input_of_fd(int fd)
{
_svc_user_fd_node *one_node;
if ((fd < 0) || (fd >= svc_nuserfds))
return;
one_node = svc_userfds[fd].lnk.next;
while ((_svc_user_link *) one_node
!= (_svc_user_link *) &(svc_userfds[fd].lnk)) {
_svc_free_id(one_node->id);
one_node = one_node->lnk.next;
free(one_node->lnk.previous);
}
LIST_CLR(svc_userfds[fd]);
svc_userfds[fd].mask = 0;
}
/*
* Allow user to add an fd in the poll list. If it does not succeed, return
* -1. Otherwise, return a svc_id
*/
svc_input_id_t
svc_add_input(int user_fd, unsigned int events,
svc_callback_t user_callback, void *cookie)
{
_svc_user_fd_node *new_node;
if (user_fd < 0) {
errno = EINVAL;
return ((svc_input_id_t)-1);
}
if ((events == 0x0000) ||
(events & ~(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND|\
POLLWRBAND|POLLERR|POLLHUP|POLLNVAL))) {
errno = EINVAL;
return ((svc_input_id_t)-1);
}
(void) mutex_lock(&svc_userfds_lock);
if ((user_fd < svc_nuserfds) &&
(svc_userfds[user_fd].mask & events) != 0) {
/* Already registrated call-back */
errno = EEXIST;
(void) mutex_unlock(&svc_userfds_lock);
return ((svc_input_id_t)-1);
}
/* Handle memory allocation. */
if (user_fd >= svc_nuserfds) {
int oldSize = svc_nuserfds;
int i;
svc_nuserfds = (user_fd + 1) + USER_FD_INCREMENT;
svc_userfds = (_svc_user_fd_head *)
realloc(svc_userfds,
svc_nuserfds * sizeof (_svc_user_fd_head));
if (svc_userfds == NULL) {
syslog(LOG_ERR, "svc_add_input: out of memory");
errno = ENOMEM;
(void) mutex_unlock(&svc_userfds_lock);
return ((svc_input_id_t)-1);
}
for (i = oldSize; i < svc_nuserfds; i++) {
LIST_CLR(svc_userfds[i]);
svc_userfds[i].mask = 0;
}
}
new_node = malloc(sizeof (_svc_user_fd_node));
if (new_node == NULL) {
syslog(LOG_ERR, "svc_add_input: out of memory");
errno = ENOMEM;
(void) mutex_unlock(&svc_userfds_lock);
return ((svc_input_id_t)-1);
}
/* create a new node */
new_node->fd = user_fd;
new_node->events = events;
new_node->callback = user_callback;
new_node->cookie = cookie;
(void) _svc_attribute_new_id(new_node);
/* Add the new element at the beginning of the list. */
if (LIST_ISEMPTY(svc_userfds[user_fd])) {
svc_userfds[user_fd].lnk.previous = new_node;
}
new_node->lnk.next = svc_userfds[user_fd].lnk.next;
new_node->lnk.previous = (_svc_user_fd_node *)&(svc_userfds[user_fd]);
svc_userfds[user_fd].lnk.next = new_node;
/* refresh global mask for this file desciptor */
svc_userfds[user_fd].mask |= events;
/* refresh mask for the poll */
add_pollfd(user_fd, (svc_userfds[user_fd].mask));
(void) mutex_unlock(&svc_userfds_lock);
return (new_node->id);
}
int
svc_remove_input(svc_input_id_t id)
{
_svc_user_fd_node* node;
_svc_user_fd_node* next;
_svc_user_fd_node* previous;
int fd; /* caching optim */
(void) mutex_lock(&svc_userfds_lock);
/* Immediately update data for id management */
if (user_fd_mgt_array == NULL || id >= svc_nmgtuserfds ||
is_free_id(id)) {
errno = EINVAL;
(void) mutex_unlock(&svc_userfds_lock);
return (-1);
}
node = node_from_id(id);
assert(node != NULL);
_svc_free_id(id);
next = node->lnk.next;
previous = node->lnk.previous;
fd = node->fd; /* caching optim */
/* Remove this node from the list. */
previous->lnk.next = next;
next->lnk.previous = previous;
/* Remove the node flags from the global mask */
svc_userfds[fd].mask ^= node->events;
free(node);
if (svc_userfds[fd].mask == 0) {
LIST_CLR(svc_userfds[fd]);
assert(LIST_ISEMPTY(svc_userfds[fd]));
remove_pollfd(fd);
}
/* <=> CLEAN NEEDED TO SHRINK MEMORY USAGE */
(void) mutex_unlock(&svc_userfds_lock);
return (0);
}
/*
* Provides default service-side functions for authentication flavors
* that do not use all the fields in struct svc_auth_ops.
*/
/*ARGSUSED*/
static int
authany_wrap(AUTH *auth, XDR *xdrs, xdrproc_t xfunc, caddr_t xwhere)
{
return (*xfunc)(xdrs, xwhere);
}
struct svc_auth_ops svc_auth_any_ops = {
authany_wrap,
authany_wrap,
};
/*
* Return pointer to server authentication structure.
*/
SVCAUTH *
__svc_get_svcauth(SVCXPRT *xprt)
{
/* LINTED pointer alignment */
return (&SVC_XP_AUTH(xprt));
}
/*
* A callback routine to cleanup after a procedure is executed.
*/
void (*__proc_cleanup_cb)() = NULL;
void *
__svc_set_proc_cleanup_cb(void *cb)
{
void *tmp = (void *)__proc_cleanup_cb;
__proc_cleanup_cb = (void (*)())cb;
return (tmp);
}
/* *************** SVCXPRT related stuff **************** */
static int pollfd_shrinking = 1;
/*
* Add fd to svc_pollfd
*/
static void
add_pollfd(int fd, short events)
{
if (fd < FD_SETSIZE) {
FD_SET(fd, &svc_fdset);
#if !defined(_LP64)
FD_SET(fd, &_new_svc_fdset);
#endif
svc_nfds++;
svc_nfds_set++;
if (fd >= svc_max_fd)
svc_max_fd = fd + 1;
}
if (fd >= svc_max_pollfd)
svc_max_pollfd = fd + 1;
if (svc_max_pollfd > svc_pollfd_allocd) {
int i = svc_pollfd_allocd;
pollfd_t *tmp;
do {
svc_pollfd_allocd += POLLFD_EXTEND;
} while (svc_max_pollfd > svc_pollfd_allocd);
tmp = realloc(svc_pollfd,
sizeof (pollfd_t) * svc_pollfd_allocd);
if (tmp != NULL) {
svc_pollfd = tmp;
for (; i < svc_pollfd_allocd; i++)
POLLFD_CLR(i, tmp);
} else {
/*
* give an error message; undo fdset setting
* above; reset the pollfd_shrinking flag.
