/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1989, 2011, Oracle and/or its affiliates. All rights reserved.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley
* 4.3 BSD under license from the Regents of the University of
* California.
*/
/*
* Implements a connectionless client side RPC.
*/
#include "mt.h"
#include "rpc_mt.h"
#include <assert.h>
#include <rpc/rpc.h>
#include <errno.h>
#include <sys/poll.h>
#include <syslog.h>
#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/time.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <strings.h>
extern int __rpc_timeval_to_msec(struct timeval *);
extern bool_t xdr_opaque_auth(XDR *, struct opaque_auth *);
extern bool_t __rpc_gss_wrap(AUTH *, char *, uint_t, XDR *, bool_t (*)(),
caddr_t);
extern bool_t __rpc_gss_unwrap(AUTH *, XDR *, bool_t (*)(), caddr_t);
static struct clnt_ops *clnt_dg_ops(void);
static bool_t time_not_ok(struct timeval *);
/*
* This machinery implements per-fd locks for MT-safety. It is not
* sufficient to do per-CLIENT handle locks for MT-safety because a
* user may create more than one CLIENT handle with the same fd behind
* it.
*
* The current implementation holds locks across the entire RPC and reply,
* including retransmissions. Yes, this is silly, and as soon as this
* code is proven to work, this should be the first thing fixed. One step
* at a time.
*/
/*
* FD Lock handle used by various MT sync. routines
*/
static mutex_t dgtbl_lock = DEFAULTMUTEX;
static void *dgtbl = NULL;
static const char mem_err_clnt_dg[] = "clnt_dg_create: out of memory";
#define MCALL_MSG_SIZE 24
/*
* Private data kept per client handle
*/
struct cu_data {
int cu_fd; /* connections fd */
bool_t cu_closeit; /* opened by library */
struct netbuf cu_raddr; /* remote address */
struct timeval cu_wait; /* retransmit interval */
struct timeval cu_total; /* total time for the call */
struct rpc_err cu_error;
struct t_unitdata *cu_tr_data;
XDR cu_outxdrs;
char *cu_outbuf_start;
char cu_outbuf[MCALL_MSG_SIZE];
uint_t cu_xdrpos;
uint_t cu_sendsz; /* send size */
uint_t cu_recvsz; /* recv size */
struct pollfd pfdp;
char cu_inbuf[1];
};
static int _rcv_unitdata_err(struct cu_data *cu);
/*
* Connection less client creation returns with client handle parameters.
* Default options are set, which the user can change using clnt_control().
* fd should be open and bound.
* NB: The rpch->cl_auth is initialized to null authentication.
* Caller may wish to set this something more useful.
*
* sendsz and recvsz are the maximum allowable packet sizes that can be
* sent and received. Normally they are the same, but they can be
* changed to improve the program efficiency and buffer allocation.
* If they are 0, use the transport default.
*
* If svcaddr is NULL, returns NULL.
*/
CLIENT *
clnt_dg_create(const int fd, struct netbuf *svcaddr, const rpcprog_t program,
const rpcvers_t version, const uint_t sendsz, const uint_t recvsz)
{
CLIENT *cl = NULL; /* client handle */
struct cu_data *cu = NULL; /* private data */
struct t_unitdata *tr_data;
struct t_info tinfo;
struct timeval now;
struct rpc_msg call_msg;
uint_t ssz;
uint_t rsz;
sig_mutex_lock(&dgtbl_lock);
if ((dgtbl == NULL) && ((dgtbl = rpc_fd_init()) == NULL)) {
sig_mutex_unlock(&dgtbl_lock);
goto err1;
}
sig_mutex_unlock(&dgtbl_lock);
if (svcaddr == NULL) {
rpc_createerr.cf_stat = RPC_UNKNOWNADDR;
return (NULL);
}
if (t_getinfo(fd, &tinfo) == -1) {
rpc_createerr.cf_stat = RPC_TLIERROR;
rpc_createerr.cf_error.re_errno = 0;
rpc_createerr.cf_error.re_terrno = t_errno;
return (NULL);
}
/*
* Setup to rcv datagram error, we ignore any errors returned from
* __rpc_tli_set_options() as SO_DGRAM_ERRIND is only relevant to
* udp/udp6 transports and this point in the code we only know that
* we are using a connection less transport.
