/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright 2009 Jason King. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/byteorder.h>
#include <stdarg.h>
#if !defined(DIS_STANDALONE)
#include <stdio.h>
#endif /* DIS_STANDALONE */
#include "libdisasm.h"
#include "libdisasm_impl.h"
#include "dis_sparc.h"
#include "dis_sparc_fmt.h"
extern char *strncpy(char *, const char *, size_t);
extern size_t strlen(const char *);
extern int strcmp(const char *, const char *);
extern int strncmp(const char *, const char *, size_t);
extern size_t strlcat(char *, const char *, size_t);
extern size_t strlcpy(char *, const char *, size_t);
extern int snprintf(char *, size_t, const char *, ...);
extern int vsnprintf(char *, size_t, const char *, va_list);
/*
* This file has the functions that do all the dirty work of outputting the
* disassembled instruction
*
* All the non-static functions follow the format_fcn (in dis_sparc.h):
* Input:
* disassembler handle/context
* instruction to disassemble
* instruction definition pointer (inst_t *)
* index in the table of the instruction
* Return:
* 0 Success
* !0 Invalid instruction
*
* Generally, instructions found in the same table use the same output format
* or have a few minor differences (which are described in the 'flags' field
* of the instruction definition. In some cases, certain instructions differ
* radically enough from those in the same table, that their own format
* function is used.
*
* Typically each table has a unique format function defined in this file. In
* some cases (such as branches) a common one for all the tables is used.
*
* When adding support for new instructions, it is largely a judgement call
* as to when a new format function is defined.
*/
/* The various instruction formats of a sparc instruction */
#if defined(_BIT_FIELDS_HTOL)
typedef struct format1 {
uint32_t op:2;
uint32_t disp30:30;
} format1_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format1 {
uint32_t disp30:30;
uint32_t op:2;
} format1_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format2 {
uint32_t op:2;
uint32_t rd:5;
uint32_t op2:3;
uint32_t imm22:22;
} format2_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format2 {
uint32_t imm22:22;
uint32_t op2:3;
uint32_t rd:5;
uint32_t op:2;
} format2_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format2a {
uint32_t op:2;
uint32_t a:1;
uint32_t cond:4;
uint32_t op2:3;
uint32_t disp22:22;
} format2a_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format2a {
uint32_t disp22:22;
uint32_t op2:3;
uint32_t cond:4;
uint32_t a:1;
uint32_t op:2;
} format2a_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format2b {
uint32_t op:2;
uint32_t a:1;
uint32_t cond:4;
uint32_t op2:3;
uint32_t cc:2;
uint32_t p:1;
uint32_t disp19:19;
} format2b_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format2b {
uint32_t disp19:19;
uint32_t p:1;
uint32_t cc:2;
uint32_t op2:3;
uint32_t cond:4;
uint32_t a:1;
uint32_t op:2;
} format2b_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format2c {
uint32_t op:2;
uint32_t a:1;
uint32_t cond:4;
uint32_t op2:3;
uint32_t d16hi:2;
uint32_t p:1;
uint32_t rs1:5;
uint32_t d16lo:14;
} format2c_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format2c {
uint32_t d16lo:14;
uint32_t rs1:5;
uint32_t p:1;
uint32_t d16hi:2;
uint32_t op2:3;
uint32_t cond:4;
uint32_t a:1;
uint32_t op:2;
} format2c_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format2d {
uint32_t op:2;
uint32_t c_hi:1;
uint32_t op2:1;
uint32_t c_lo:3;
uint32_t op3:3;
uint32_t cc2:1;
uint32_t d10_hi:2;
uint32_t rs1:5;
uint32_t i:1;
uint32_t d10_lo:8;
uint32_t rs2:5;
} format2d_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format2d {
uint32_t rs2:5;
uint32_t d10_lo:8;
uint32_t i:1;
uint32_t rs1:5;
uint32_t d10_hi:2;
uint32_t cc2:1;
uint32_t op3:3;
uint32_t c_lo:3;
uint32_t op2:1;
uint32_t c_hi:1;
uint32_t op:2;
} format2d_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format3 {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t asi:8;
uint32_t rs2:5;
} format3_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format3 {
uint32_t rs2:5;