* because of this poll will not be done
* on these fds.
*/
if (fd < FD_SETSIZE) {
FD_CLR(fd, &svc_fdset);
#if !defined(_LP64)
FD_CLR(fd, &_new_svc_fdset);
#endif
svc_nfds--;
svc_nfds_set--;
if (fd == (svc_max_fd - 1))
svc_max_fd--;
}
if (fd == (svc_max_pollfd - 1))
svc_max_pollfd--;
pollfd_shrinking = 0;
syslog(LOG_ERR, "add_pollfd: out of memory");
_exit(1);
}
}
svc_pollfd[fd].fd = fd;
svc_pollfd[fd].events = events;
svc_npollfds++;
svc_npollfds_set++;
}
/*
* the fd is still active but only the bit in fdset is cleared.
* do not subtract svc_nfds or svc_npollfds
*/
void
clear_pollfd(int fd)
{
if (fd < FD_SETSIZE && FD_ISSET(fd, &svc_fdset)) {
FD_CLR(fd, &svc_fdset);
#if !defined(_LP64)
FD_CLR(fd, &_new_svc_fdset);
#endif
svc_nfds_set--;
}
if (fd < svc_pollfd_allocd && POLLFD_ISSET(fd, svc_pollfd)) {
POLLFD_CLR(fd, svc_pollfd);
svc_npollfds_set--;
}
}
/*
* sets the bit in fdset for an active fd so that poll() is done for that
*/
void
set_pollfd(int fd, short events)
{
if (fd < FD_SETSIZE) {
FD_SET(fd, &svc_fdset);
#if !defined(_LP64)
FD_SET(fd, &_new_svc_fdset);
#endif
svc_nfds_set++;
}
if (fd < svc_pollfd_allocd) {
svc_pollfd[fd].fd = fd;
svc_pollfd[fd].events = events;
svc_npollfds_set++;
}
}
/*
* remove a svc_pollfd entry; it does not shrink the memory
*/
static void
remove_pollfd(int fd)
{
clear_pollfd(fd);
if (fd == (svc_max_fd - 1))
svc_max_fd--;
svc_nfds--;
if (fd == (svc_max_pollfd - 1))
svc_max_pollfd--;
svc_npollfds--;
}
/*
* delete a svc_pollfd entry; it shrinks the memory
* use remove_pollfd if you do not want to shrink
*/
static void
delete_pollfd(int fd)
{
remove_pollfd(fd);
if (pollfd_shrinking && svc_max_pollfd <
(svc_pollfd_allocd - POLLFD_SHRINK)) {
do {
svc_pollfd_allocd -= POLLFD_SHRINK;
} while (svc_max_pollfd < (svc_pollfd_allocd - POLLFD_SHRINK));
svc_pollfd = realloc(svc_pollfd,
sizeof (pollfd_t) * svc_pollfd_allocd);
if (svc_pollfd == NULL) {
syslog(LOG_ERR, "delete_pollfd: out of memory");
_exit(1);
}
}
}
/*
* Activate a transport handle.
*/
void
xprt_register(const SVCXPRT *xprt)
{
int fd = xprt->xp_fd;
#ifdef CALLBACK
extern void (*_svc_getreqset_proc)();
#endif
/* VARIABLES PROTECTED BY svc_fd_lock: svc_xports, svc_fdset */
(void) rw_wrlock(&svc_fd_lock);
if (svc_xports == NULL) {
/* allocate some small amount first */
svc_xports = calloc(FD_INCREMENT, sizeof (SVCXPRT *));
if (svc_xports == NULL) {
syslog(LOG_ERR, "xprt_register: out of memory");
_exit(1);
}
nsvc_xports = FD_INCREMENT;
#ifdef CALLBACK
/*
* XXX: This code does not keep track of the server state.
*
* This provides for callback support. When a client
* recv's a call from another client on the server fd's,
* it calls _svc_getreqset_proc() which would return
* after serving all the server requests. Also look under
* clnt_dg.c and clnt_vc.c (clnt_call part of it)
*/
_svc_getreqset_proc = svc_getreq_poll;
#endif
}
while (fd >= nsvc_xports) {
SVCXPRT **tmp_xprts = svc_xports;
/* time to expand svc_xprts */
tmp_xprts = realloc(svc_xports,
sizeof (SVCXPRT *) * (nsvc_xports + FD_INCREMENT));
if (tmp_xprts == NULL) {
syslog(LOG_ERR, "xprt_register : out of memory.");
_exit(1);
}
svc_xports = tmp_xprts;
(void) memset(&svc_xports[nsvc_xports], 0,
sizeof (SVCXPRT *) * FD_INCREMENT);
nsvc_xports += FD_INCREMENT;
}
svc_xports[fd] = (SVCXPRT *)xprt;
add_pollfd(fd, MASKVAL);
if (svc_polling) {
char dummy;
/*
* This happens only in one of the MT modes.
* Wake up poller.
*/
(void) write(svc_pipe[1], &dummy, sizeof (dummy));
}
/*
* If already dispatching door based services, start
* dispatching TLI based services now.
*/
(void) mutex_lock(&svc_door_mutex);
if (svc_ndoorfds > 0)
(void) cond_signal(&svc_door_waitcv);
(void) mutex_unlock(&svc_door_mutex);
if (svc_xdrs == NULL) {
/* allocate initial chunk */
svc_xdrs = calloc(FD_INCREMENT, sizeof (XDR *));
if (svc_xdrs != NULL)
nsvc_xdrs = FD_INCREMENT;
else {
syslog(LOG_ERR, "xprt_register : out of memory.");
_exit(1);
}
}
(void) rw_unlock(&svc_fd_lock);
}
/*
* De-activate a transport handle.
*/
void
__xprt_unregister_private(const SVCXPRT *xprt, bool_t lock_not_held)
{
int fd = xprt->xp_fd;
if (lock_not_held)
(void) rw_wrlock(&svc_fd_lock);
if ((fd < nsvc_xports) && (svc_xports[fd] == xprt)) {
svc_xports[fd] = NULL;
delete_pollfd(fd);
}
if (lock_not_held)
(void) rw_unlock(&svc_fd_lock);
__svc_rm_from_xlist(&_svc_xprtlist, xprt, &xprtlist_lock);
}
void
xprt_unregister(const SVCXPRT *xprt)
{
__xprt_unregister_private(xprt, TRUE);
}
/* ********************** CALLOUT list related stuff ************* */
/*
* Add a service program to the callout list.