*/
if (tinfo.servtype == T_CLTS)
(void) __rpc_tli_set_options(fd, SOL_SOCKET, SO_DGRAM_ERRIND,
1);
/*
* Find the receive and the send size
*/
ssz = __rpc_get_t_size((int)sendsz, tinfo.tsdu);
rsz = __rpc_get_t_size((int)recvsz, tinfo.tsdu);
if ((ssz == 0) || (rsz == 0)) {
rpc_createerr.cf_stat = RPC_TLIERROR; /* XXX */
rpc_createerr.cf_error.re_errno = 0;
rpc_createerr.cf_error.re_terrno = 0;
return (NULL);
}
if ((cl = malloc(sizeof (CLIENT))) == NULL)
goto err1;
/*
* Should be multiple of 4 for XDR.
*/
ssz = ((ssz + 3) / 4) * 4;
rsz = ((rsz + 3) / 4) * 4;
cu = malloc(sizeof (*cu) + ssz + rsz);
if (cu == NULL)
goto err1;
if ((cu->cu_raddr.buf = malloc(svcaddr->len)) == NULL)
goto err1;
(void) memcpy(cu->cu_raddr.buf, svcaddr->buf, (size_t)svcaddr->len);
cu->cu_raddr.len = cu->cu_raddr.maxlen = svcaddr->len;
cu->cu_outbuf_start = &cu->cu_inbuf[rsz];
/* Other values can also be set through clnt_control() */
cu->cu_wait.tv_sec = 15; /* heuristically chosen */
cu->cu_wait.tv_usec = 0;
cu->cu_total.tv_sec = -1;
cu->cu_total.tv_usec = -1;
cu->cu_sendsz = ssz;
cu->cu_recvsz = rsz;
(void) gettimeofday(&now, NULL);
call_msg.rm_xid = getpid() ^ now.tv_sec ^ now.tv_usec;
call_msg.rm_call.cb_prog = program;
call_msg.rm_call.cb_vers = version;
xdrmem_create(&(cu->cu_outxdrs), cu->cu_outbuf, ssz, XDR_ENCODE);
if (!xdr_callhdr(&(cu->cu_outxdrs), &call_msg)) {
rpc_createerr.cf_stat = RPC_CANTENCODEARGS; /* XXX */
rpc_createerr.cf_error.re_errno = 0;
rpc_createerr.cf_error.re_terrno = 0;
goto err2;
}
cu->cu_xdrpos = XDR_GETPOS(&(cu->cu_outxdrs));
XDR_DESTROY(&(cu->cu_outxdrs));
xdrmem_create(&(cu->cu_outxdrs), cu->cu_outbuf_start, ssz, XDR_ENCODE);
tr_data = (struct t_unitdata *)t_alloc(fd, T_UNITDATA, T_ADDR | T_OPT);
if (tr_data == NULL) {
goto err1;
}
tr_data->udata.maxlen = cu->cu_recvsz;
tr_data->udata.buf = cu->cu_inbuf;
cu->cu_tr_data = tr_data;
/*
* By default, closeit is always FALSE. It is users responsibility
* to do a t_close on it, else the user may use clnt_control
* to let clnt_destroy do it for him/her.
*/
cu->cu_closeit = FALSE;
cu->cu_fd = fd;
cl->cl_ops = clnt_dg_ops();
cl->cl_private = (caddr_t)cu;
cl->cl_auth = authnone_create();
cl->cl_tp = NULL;
cl->cl_netid = NULL;
cu->pfdp.fd = cu->cu_fd;
cu->pfdp.events = MASKVAL;
return (cl);
err1:
(void) syslog(LOG_ERR, mem_err_clnt_dg);
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
rpc_createerr.cf_error.re_terrno = 0;
err2:
if (cl) {
free(cl);
if (cu) {
free(cu->cu_raddr.buf);
free(cu);
}
}
return (NULL);
}
static enum clnt_stat
clnt_dg_call(CLIENT *cl, rpcproc_t proc, xdrproc_t xargs, caddr_t argsp,
xdrproc_t xresults, caddr_t resultsp, struct timeval utimeout)
{
/* LINTED pointer alignment */
struct cu_data *cu = (struct cu_data *)cl->cl_private;
XDR *xdrs;
int outlen;
struct rpc_msg reply_msg;
XDR reply_xdrs;
struct timeval time_waited;
bool_t ok;
int nrefreshes = 2; /* number of times to refresh cred */
struct timeval timeout;
struct timeval retransmit_time;
struct timeval poll_time;
struct timeval startime, curtime;
struct t_unitdata tu_data;
int res; /* result of operations */
uint32_t x_id;
if (rpc_fd_lock(dgtbl, cu->cu_fd)) {
rpc_callerr.re_status = RPC_FAILED;
rpc_callerr.re_errno = errno;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (RPC_FAILED);
}
if (cu->cu_total.tv_usec == -1) {
timeout = utimeout; /* use supplied timeout */
} else {
timeout = cu->cu_total; /* use default timeout */
}
time_waited.tv_sec = 0;
time_waited.tv_usec = 0;
retransmit_time = cu->cu_wait;
tu_data.addr = cu->cu_raddr;
call_again:
xdrs = &(cu->cu_outxdrs);
xdrs->x_op = XDR_ENCODE;
XDR_SETPOS(xdrs, 0);
/*
* Due to little endian byte order, it is necessary to convert to host
* format before incrementing xid.