uint32_t asi:8;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} format3_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format3a {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t simm13:13;
} format3a_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format3a {
uint32_t simm13:13;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} format3a_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format3b {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t x:1;
uint32_t undef:6;
uint32_t shcnt:6;
} format3b_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format3b {
uint32_t shcnt:6;
uint32_t undef:6;
uint32_t x:1;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} format3b_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format3c {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t cc2:1;
uint32_t cond:4;
uint32_t i:1;
uint32_t cc:2;
uint32_t simm11:11;
} format3c_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format3c {
uint32_t simm11:11;
uint32_t cc:2;
uint32_t i:1;
uint32_t cond:4;
uint32_t cc2:1;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} format3c_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct format3d {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t rcond:3;
uint32_t simm10:10;
} format3d_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct format3d {
uint32_t simm10:10;
uint32_t rcond:3;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} format3d_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formatcp {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t opc:9;
uint32_t rs2:5;
} formatcp_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formatcp {
uint32_t rs2:5;
uint32_t opc:9;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} formatcp_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formattcc {
uint32_t op:2;
uint32_t undef:1;
uint32_t cond:4;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t cc:2;
uint32_t undef2:3;
uint32_t immtrap:8;
} formattcc_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formattcc {
uint32_t immtrap:8;
uint32_t undef2:3;
uint32_t cc:2;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t cond:4;
uint32_t undef:1;
uint32_t op:2;
} formattcc_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formattcc2 {
uint32_t op:2;
uint32_t undef:1;
uint32_t cond:4;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t cc:2;
uint32_t undef2:6;
uint32_t rs2:5;
} formattcc2_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formattcc2 {
uint32_t rs2:5;
uint32_t undef2:6;
uint32_t cc:2;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t cond:4;
uint32_t undef:1;
uint32_t op:2;
} formattcc2_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formatmbr {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t i:1;
uint32_t undef:6;
uint32_t cmask:3;
uint32_t mmask:4;
} formatmbr_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formatmbr {
uint32_t mmask:4;
uint32_t cmask:3;
uint32_t undef:6;
uint32_t i:1;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} formatmbr_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formatfcmp {
uint32_t op:2;
uint32_t undef:3;
uint32_t cc:2;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t opf:9;
uint32_t rs2:5;
} formatfcmp_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formatfcmp {
uint32_t rs2:5;
uint32_t opf:9;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t cc:2;
uint32_t undef:3;
uint32_t op:2;
} formatfcmp_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formatfmov {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t undef:1;
uint32_t cond:4;
uint32_t cc:3;
uint32_t opf:6;
uint32_t rs2:5;
} formatfmov_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formatfmov {
uint32_t rs2:5;
uint32_t opf:6;
uint32_t cc:3;
uint32_t cond:4;
uint32_t undef:1;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} formatfmov_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formatfused {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t rs3:5;
uint32_t op5:4;
uint32_t rs2:5;
} formatfused_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formatfused {
uint32_t rs2:5;
uint32_t op5:4;