* The dispatch routine will be called when a rpc request for this
* program number comes in.
*/
bool_t
svc_reg(const SVCXPRT *xprt, const rpcprog_t prog, const rpcvers_t vers,
void (*dispatch)(), const struct netconfig *nconf)
{
struct svc_callout *prev;
struct svc_callout *s, **s2;
struct netconfig *tnconf;
char *netid = NULL;
int flag = 0;
/* VARIABLES PROTECTED BY svc_lock: s, prev, svc_head */
if (xprt->xp_netid) {
netid = strdup(xprt->xp_netid);
flag = 1;
} else if (nconf && nconf->nc_netid) {
netid = strdup(nconf->nc_netid);
flag = 1;
} else if ((tnconf = __rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type))
!= NULL) {
netid = strdup(tnconf->nc_netid);
flag = 1;
freenetconfigent(tnconf);
} /* must have been created with svc_raw_create */
if ((netid == NULL) && (flag == 1))
return (FALSE);
(void) rw_wrlock(&svc_lock);
if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
if (netid)
free(netid);
if (s->sc_dispatch == dispatch)
goto rpcb_it; /* he is registering another xptr */
(void) rw_unlock(&svc_lock);
return (FALSE);
}
s = malloc(sizeof (struct svc_callout));
if (s == NULL) {
if (netid)
free(netid);
(void) rw_unlock(&svc_lock);
return (FALSE);
}
s->sc_prog = prog;
s->sc_vers = vers;
s->sc_dispatch = dispatch;
s->sc_netid = netid;
s->sc_next = NULL;
/*
* The ordering of transports is such that the most frequently used
* one appears first. So add the new entry to the end of the list.
*/
for (s2 = &svc_head; *s2 != NULL; s2 = &(*s2)->sc_next)
;
*s2 = s;
if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
if ((((SVCXPRT *)xprt)->xp_netid = strdup(netid)) == NULL) {
syslog(LOG_ERR, "svc_reg : strdup failed.");
free(netid);
free(s);
*s2 = NULL;
(void) rw_unlock(&svc_lock);
return (FALSE);
}
rpcb_it:
(void) rw_unlock(&svc_lock);
/* now register the information with the local binder service */
if (nconf)
return (rpcb_set(prog, vers, nconf, &xprt->xp_ltaddr));
return (TRUE);
/*NOTREACHED*/
}
/*
* Remove a service program from the callout list.
*/
void
svc_unreg(const rpcprog_t prog, const rpcvers_t vers)
{
struct svc_callout *prev;
struct svc_callout *s;
/* unregister the information anyway */
(void) rpcb_unset(prog, vers, NULL);
(void) rw_wrlock(&svc_lock);
while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
if (prev == NULL_SVC) {
svc_head = s->sc_next;
} else {
prev->sc_next = s->sc_next;
}
s->sc_next = NULL_SVC;
if (s->sc_netid)
free(s->sc_netid);
free(s);
}
(void) rw_unlock(&svc_lock);
}
#ifdef PORTMAP
/*
* Add a service program to the callout list.
* The dispatch routine will be called when a rpc request for this
* program number comes in.
* For version 2 portmappers.
*/
bool_t
svc_register(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
void (*dispatch)(), int protocol)
{
struct svc_callout *prev;
struct svc_callout *s;
struct netconfig *nconf;
char *netid = NULL;
int flag = 0;
if (xprt->xp_netid) {
netid = strdup(xprt->xp_netid);
flag = 1;
} else if ((ioctl(xprt->xp_fd, I_FIND, "timod") > 0) && ((nconf =
__rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type)) != NULL)) {
/* fill in missing netid field in SVCXPRT */
netid = strdup(nconf->nc_netid);
flag = 1;
freenetconfigent(nconf);
} /* must be svc_raw_create */
if ((netid == NULL) && (flag == 1))
return (FALSE);
(void) rw_wrlock(&svc_lock);
if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
if (netid)
free(netid);
if (s->sc_dispatch == dispatch)
goto pmap_it; /* he is registering another xptr */
(void) rw_unlock(&svc_lock);
return (FALSE);
}
s = malloc(sizeof (struct svc_callout));
if (s == (struct svc_callout *)0) {
if (netid)
free(netid);
(void) rw_unlock(&svc_lock);
return (FALSE);
}
s->sc_prog = prog;
s->sc_vers = vers;
s->sc_dispatch = dispatch;
s->sc_netid = netid;
s->sc_next = svc_head;
svc_head = s;
if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
if ((xprt->xp_netid = strdup(netid)) == NULL) {
syslog(LOG_ERR, "svc_register : strdup failed.");
free(netid);
svc_head = s->sc_next;
free(s);
(void) rw_unlock(&svc_lock);
return (FALSE);
}
pmap_it:
(void) rw_unlock(&svc_lock);
/* now register the information with the local binder service */
if (protocol)
return (pmap_set(prog, vers, protocol, xprt->xp_port));
return (TRUE);
}
/*
* Remove a service program from the callout list.
* For version 2 portmappers.
*/
void
svc_unregister(rpcprog_t prog, rpcvers_t vers)
{
struct svc_callout *prev;
struct svc_callout *s;
(void) rw_wrlock(&svc_lock);
while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
if (prev == NULL_SVC) {
svc_head = s->sc_next;
} else {
prev->sc_next = s->sc_next;
}
s->sc_next = NULL_SVC;
if (s->sc_netid)
free(s->sc_netid);
free(s);
/* unregister the information with the local binder service */
(void) pmap_unset(prog, vers);
}
(void) rw_unlock(&svc_lock);
}
#endif /* PORTMAP */
/*
* Search the callout list for a program number, return the callout
* struct.