*/
/* LINTED pointer cast */
x_id = ntohl(*(uint32_t *)(cu->cu_outbuf)) + 1; /* set XID */
/* LINTED pointer cast */
*(uint32_t *)cu->cu_outbuf = htonl(x_id);
if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
if ((!XDR_PUTBYTES(xdrs, cu->cu_outbuf, cu->cu_xdrpos)) ||
(!XDR_PUTINT32(xdrs, (int32_t *)&proc)) ||
(!AUTH_MARSHALL(cl->cl_auth, xdrs)) ||
(!xargs(xdrs, argsp))) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTENCODEARGS);
}
} else {
/* LINTED pointer alignment */
uint32_t *u = (uint32_t *)&cu->cu_outbuf[cu->cu_xdrpos];
IXDR_PUT_U_INT32(u, proc);
if (!__rpc_gss_wrap(cl->cl_auth, cu->cu_outbuf,
((char *)u) - cu->cu_outbuf, xdrs, xargs, argsp)) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTENCODEARGS);
}
}
outlen = (int)XDR_GETPOS(xdrs);
send_again:
tu_data.udata.buf = cu->cu_outbuf_start;
tu_data.udata.len = outlen;
tu_data.opt.len = 0;
if (t_sndudata(cu->cu_fd, &tu_data) == -1) {
rpc_callerr.re_terrno = t_errno;
rpc_callerr.re_errno = errno;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTSEND);
}
/*
* Hack to provide rpc-based message passing
*/
if (timeout.tv_sec == 0 && timeout.tv_usec == 0) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_TIMEDOUT);
}
/*
* sub-optimal code appears here because we have
* some clock time to spare while the packets are in flight.
* (We assume that this is actually only executed once.)
*/
reply_msg.acpted_rply.ar_verf = _null_auth;
reply_msg.acpted_rply.ar_results.where = NULL;
reply_msg.acpted_rply.ar_results.proc = xdr_void;
/*
* Set polling time so that we don't wait for
* longer than specified by the total time to wait,
* or the retransmit time.
*/
poll_time.tv_sec = timeout.tv_sec - time_waited.tv_sec;
poll_time.tv_usec = timeout.tv_usec - time_waited.tv_usec;
while (poll_time.tv_usec < 0) {
poll_time.tv_usec += 1000000;
poll_time.tv_sec--;
}
if (poll_time.tv_sec < 0 || (poll_time.tv_sec == 0 &&
poll_time.tv_usec == 0)) {
/*
* this could happen if time_waited >= timeout
*/
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_TIMEDOUT);
}
if (poll_time.tv_sec > retransmit_time.tv_sec ||
(poll_time.tv_sec == retransmit_time.tv_sec &&
poll_time.tv_usec > retransmit_time.tv_usec))
poll_time = retransmit_time;
for (;;) {
(void) gettimeofday(&startime, NULL);
switch (poll(&cu->pfdp, 1,
__rpc_timeval_to_msec(&poll_time))) {
case -1:
if (errno != EINTR && errno != EAGAIN) {
rpc_callerr.re_errno = errno;
rpc_callerr.re_terrno = 0;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTRECV);
}
/*FALLTHROUGH*/
case 0:
/*
* update time waited
*/
timeout: (void) gettimeofday(&curtime, NULL);
time_waited.tv_sec += curtime.tv_sec - startime.tv_sec;
time_waited.tv_usec += curtime.tv_usec -
startime.tv_usec;
while (time_waited.tv_usec >= 1000000) {
time_waited.tv_usec -= 1000000;
time_waited.tv_sec++;
}
while (time_waited.tv_usec < 0) {
time_waited.tv_usec += 1000000;
time_waited.tv_sec--;
}
/*
* decrement time left to poll by same amount
*/
poll_time.tv_sec -= curtime.tv_sec - startime.tv_sec;
poll_time.tv_usec -= curtime.tv_usec - startime.tv_usec;
while (poll_time.tv_usec >= 1000000) {
poll_time.tv_usec -= 1000000;
poll_time.tv_sec++;
}
while (poll_time.tv_usec < 0) {
poll_time.tv_usec += 1000000;
poll_time.tv_sec--;
}
/*
* if there's time left to poll, poll again
*/
if (poll_time.tv_sec > 0 ||
(poll_time.tv_sec == 0 &&
poll_time.tv_usec > 0))
continue;
/*
* if there's more time left, retransmit;
* otherwise, return timeout error
*/
if (time_waited.tv_sec < timeout.tv_sec ||
(time_waited.tv_sec == timeout.tv_sec &&
time_waited.tv_usec < timeout.tv_usec)) {
/*
* update retransmit_time
*/
retransmit_time.tv_usec *= 2;
retransmit_time.tv_sec *= 2;
while (retransmit_time.tv_usec >= 1000000) {
retransmit_time.tv_usec -= 1000000;
retransmit_time.tv_sec++;
}
if (retransmit_time.tv_sec >= RPC_MAX_BACKOFF) {
retransmit_time.tv_sec =
RPC_MAX_BACKOFF;
retransmit_time.tv_usec = 0;
}
/*
* redo AUTH_MARSHAL if AUTH_DES or RPCSEC_GSS.
*/
if (cl->cl_auth->ah_cred.oa_flavor ==
AUTH_DES ||
cl->cl_auth->ah_cred.oa_flavor ==
RPCSEC_GSS)
goto call_again;
else
goto send_again;
}
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_TIMEDOUT);
default:
break;
}
if (cu->pfdp.revents & POLLNVAL || (cu->pfdp.revents == 0)) {
rpc_callerr.re_status = RPC_CANTRECV;
/*
* Note: we're faking errno here because we
* previously would have expected select() to
* return -1 with errno EBADF. Poll(BA_OS)
* returns 0 and sets the POLLNVAL revents flag
* instead.
*/
rpc_callerr.re_errno = errno = EBADF;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (-1);
}
/* We have some data now */
do {
int moreflag; /* flag indicating more data */
moreflag = 0;
res = t_rcvudata(cu->cu_fd, cu->cu_tr_data, &moreflag);
if (moreflag & T_MORE) {
/*
* Drop this packet. I aint got any
* more space.
*/
res = -1;
/* I should not really be doing this */
errno = 0;
/*
* XXX: Not really Buffer overflow in the
* sense of TLI.