* Also check for transport as well. Many routines such as svc_unreg
* dont give any corresponding transport, so dont check for transport if
* netid == NULL
*/
static struct svc_callout *
svc_find(rpcprog_t prog, rpcvers_t vers, struct svc_callout **prev, char *netid)
{
struct svc_callout *s, *p;
/* WRITE LOCK HELD ON ENTRY: svc_lock */
/* assert(RW_WRITE_HELD(&svc_lock)); */
p = NULL_SVC;
for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
if (((s->sc_prog == prog) && (s->sc_vers == vers)) &&
((netid == NULL) || (s->sc_netid == NULL) ||
(strcmp(netid, s->sc_netid) == 0)))
break;
p = s;
}
*prev = p;
return (s);
}
/* ******************* REPLY GENERATION ROUTINES ************ */
/*
* Send a reply to an rpc request
*/
bool_t
svc_sendreply(const SVCXPRT *xprt, const xdrproc_t xdr_results,
const caddr_t xdr_location)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = SUCCESS;
rply.acpted_rply.ar_results.where = xdr_location;
rply.acpted_rply.ar_results.proc = xdr_results;
return (SVC_REPLY((SVCXPRT *)xprt, &rply));
}
/*
* No procedure error reply
*/
void
svcerr_noproc(const SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = PROC_UNAVAIL;
SVC_REPLY((SVCXPRT *)xprt, &rply);
}
/*
* Can't decode args error reply
*/
void
svcerr_decode(const SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = GARBAGE_ARGS;
SVC_REPLY((SVCXPRT *)xprt, &rply);
}
/*
* Some system error
*/
void
svcerr_systemerr(const SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = SYSTEM_ERR;
SVC_REPLY((SVCXPRT *)xprt, &rply);
}
/*
* Tell RPC package to not complain about version errors to the client. This
* is useful when revving broadcast protocols that sit on a fixed address.
* There is really one (or should be only one) example of this kind of
* protocol: the portmapper (or rpc binder).
*/
void
__svc_versquiet_on(const SVCXPRT *xprt)
{
/* LINTED pointer alignment */
svc_flags(xprt) |= SVC_VERSQUIET;
}
void
__svc_versquiet_off(const SVCXPRT *xprt)
{
/* LINTED pointer alignment */
svc_flags(xprt) &= ~SVC_VERSQUIET;
}
void
svc_versquiet(const SVCXPRT *xprt)
{
__svc_versquiet_on(xprt);
}
int
__svc_versquiet_get(const SVCXPRT *xprt)
{
/* LINTED pointer alignment */
return (svc_flags(xprt) & SVC_VERSQUIET);
}
/*
* Authentication error reply
*/
void
svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_DENIED;
rply.rjcted_rply.rj_stat = AUTH_ERROR;
rply.rjcted_rply.rj_why = why;
SVC_REPLY((SVCXPRT *)xprt, &rply);
}
/*
* Auth too weak error reply
*/
void
svcerr_weakauth(const SVCXPRT *xprt)
{
svcerr_auth(xprt, AUTH_TOOWEAK);
}
/*
* Program unavailable error reply
*/
void
svcerr_noprog(const SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = PROG_UNAVAIL;
SVC_REPLY((SVCXPRT *)xprt, &rply);
}
/*
* Program version mismatch error reply
*/
void
svcerr_progvers(const SVCXPRT *xprt, const rpcvers_t low_vers,
const rpcvers_t high_vers)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = PROG_MISMATCH;
rply.acpted_rply.ar_vers.low = low_vers;
rply.acpted_rply.ar_vers.high = high_vers;
SVC_REPLY((SVCXPRT *)xprt, &rply);
}
/* ******************* SERVER INPUT STUFF ******************* */
/*
* Get server side input from some transport.
*
* Statement of authentication parameters management:
* This function owns and manages all authentication parameters, specifically
* the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
* the "cooked" credentials (rqst->rq_clntcred).
* However, this function does not know the structure of the cooked
* credentials, so it make the following assumptions:
* a) the structure is contiguous (no pointers), and
* b) the cred structure size does not exceed RQCRED_SIZE bytes.
* In all events, all three parameters are freed upon exit from this routine.
* The storage is trivially management on the call stack in user land, but
* is mallocated in kernel land.
*/
void
svc_getreq(int rdfds)
{
fd_set readfds;
FD_ZERO(&readfds);
readfds.fds_bits[0] = rdfds;
svc_getreqset(&readfds);
}
void
svc_getreqset(fd_set *readfds)
{
int i;
for (i = 0; i < svc_max_fd; i++) {
/* fd has input waiting */
if (FD_ISSET(i, readfds))
svc_getreq_common(i);
}
}
void
svc_getreq_poll(struct pollfd *pfdp, const int pollretval)
{
int i;
int fds_found;
for (i = fds_found = 0; fds_found < pollretval; i++) {
struct pollfd *p = &pfdp[i];
if (p->revents) {
/* fd has input waiting */
fds_found++;
/*
* We assume that this function is only called
* via someone select()ing from svc_fdset or
* poll()ing from svc_pollset[]. Thus it's safe
* to handle the POLLNVAL event by simply turning
* the corresponding bit off in svc_fdset. The
* svc_pollset[] array is derived from svc_fdset
* and so will also be updated eventually.
*
* XXX Should we do an xprt_unregister() instead?
*/
/* Handle user callback */
if (__is_a_userfd(p->fd) == TRUE) {
(void) rw_rdlock(&svc_fd_lock);
__svc_getreq_user(p);
(void) rw_unlock(&svc_fd_lock);
} else {
if (p->revents & POLLNVAL) {
(void) rw_wrlock(&svc_fd_lock);
remove_pollfd(p->fd); /* XXX */
(void) rw_unlock(&svc_fd_lock);
} else {
svc_getreq_common(p->fd);
}
}
}
}
}
void
svc_getreq_common(const int fd)
{
SVCXPRT *xprt;
enum xprt_stat stat;
struct rpc_msg *msg;
struct svc_req *r;
char *cred_area;
(void) rw_rdlock(&svc_fd_lock);
/* HANDLE USER CALLBACK */
if (__is_a_userfd(fd) == TRUE) {
struct pollfd virtual_fd;
virtual_fd.events = virtual_fd.revents = (short)0xFFFF;
virtual_fd.fd = fd;
__svc_getreq_user(&virtual_fd);
(void) rw_unlock(&svc_fd_lock);
return;
}
/*
* The transport associated with this fd could have been
* removed from svc_timeout_nonblock_xprt_and_LRU, for instance.
* This can happen if two or more fds get read events and are
* passed to svc_getreq_poll/set, the first fd is seviced by
* the dispatch routine and cleans up any dead transports. If
* one of the dead transports removed is the other fd that
* had a read event then svc_getreq_common() will be called with no
* xprt associated with the fd that had the original read event.