*/
t_errno = TBUFOVFLW;
}
} while (res < 0 && (t_errno == TSYSERR && errno == EINTR));
if (res < 0) {
int err, errnoflag = FALSE;
#ifdef sun
if (t_errno == TSYSERR && errno == EWOULDBLOCK)
#else
if (t_errno == TSYSERR && errno == EAGAIN)
#endif
continue;
if (t_errno == TLOOK) {
if ((err = _rcv_unitdata_err(cu)) == 0)
continue;
else if (err == 1)
errnoflag = TRUE;
} else {
rpc_callerr.re_terrno = t_errno;
}
if (errnoflag == FALSE)
rpc_callerr.re_errno = errno;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTRECV);
}
if (cu->cu_tr_data->udata.len < (uint_t)sizeof (uint32_t))
continue;
/* see if reply transaction id matches sent id */
/* LINTED pointer alignment */
if (*((uint32_t *)(cu->cu_inbuf)) !=
/* LINTED pointer alignment */
*((uint32_t *)(cu->cu_outbuf)))
goto timeout;
/* we now assume we have the proper reply */
break;
}
/*
* now decode and validate the response
*/
xdrmem_create(&reply_xdrs, cu->cu_inbuf,
(uint_t)cu->cu_tr_data->udata.len, XDR_DECODE);
ok = xdr_replymsg(&reply_xdrs, &reply_msg);
/* XDR_DESTROY(&reply_xdrs); save a few cycles on noop destroy */
if (ok) {
if ((reply_msg.rm_reply.rp_stat == MSG_ACCEPTED) &&
(reply_msg.acpted_rply.ar_stat == SUCCESS))
rpc_callerr.re_status = RPC_SUCCESS;
else
__seterr_reply(&reply_msg, &(rpc_callerr));
if (rpc_callerr.re_status == RPC_SUCCESS) {
if (!AUTH_VALIDATE(cl->cl_auth,
&reply_msg.acpted_rply.ar_verf)) {
rpc_callerr.re_status = RPC_AUTHERROR;
rpc_callerr.re_why = AUTH_INVALIDRESP;
} else if (cl->cl_auth->ah_cred.oa_flavor !=
RPCSEC_GSS) {
if (!(*xresults)(&reply_xdrs, resultsp)) {
if (rpc_callerr.re_status ==
RPC_SUCCESS)
rpc_callerr.re_status =
RPC_CANTDECODERES;
}
} else if (!__rpc_gss_unwrap(cl->cl_auth, &reply_xdrs,
xresults, resultsp)) {
if (rpc_callerr.re_status == RPC_SUCCESS)
rpc_callerr.re_status =
RPC_CANTDECODERES;
}
} /* end successful completion */
/*
* If unsuccesful AND error is an authentication error
* then refresh credentials and try again, else break
*/
else if (rpc_callerr.re_status == RPC_AUTHERROR)
/* maybe our credentials need to be refreshed ... */
if (nrefreshes-- &&
AUTH_REFRESH(cl->cl_auth, &reply_msg))
goto call_again;
else
/*
* We are setting rpc_callerr here given that
* libnsl is not reentrant thereby
* reinitializing the TSD. If not set here then
* success could be returned even though refresh
* failed.
*/
rpc_callerr.re_status = RPC_AUTHERROR;
/* end of unsuccessful completion */
/* free verifier */
if (reply_msg.rm_reply.rp_stat == MSG_ACCEPTED &&
reply_msg.acpted_rply.ar_verf.oa_base != NULL) {
xdrs->x_op = XDR_FREE;
(void) xdr_opaque_auth(xdrs,
&(reply_msg.acpted_rply.ar_verf));
}
} /* end of valid reply message */
else {
rpc_callerr.re_status = RPC_CANTDECODERES;
}
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status);
}
static enum clnt_stat
clnt_dg_send(CLIENT *cl, rpcproc_t proc, xdrproc_t xargs, caddr_t argsp)
{
/* LINTED pointer alignment */
struct cu_data *cu = (struct cu_data *)cl->cl_private;
XDR *xdrs;
int outlen;
struct t_unitdata tu_data;
uint32_t x_id;
if (rpc_fd_lock(dgtbl, cu->cu_fd)) {
rpc_callerr.re_status = RPC_FAILED;
rpc_callerr.re_errno = errno;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (RPC_FAILED);
}
tu_data.addr = cu->cu_raddr;
xdrs = &(cu->cu_outxdrs);
xdrs->x_op = XDR_ENCODE;
XDR_SETPOS(xdrs, 0);
/*
* Due to little endian byte order, it is necessary to convert to host
* format before incrementing xid.