*/
if ((fd >= nsvc_xports) || (xprt = svc_xports[fd]) == NULL) {
(void) rw_unlock(&svc_fd_lock);
return;
}
(void) rw_unlock(&svc_fd_lock);
/* LINTED pointer alignment */
msg = SVCEXT(xprt)->msg;
/* LINTED pointer alignment */
r = SVCEXT(xprt)->req;
/* LINTED pointer alignment */
cred_area = SVCEXT(xprt)->cred_area;
msg->rm_call.cb_cred.oa_base = cred_area;
msg->rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
r->rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
/* receive msgs from xprtprt (support batch calls) */
do {
bool_t dispatch;
if (dispatch = SVC_RECV(xprt, msg))
(void) _svc_prog_dispatch(xprt, msg, r);
/*
* Check if the xprt has been disconnected in a recursive call
* in the service dispatch routine. If so, then break
*/
(void) rw_rdlock(&svc_fd_lock);
if (xprt != svc_xports[fd]) {
(void) rw_unlock(&svc_fd_lock);
break;
}
(void) rw_unlock(&svc_fd_lock);
/*
* Call cleanup procedure if set.
*/
if (__proc_cleanup_cb != NULL && dispatch)
(*__proc_cleanup_cb)(xprt);
if ((stat = SVC_STAT(xprt)) == XPRT_DIED) {
SVC_DESTROY(xprt);
break;
}
} while (stat == XPRT_MOREREQS);
}
int
_svc_prog_dispatch(SVCXPRT *xprt, struct rpc_msg *msg, struct svc_req *r)
{
struct svc_callout *s;
enum auth_stat why;
int prog_found;
rpcvers_t low_vers;
rpcvers_t high_vers;
void (*disp_fn)();
r->rq_xprt = xprt;
r->rq_prog = msg->rm_call.cb_prog;
r->rq_vers = msg->rm_call.cb_vers;
r->rq_proc = msg->rm_call.cb_proc;
r->rq_cred = msg->rm_call.cb_cred;
/* LINTED pointer alignment */
SVC_XP_AUTH(r->rq_xprt).svc_ah_ops = svc_auth_any_ops;
/* LINTED pointer alignment */
SVC_XP_AUTH(r->rq_xprt).svc_ah_private = NULL;
/* first authenticate the message */
/* Check for null flavor and bypass these calls if possible */
if (msg->rm_call.cb_cred.oa_flavor == AUTH_NULL) {
r->rq_xprt->xp_verf.oa_flavor = _null_auth.oa_flavor;
r->rq_xprt->xp_verf.oa_length = 0;
} else {
bool_t no_dispatch;
if ((why = __gss_authenticate(r, msg,
&no_dispatch)) != AUTH_OK) {
svcerr_auth(xprt, why);
return (0);
}
if (no_dispatch)
return (0);
}
/* match message with a registered service */
prog_found = FALSE;
low_vers = (rpcvers_t)(0 - 1);
high_vers = 0;
(void) rw_rdlock(&svc_lock);
for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
if (s->sc_prog == r->rq_prog) {
prog_found = TRUE;
if (s->sc_vers == r->rq_vers) {
if ((xprt->xp_netid == NULL) ||
(s->sc_netid == NULL) ||
(strcmp(xprt->xp_netid,
s->sc_netid) == 0)) {
disp_fn = (*s->sc_dispatch);
(void) rw_unlock(&svc_lock);
disp_fn(r, xprt);
return (1);
}
prog_found = FALSE;
}
if (s->sc_vers < low_vers)
low_vers = s->sc_vers;
if (s->sc_vers > high_vers)
high_vers = s->sc_vers;
} /* found correct program */
}
(void) rw_unlock(&svc_lock);
/*
* if we got here, the program or version
* is not served ...
*/
if (prog_found) {
/* LINTED pointer alignment */
if (!version_keepquiet(xprt))
svcerr_progvers(xprt, low_vers, high_vers);
} else {
svcerr_noprog(xprt);
}
return (0);
}
/* ******************* SVCXPRT allocation and deallocation ***************** */
/*
* svc_xprt_alloc() - allocate a service transport handle
*/
SVCXPRT *
svc_xprt_alloc(void)
{
SVCXPRT *xprt = NULL;
SVCXPRT_EXT *xt = NULL;
SVCXPRT_LIST *xlist = NULL;
struct rpc_msg *msg = NULL;
struct svc_req *req = NULL;
char *cred_area = NULL;
if ((xprt = calloc(1, sizeof (SVCXPRT))) == NULL)
goto err_exit;
if ((xt = calloc(1, sizeof (SVCXPRT_EXT))) == NULL)
goto err_exit;
xprt->xp_p3 = (caddr_t)xt; /* SVCEXT(xprt) = xt */
if ((xlist = calloc(1, sizeof (SVCXPRT_LIST))) == NULL)
goto err_exit;
xt->my_xlist = xlist;
xlist->xprt = xprt;
if ((msg = malloc(sizeof (struct rpc_msg))) == NULL)
goto err_exit;
xt->msg = msg;
if ((req = malloc(sizeof (struct svc_req))) == NULL)
goto err_exit;
xt->req = req;
if ((cred_area = malloc(2*MAX_AUTH_BYTES + RQCRED_SIZE)) == NULL)
goto err_exit;
xt->cred_area = cred_area;
/* LINTED pointer alignment */
(void) mutex_init(&svc_send_mutex(xprt), USYNC_THREAD, (void *)0);
return (xprt);
err_exit:
svc_xprt_free(xprt);
return (NULL);
}
/*
* svc_xprt_free() - free a service handle
*/
void
svc_xprt_free(SVCXPRT *xprt)
{
/* LINTED pointer alignment */
SVCXPRT_EXT *xt = xprt ? SVCEXT(xprt) : NULL;
SVCXPRT_LIST *my_xlist = xt ? xt->my_xlist: NULL;
struct rpc_msg *msg = xt ? xt->msg : NULL;
struct svc_req *req = xt ? xt->req : NULL;
char *cred_area = xt ? xt->cred_area : NULL;
if (xprt)
free(xprt);
if (xt)
free(xt);
if (my_xlist)
free(my_xlist);
if (msg)
free(msg);
if (req)
free(req);
if (cred_area)
free(cred_area);
}
/*
* svc_xprt_destroy() - free parent and child xprt list
*/
void
svc_xprt_destroy(SVCXPRT *xprt)
{
SVCXPRT_LIST *xlist, *xnext = NULL;
int type;
/* LINTED pointer alignment */
if (SVCEXT(xprt)->parent)
/* LINTED pointer alignment */
xprt = SVCEXT(xprt)->parent;
/* LINTED pointer alignment */
type = svc_type(xprt);
/* LINTED pointer alignment */
for (xlist = SVCEXT(xprt)->my_xlist; xlist != NULL; xlist = xnext) {
xnext = xlist->next;
xprt = xlist->xprt;
switch (type) {
case SVC_DGRAM:
svc_dg_xprtfree(xprt);
break;
case SVC_RENDEZVOUS:
svc_vc_xprtfree(xprt);
break;
case SVC_CONNECTION:
svc_fd_xprtfree(xprt);
break;
case SVC_DOOR:
svc_door_xprtfree(xprt);
break;
}
}
}
/*
* svc_copy() - make a copy of parent
*/
SVCXPRT *
svc_copy(SVCXPRT *xprt)
{
/* LINTED pointer alignment */
switch (svc_type(xprt)) {
case SVC_DGRAM:
return (svc_dg_xprtcopy(xprt));
case SVC_RENDEZVOUS:
return (svc_vc_xprtcopy(xprt));
case SVC_CONNECTION:
return (svc_fd_xprtcopy(xprt));
}
return (NULL);
}
/*
* _svc_destroy_private() - private SVC_DESTROY interface
*/
void
_svc_destroy_private(SVCXPRT *xprt)
{
/* LINTED pointer alignment */
switch (svc_type(xprt)) {
case SVC_DGRAM:
_svc_dg_destroy_private(xprt);
break;
case SVC_RENDEZVOUS:
case SVC_CONNECTION:
_svc_vc_destroy_private(xprt, TRUE);
break;
}
}
/*
* svc_get_local_cred() - fetch local user credentials. This always
* works over doors based transports. For local transports, this
* does not yield correct results unless the __rpc_negotiate_uid()
* call has been invoked to enable this feature.
*/
bool_t
svc_get_local_cred(SVCXPRT *xprt, svc_local_cred_t *lcred)
{
/* LINTED pointer alignment */
if (svc_type(xprt) == SVC_DOOR)
return (__svc_get_door_cred(xprt, lcred));
return (__rpc_get_local_cred(xprt, lcred));
}
/* ******************* DUPLICATE ENTRY HANDLING ROUTINES ************** */
/*
* the dup cacheing routines below provide a cache of received
* transactions. rpc service routines can use this to detect
* retransmissions and re-send a non-failure response. Uses a
* lru scheme to find entries to get rid of entries in the cache,
* though only DUP_DONE entries are placed on the lru list.
* the routines were written towards development of a generic
* SVC_DUP() interface, which can be expanded to encompass the
* svc_dg_enablecache() routines as well. the cache is currently
* private to the automounter.
*/
/* dupcache header contains xprt specific information */
struct dupcache {
rwlock_t dc_lock;
time_t dc_time;
int dc_buckets;
int dc_maxsz;
int dc_basis;
struct dupreq *dc_mru;
struct dupreq **dc_hashtbl;
};
/*
* private duplicate cache request routines
*/
static int __svc_dupcache_check(struct svc_req *, caddr_t *, uint_t *,
struct dupcache *, uint32_t, uint32_t);
static struct dupreq *__svc_dupcache_victim(struct dupcache *, time_t);
static int __svc_dupcache_enter(struct svc_req *, struct dupreq *,
struct dupcache *, uint32_t, uint32_t, time_t);
static int __svc_dupcache_update(struct svc_req *, caddr_t, uint_t, int,
struct dupcache *, uint32_t, uint32_t);
#ifdef DUP_DEBUG
static void __svc_dupcache_debug(struct dupcache *);
#endif /* DUP_DEBUG */
/* default parameters for the dupcache */
#define DUPCACHE_BUCKETS 257
#define DUPCACHE_TIME 900
#define DUPCACHE_MAXSZ INT_MAX
/*
* __svc_dupcache_init(void *condition, int basis, char *xprt_cache)
* initialize the duprequest cache and assign it to the xprt_cache
* Use default values depending on the cache condition and basis.
* return TRUE on success and FALSE on failure
*/
bool_t
__svc_dupcache_init(void *condition, int basis, char **xprt_cache)
{
static mutex_t initdc_lock = DEFAULTMUTEX;
int i;
struct dupcache *dc;
(void) mutex_lock(&initdc_lock);
if (*xprt_cache != NULL) { /* do only once per xprt */
(void) mutex_unlock(&initdc_lock);
syslog(LOG_ERR,
"__svc_dupcache_init: multiply defined dup cache");
return (FALSE);
}
switch (basis) {
case DUPCACHE_FIXEDTIME:
dc = malloc(sizeof (struct dupcache));
if (dc == NULL) {
(void) mutex_unlock(&initdc_lock);
syslog(LOG_ERR,
"__svc_dupcache_init: memory alloc failed");
return (FALSE);
}
(void) rwlock_init(&(dc->dc_lock), USYNC_THREAD, NULL);
if (condition != NULL)
dc->dc_time = *((time_t *)condition);
else
dc->dc_time = DUPCACHE_TIME;
dc->dc_buckets = DUPCACHE_BUCKETS;
dc->dc_maxsz = DUPCACHE_MAXSZ;
dc->dc_basis = basis;
dc->dc_mru = NULL;
dc->dc_hashtbl = malloc(dc->dc_buckets *
sizeof (struct dupreq *));
if (dc->dc_hashtbl == NULL) {
free(dc);
(void) mutex_unlock(&initdc_lock);
syslog(LOG_ERR,
"__svc_dupcache_init: memory alloc failed");
return (FALSE);
}
for (i = 0; i < DUPCACHE_BUCKETS; i++)
dc->dc_hashtbl[i] = NULL;
*xprt_cache = (char *)dc;
break;
default:
(void) mutex_unlock(&initdc_lock);
syslog(LOG_ERR,
"__svc_dupcache_init: undefined dup cache basis");
return (FALSE);
}
(void) mutex_unlock(&initdc_lock);
return (TRUE);
}
/*
* __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
* char *xprt_cache)
* searches the request cache. Creates an entry and returns DUP_NEW if
* the request is not found in the cache. If it is found, then it
* returns the state of the request (in progress, drop, or done) and
* also allocates, and passes back results to the user (if any) in
* resp_buf, and its length in resp_bufsz. DUP_ERROR is returned on error.