*/
/* LINTED pointer alignment */
x_id = ntohl(*(uint32_t *)(cu->cu_outbuf)) + 1; /* set XID */
/* LINTED pointer cast */
*(uint32_t *)cu->cu_outbuf = htonl(x_id);
if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
if ((!XDR_PUTBYTES(xdrs, cu->cu_outbuf, cu->cu_xdrpos)) ||
(!XDR_PUTINT32(xdrs, (int32_t *)&proc)) ||
(!AUTH_MARSHALL(cl->cl_auth, xdrs)) ||
(!xargs(xdrs, argsp))) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTENCODEARGS);
}
} else {
/* LINTED pointer alignment */
uint32_t *u = (uint32_t *)&cu->cu_outbuf[cu->cu_xdrpos];
IXDR_PUT_U_INT32(u, proc);
if (!__rpc_gss_wrap(cl->cl_auth, cu->cu_outbuf,
((char *)u) - cu->cu_outbuf, xdrs, xargs, argsp)) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTENCODEARGS);
}
}
outlen = (int)XDR_GETPOS(xdrs);
tu_data.udata.buf = cu->cu_outbuf_start;
tu_data.udata.len = outlen;
tu_data.opt.len = 0;
if (t_sndudata(cu->cu_fd, &tu_data) == -1) {
rpc_callerr.re_terrno = t_errno;
rpc_callerr.re_errno = errno;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_CANTSEND);
}
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (rpc_callerr.re_status = RPC_SUCCESS);
}
static void
clnt_dg_geterr(CLIENT *cl, struct rpc_err *errp)
{
/* LINTED pointer alignment */
struct cu_data *cu = (struct cu_data *)cl->cl_private;
*errp = rpc_callerr;
}
static bool_t
clnt_dg_freeres(CLIENT *cl, xdrproc_t xdr_res, caddr_t res_ptr)
{
/* LINTED pointer alignment */
struct cu_data *cu = (struct cu_data *)cl->cl_private;
XDR *xdrs = &(cu->cu_outxdrs);
bool_t stat;
(void) rpc_fd_lock(dgtbl, cu->cu_fd);
xdrs->x_op = XDR_FREE;
stat = (*xdr_res)(xdrs, res_ptr);
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (stat);
}
/* ARGSUSED */
static void
clnt_dg_abort(CLIENT *h)
{
}
static bool_t
clnt_dg_control(CLIENT *cl, int request, char *info)
{
/* LINTED pointer alignment */
struct cu_data *cu = (struct cu_data *)cl->cl_private;
struct netbuf *addr;
if (rpc_fd_lock(dgtbl, cu->cu_fd)) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (RPC_FAILED);
}
switch (request) {
case CLSET_FD_CLOSE:
cu->cu_closeit = TRUE;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (TRUE);
case CLSET_FD_NCLOSE:
cu->cu_closeit = FALSE;
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (TRUE);
}
/* for other requests which use info */
if (info == NULL) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (FALSE);
}
switch (request) {
case CLSET_TIMEOUT:
/* LINTED pointer alignment */
if (time_not_ok((struct timeval *)info)) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (FALSE);
}
/* LINTED pointer alignment */
cu->cu_total = *(struct timeval *)info;
break;
case CLGET_TIMEOUT:
/* LINTED pointer alignment */
*(struct timeval *)info = cu->cu_total;
break;
case CLGET_SERVER_ADDR: /* Give him the fd address */
/* Now obsolete. Only for backword compatibility */
(void) memcpy(info, cu->cu_raddr.buf, (size_t)cu->cu_raddr.len);
break;
case CLSET_RETRY_TIMEOUT:
/* LINTED pointer alignment */
if (time_not_ok((struct timeval *)info)) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (FALSE);
}
/* LINTED pointer alignment */
cu->cu_wait = *(struct timeval *)info;
break;
case CLGET_RETRY_TIMEOUT:
/* LINTED pointer alignment */
*(struct timeval *)info = cu->cu_wait;
break;
case CLGET_FD:
/* LINTED pointer alignment */
*(int *)info = cu->cu_fd;
break;
case CLGET_SVC_ADDR:
/* LINTED pointer alignment */
*(struct netbuf *)info = cu->cu_raddr;
break;
case CLSET_SVC_ADDR: /* set to new address */
/* LINTED pointer alignment */
addr = (struct netbuf *)info;
if (cu->cu_raddr.maxlen < addr->len) {
free(cu->cu_raddr.buf);
if ((cu->cu_raddr.buf = malloc(addr->len)) == NULL) {
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (FALSE);
}
cu->cu_raddr.maxlen = addr->len;
}
cu->cu_raddr.len = addr->len;
(void) memcpy(cu->cu_raddr.buf, addr->buf, addr->len);
break;
case CLGET_XID:
/*
* use the knowledge that xid is the
* first element in the call structure *.