*/
int
__svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
char *xprt_cache)
{
uint32_t drxid, drhash;
int rc;
struct dupreq *dr = NULL;
time_t timenow = time(NULL);
/* LINTED pointer alignment */
struct dupcache *dc = (struct dupcache *)xprt_cache;
if (dc == NULL) {
syslog(LOG_ERR, "__svc_dup: undefined cache");
return (DUP_ERROR);
}
/* get the xid of the request */
if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
syslog(LOG_ERR, "__svc_dup: xid error");
return (DUP_ERROR);
}
drhash = drxid % dc->dc_buckets;
if ((rc = __svc_dupcache_check(req, resp_buf, resp_bufsz, dc, drxid,
drhash)) != DUP_NEW)
return (rc);
if ((dr = __svc_dupcache_victim(dc, timenow)) == NULL)
return (DUP_ERROR);
if ((rc = __svc_dupcache_enter(req, dr, dc, drxid, drhash, timenow))
== DUP_ERROR)
return (rc);
return (DUP_NEW);
}
/*
* __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf,
* uint_t *resp_bufsz,truct dupcache *dc, uint32_t drxid,
* uint32_t drhash)
* Checks to see whether an entry already exists in the cache. If it does
* copy back into the resp_buf, if appropriate. Return the status of
* the request, or DUP_NEW if the entry is not in the cache
*/
static int
__svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
struct dupcache *dc, uint32_t drxid, uint32_t drhash)
{
struct dupreq *dr = NULL;
(void) rw_rdlock(&(dc->dc_lock));
dr = dc->dc_hashtbl[drhash];
while (dr != NULL) {
if (dr->dr_xid == drxid &&
dr->dr_proc == req->rq_proc &&
dr->dr_prog == req->rq_prog &&
dr->dr_vers == req->rq_vers &&
dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
memcmp(dr->dr_addr.buf,
req->rq_xprt->xp_rtaddr.buf,
dr->dr_addr.len) == 0) { /* entry found */
if (dr->dr_hash != drhash) {
/* sanity check */
(void) rw_unlock((&dc->dc_lock));
syslog(LOG_ERR,
"\n__svc_dupdone: hashing error");
return (DUP_ERROR);
}
/*
* return results for requests on lru list, if
* appropriate requests must be DUP_DROP or DUP_DONE
* to have a result. A NULL buffer in the cache
* implies no results were sent during dupdone.
* A NULL buffer in the call implies not interested
* in results.
*/
if (((dr->dr_status == DUP_DONE) ||
(dr->dr_status == DUP_DROP)) &&
resp_buf != NULL &&
dr->dr_resp.buf != NULL) {
*resp_buf = malloc(dr->dr_resp.len);
if (*resp_buf == NULL) {
syslog(LOG_ERR,
"__svc_dupcache_check: malloc failed");
(void) rw_unlock(&(dc->dc_lock));
return (DUP_ERROR);
}
(void) memset(*resp_buf, 0, dr->dr_resp.len);
(void) memcpy(*resp_buf, dr->dr_resp.buf,
dr->dr_resp.len);
*resp_bufsz = dr->dr_resp.len;
} else {
/* no result */
if (resp_buf)
*resp_buf = NULL;
if (resp_bufsz)
*resp_bufsz = 0;
}
(void) rw_unlock(&(dc->dc_lock));
return (dr->dr_status);
}
dr = dr->dr_chain;
}
(void) rw_unlock(&(dc->dc_lock));
return (DUP_NEW);
}
/*
* __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
* Return a victim dupreq entry to the caller, depending on cache policy.
*/
static struct dupreq *
__svc_dupcache_victim(struct dupcache *dc, time_t timenow)
{
struct dupreq *dr = NULL;
switch (dc->dc_basis) {
case DUPCACHE_FIXEDTIME:
/*
* The hash policy is to free up a bit of the hash
* table before allocating a new entry as the victim.
* Freeing up the hash table each time should split
* the cost of keeping the hash table clean among threads.
* Note that only DONE or DROPPED entries are on the lru
* list but we do a sanity check anyway.
*/
(void) rw_wrlock(&(dc->dc_lock));
while ((dc->dc_mru) && (dr = dc->dc_mru->dr_next) &&
((timenow - dr->dr_time) > dc->dc_time)) {
/* clean and then free the entry */
if (dr->dr_status != DUP_DONE &&
dr->dr_status != DUP_DROP) {
/*
* The LRU list can't contain an
* entry where the status is other than
* DUP_DONE or DUP_DROP.
*/
syslog(LOG_ERR,
"__svc_dupcache_victim: bad victim");
#ifdef DUP_DEBUG
/*
* Need to hold the reader/writers lock to
* print the cache info, since we already
* hold the writers lock, we shall continue
* calling __svc_dupcache_debug()
*/
__svc_dupcache_debug(dc);
#endif /* DUP_DEBUG */
(void) rw_unlock(&(dc->dc_lock));
return (NULL);
}
/* free buffers */
if (dr->dr_resp.buf) {
free(dr->dr_resp.buf);
dr->dr_resp.buf = NULL;
}
if (dr->dr_addr.buf) {
free(dr->dr_addr.buf);
dr->dr_addr.buf = NULL;
}
/* unhash the entry */
if (dr->dr_chain)
dr->dr_chain->dr_prevchain = dr->dr_prevchain;
if (dr->dr_prevchain)
dr->dr_prevchain->dr_chain = dr->dr_chain;
if (dc->dc_hashtbl[dr->dr_hash] == dr)
dc->dc_hashtbl[dr->dr_hash] = dr->dr_chain;
/* modify the lru pointers */
if (dc->dc_mru == dr) {
dc->dc_mru = NULL;
} else {
dc->dc_mru->dr_next = dr->dr_next;
dr->dr_next->dr_prev = dc->dc_mru;
}
free(dr);
dr = NULL;
}
(void) rw_unlock(&(dc->dc_lock));
/*
* Allocate and return new clean entry as victim
*/
if ((dr = malloc(sizeof (*dr))) == NULL) {
syslog(LOG_ERR,
"__svc_dupcache_victim: malloc failed");
return (NULL);
}
(void) memset(dr, 0, sizeof (*dr));
return (dr);
default:
syslog(LOG_ERR,
"__svc_dupcache_victim: undefined dup cache_basis");
return (NULL);
}
}
/*
* __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
* struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
* build new duprequest entry and then insert into the cache
*/
static int
__svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
{
dr->dr_xid = drxid;
dr->dr_prog = req->rq_prog;
dr->dr_vers = req->rq_vers;
dr->dr_proc = req->rq_proc;
dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
dr->dr_addr.len = dr->dr_addr.maxlen;
if ((dr->dr_addr.buf = malloc(dr->dr_addr.maxlen)) == NULL) {
syslog(LOG_ERR, "__svc_dupcache_enter: malloc failed");
free(dr);
return (DUP_ERROR);
}
(void) memset(dr->dr_addr.buf, 0, dr->dr_addr.len);
(void) memcpy(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
dr->dr_addr.len);
dr->dr_resp.buf = NULL;
dr->dr_resp.maxlen = 0;
dr->dr_resp.len = 0;
dr->dr_status = DUP_INPROGRESS;
dr->dr_time = timenow;
dr->dr_hash = drhash; /* needed for efficient victim cleanup */
/* place entry at head of hash table */
(void) rw_wrlock(&(dc->dc_lock));
dr->dr_chain = dc->dc_hashtbl[drhash];
dr->dr_prevchain = NULL;
if (dc->dc_hashtbl[drhash] != NULL)
dc->dc_hashtbl[drhash]->dr_prevchain = dr;
dc->dc_hashtbl[drhash] = dr;
(void) rw_unlock(&(dc->dc_lock));
return (DUP_NEW);
}
/*
* __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
* int status, char *xprt_cache)
* Marks the request done (DUP_DONE or DUP_DROP) and stores the response.