* This will get the xid of the PREVIOUS call
*/
/* LINTED pointer alignment */
*(uint32_t *)info = ntohl(*(uint32_t *)cu->cu_outbuf);
break;
case CLSET_XID:
/* This will set the xid of the NEXT call */
/* LINTED pointer alignment */
*(uint32_t *)cu->cu_outbuf = htonl(*(uint32_t *)info - 1);
/* decrement by 1 as clnt_dg_call() increments once */
break;
case CLGET_VERS:
/*
* This RELIES on the information that, in the call body,
* the version number field is the fifth field from the
* begining of the RPC header. MUST be changed if the
* call_struct is changed
*/
/* LINTED pointer alignment */
*(uint32_t *)info = ntohl(*(uint32_t *)(cu->cu_outbuf +
4 * BYTES_PER_XDR_UNIT));
break;
case CLSET_VERS:
/* LINTED pointer alignment */
*(uint32_t *)(cu->cu_outbuf + 4 * BYTES_PER_XDR_UNIT) =
/* LINTED pointer alignment */
htonl(*(uint32_t *)info);
break;
case CLGET_PROG:
/*
* This RELIES on the information that, in the call body,
* the program number field is the fourth field from the
* begining of the RPC header. MUST be changed if the
* call_struct is changed
*/
/* LINTED pointer alignment */
*(uint32_t *)info = ntohl(*(uint32_t *)(cu->cu_outbuf +
3 * BYTES_PER_XDR_UNIT));
break;
case CLSET_PROG:
/* LINTED pointer alignment */
*(uint32_t *)(cu->cu_outbuf + 3 * BYTES_PER_XDR_UNIT) =
/* LINTED pointer alignment */
htonl(*(uint32_t *)info);
break;
default:
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (FALSE);
}
rpc_fd_unlock(dgtbl, cu->cu_fd);
return (TRUE);
}
static void
clnt_dg_destroy(CLIENT *cl)
{
/* LINTED pointer alignment */
struct cu_data *cu = (struct cu_data *)cl->cl_private;
int cu_fd = cu->cu_fd;
(void) rpc_fd_lock(dgtbl, cu_fd);
if (cu->cu_closeit)
(void) t_close(cu_fd);
XDR_DESTROY(&(cu->cu_outxdrs));
cu->cu_tr_data->udata.buf = NULL;
(void) t_free((char *)cu->cu_tr_data, T_UNITDATA);
free(cu->cu_raddr.buf);
free(cu);
if (cl->cl_netid && cl->cl_netid[0])
free(cl->cl_netid);
if (cl->cl_tp && cl->cl_tp[0])
free(cl->cl_tp);
free(cl);
rpc_fd_unlock(dgtbl, cu_fd);
}
static struct clnt_ops *
clnt_dg_ops(void)
{
static struct clnt_ops ops;
extern mutex_t ops_lock;
/* VARIABLES PROTECTED BY ops_lock: ops */
sig_mutex_lock(&ops_lock);
if (ops.cl_call == NULL) {
ops.cl_call = clnt_dg_call;
ops.cl_send = clnt_dg_send;
ops.cl_abort = clnt_dg_abort;
ops.cl_geterr = clnt_dg_geterr;
ops.cl_freeres = clnt_dg_freeres;
ops.cl_destroy = clnt_dg_destroy;
ops.cl_control = clnt_dg_control;
}
sig_mutex_unlock(&ops_lock);
return (&ops);
}
/*
* Make sure that the time is not garbage. -1 value is allowed.
*/
static bool_t
time_not_ok(struct timeval *t)
{
return (t->tv_sec < -1 || t->tv_sec > 100000000 ||
t->tv_usec < -1 || t->tv_usec > 1000000);
}
/*
* Receive a unit data error indication.
* Below even when t_alloc() fails we pass uderr=NULL to t_rcvuderr()
* so as to just clear the error indication.
*/
static int
_rcv_unitdata_err(struct cu_data *cu)
{
int old;
struct t_uderr *uderr;
old = t_errno;
uderr = (struct t_uderr *)t_alloc(cu->cu_fd, T_UDERROR, T_ADDR);
if (t_rcvuderr(cu->cu_fd, uderr) == 0) {
if (uderr == NULL)
return (0);
if (uderr->addr.len != cu->cu_raddr.len ||
(memcmp(uderr->addr.buf, cu->cu_raddr.buf,
cu->cu_raddr.len))) {
(void) t_free((char *)uderr, T_UDERROR);
return (0);
}
rpc_callerr.re_errno = uderr->error;
rpc_callerr.re_terrno = TSYSERR;
(void) t_free((char *)uderr, T_UDERROR);
return (1);
}
rpc_callerr.re_terrno = old;
if (uderr)
(void) t_free((char *)uderr, T_UDERROR);
return (-1);
}