* Only DONE and DROP requests can be marked as done. Sets the lru pointers
* to make the entry the most recently used. Returns DUP_ERROR or status.
*/
int
__svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
int status, char *xprt_cache)
{
uint32_t drxid, drhash;
int rc;
/* LINTED pointer alignment */
struct dupcache *dc = (struct dupcache *)xprt_cache;
if (dc == NULL) {
syslog(LOG_ERR, "__svc_dupdone: undefined cache");
return (DUP_ERROR);
}
if (status != DUP_DONE && status != DUP_DROP) {
syslog(LOG_ERR, "__svc_dupdone: invalid dupdone status");
syslog(LOG_ERR, " must be DUP_DONE or DUP_DROP");
return (DUP_ERROR);
}
/* find the xid of the entry in the cache */
if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
syslog(LOG_ERR, "__svc_dup: xid error");
return (DUP_ERROR);
}
drhash = drxid % dc->dc_buckets;
/* update the status of the entry and result buffers, if required */
if ((rc = __svc_dupcache_update(req, resp_buf, resp_bufsz, status,
dc, drxid, drhash)) == DUP_ERROR) {
syslog(LOG_ERR, "__svc_dupdone: cache entry error");
return (DUP_ERROR);
}
return (rc);
}
/*
* __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf,
* uint_t resp_bufsz, int status, struct dupcache *dc, uint32_t drxid,
* uint32_t drhash)
* Check if entry exists in the dupcacache. If it does, update its status
* and time and also its buffer, if appropriate. Its possible, but unlikely
* for DONE requests to not exist in the cache. Return DUP_ERROR or status.
*/
static int
__svc_dupcache_update(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
int status, struct dupcache *dc, uint32_t drxid, uint32_t drhash)
{
struct dupreq *dr = NULL;
time_t timenow = time(NULL);
(void) rw_wrlock(&(dc->dc_lock));
dr = dc->dc_hashtbl[drhash];
while (dr != NULL) {
if (dr->dr_xid == drxid &&
dr->dr_proc == req->rq_proc &&
dr->dr_prog == req->rq_prog &&
dr->dr_vers == req->rq_vers &&
dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
memcmp(dr->dr_addr.buf,
req->rq_xprt->xp_rtaddr.buf,
dr->dr_addr.len) == 0) { /* entry found */
if (dr->dr_hash != drhash) {
/* sanity check */
(void) rw_unlock(&(dc->dc_lock));
syslog(LOG_ERR,
"\n__svc_dupdone: hashing error");
return (DUP_ERROR);
}
/* store the results if bufer is not NULL */
if (resp_buf != NULL) {
if ((dr->dr_resp.buf =
malloc(resp_bufsz)) == NULL) {
(void) rw_unlock(&(dc->dc_lock));
syslog(LOG_ERR,
"__svc_dupdone: malloc failed");
return (DUP_ERROR);
}
(void) memset(dr->dr_resp.buf, 0, resp_bufsz);
(void) memcpy(dr->dr_resp.buf, resp_buf,
(uint_t)resp_bufsz);
dr->dr_resp.len = resp_bufsz;
}
/* update status and done time */
dr->dr_status = status;
dr->dr_time = timenow;
/* move the entry to the mru position */
if (dc->dc_mru == NULL) {
dr->dr_next = dr;
dr->dr_prev = dr;
} else {
dr->dr_next = dc->dc_mru->dr_next;
dc->dc_mru->dr_next->dr_prev = dr;
dr->dr_prev = dc->dc_mru;
dc->dc_mru->dr_next = dr;
}
dc->dc_mru = dr;
(void) rw_unlock(&(dc->dc_lock));
return (status);
}
dr = dr->dr_chain;
}
(void) rw_unlock(&(dc->dc_lock));
syslog(LOG_ERR, "__svc_dupdone: entry not in dup cache");
return (DUP_ERROR);
}
#ifdef DUP_DEBUG
/*
* __svc_dupcache_debug(struct dupcache *dc)
* print out the hash table stuff
*
* This function requires the caller to hold the reader
* or writer version of the duplicate request cache lock (dc_lock).
*/
static void
__svc_dupcache_debug(struct dupcache *dc)
{
struct dupreq *dr = NULL;
int i;
bool_t bval;
fprintf(stderr, " HASHTABLE\n");
for (i = 0; i < dc->dc_buckets; i++) {
bval = FALSE;
dr = dc->dc_hashtbl[i];
while (dr != NULL) {
if (!bval) { /* ensures bucket printed only once */
fprintf(stderr, " bucket : %d\n", i);
bval = TRUE;
}
fprintf(stderr, "\txid: %u status: %d time: %ld",
dr->dr_xid, dr->dr_status, dr->dr_time);
fprintf(stderr, " dr: %x chain: %x prevchain: %x\n",
dr, dr->dr_chain, dr->dr_prevchain);
dr = dr->dr_chain;
}
}
fprintf(stderr, " LRU\n");
if (dc->dc_mru) {
dr = dc->dc_mru->dr_next; /* lru */
while (dr != dc->dc_mru) {
fprintf(stderr, "\txid: %u status : %d time : %ld",
dr->dr_xid, dr->dr_status, dr->dr_time);
fprintf(stderr, " dr: %x next: %x prev: %x\n",
dr, dr->dr_next, dr->dr_prev);
dr = dr->dr_next;
}
fprintf(stderr, "\txid: %u status: %d time: %ld",
dr->dr_xid, dr->dr_status, dr->dr_time);
fprintf(stderr, " dr: %x next: %x prev: %x\n", dr,
dr->dr_next, dr->dr_prev);
}
}
#endif /* DUP_DEBUG */