uint32_t rs3:5;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} formatfused_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
#if defined(_BIT_FIELDS_HTOL)
typedef struct formatcrypto {
uint32_t op:2;
uint32_t rd:5;
uint32_t op3:6;
uint32_t rs1:5;
uint32_t opf:9;
uint32_t imm5:5;
} formatcrypto_t;
#elif defined(_BIT_FIELDS_LTOH)
typedef struct formatcrypto {
uint32_t imm5:5;
uint32_t opf:9;
uint32_t rs1:5;
uint32_t op3:6;
uint32_t rd:5;
uint32_t op:2;
} formatcrypto_t;
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif
typedef union ifmt {
uint32_t i;
format1_t f1;
format2_t f2;
format2a_t f2a;
format2b_t f2b;
format2c_t f2c;
format2d_t f2d;
format3_t f3;
format3a_t f3a;
format3b_t f3b;
format3c_t f3c;
format3d_t f3d;
formatcp_t fcp;
formattcc_t ftcc;
formattcc2_t ftcc2;
formatfcmp_t fcmp;
formatmbr_t fmb;
formatfmov_t fmv;
formatfused_t fused;
formatcrypto_t fcrypto;
} ifmt_t;
/* integer register names */
static const char *reg_names[32] = {
"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",
"%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",
"%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",
"%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7"
};
/* floating point register names */
static const char *freg_names[32] = {
"%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
"%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
"%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
"%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"
};
/* double precision register names */
static const char *fdreg_names[32] = {
"%d0", "%d32", "%d2", "%d34", "%d4", "%d36", "%d6", "%d38",
"%d8", "%d40", "%d10", "%d42", "%d12", "%d44", "%d14", "%d46",
"%d16", "%d48", "%d18", "%d50", "%d20", "%d52", "%d22", "%d54",
"%d24", "%d56", "%d26", "%d58", "%d28", "%d60", "%d30", "%d62"
};
static const char *compat_fdreg_names[32] = {
"%f0", "%f32", "%f2", "%f34", "%f4", "%f36", "%f6", "%f38",
"%f8", "%f40", "%f10", "%f42", "%f12", "%f44", "%f14", "%f46",
"%f16", "%f48", "%f18", "%f50", "%f20", "%f52", "%f22", "%f54",
"%f24", "%f56", "%f26", "%f58", "%f28", "%f60", "%f30", "%f62"
};
static const char *fqreg_names[32] = {
"%q0", "%q32", "%f2", "%f3", "%f4", "%q4", "%q36", "%f6",
"%f7", "%q8", "%q40", "%f10", "%f11", "%q12", "%q44", "%f14",
"%f15", "%q16", "%q48", "%f18", "%f19", "%q20", "%q52", "%f22",
"%f23", "%q24", "%q56", "%f26", "%f27", "%q28", "%q60", "%f30",
};
/* coprocessor register names -- sparcv8 only */
static const char *cpreg_names[32] = {
"%c0", "%c1", "%c2", "%c3", "%c4", "%c5", "%c6", "%c7",
"%c8", "%c9", "%c10", "%c11", "%c12", "%c13", "%c14", "%c15",
"%c16", "%c17", "%c18", "%c19", "%c20", "%c21", "%c22", "%c23",
"%c24", "%c25", "%c26", "%c27", "%c28", "%c29", "%c30", "%c31",
};
/* floating point condition code names */
static const char *fcc_names[4] = {
"%fcc0", "%fcc1", "%fcc2", "%fcc3"
};
/* condition code names */
static const char *icc_names[4] = {
"%icc", NULL, "%xcc", NULL
};
/* bitmask values for membar */
static const char *membar_mmask[4] = {
"#LoadLoad", "#StoreLoad", "#LoadStore", "#StoreStore"
};
static const char *membar_cmask[3] = {
"#Lookaside", "#MemIssue", "#Sync"
};
/* v8 ancillary state register names */
static const char *asr_names[32] = {
"%y", "%asr1", "%asr2", "%asr3",
"%asr4", "%asr5", "%asr6", "%asr7",
"%asr8", "%asr9", "%asr10", "%asr11",
"%asr12", "%asr13", "%asr14", "%asr15",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL
};
static const uint32_t asr_rdmask = 0x0000ffffL;
static const uint32_t asr_wrmask = 0x0000ffffL;
static const char *v9_asr_names[32] = {
"%y", NULL, "%ccr", "%asi",
"%tick", "%pc", "%fprs", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"%pcr", "%pic", "%dcr", "%gsr",
"%softint_set", "%softint_clr", "%softint", "%tick_cmpr",
"%stick", "%stick_cmpr", "%cfr", "%pause",
NULL, NULL, NULL, NULL
};
/*
* on v9, only certain registers are valid for read or writing
* these are bitmasks corresponding to which registers are valid in which
* case. Any access to %dcr is illegal.
*/
static const uint32_t v9_asr_rdmask = 0x0fcb007d;
static const uint32_t v9_asr_wrmask = 0x0ffb004d;
/* privledged register names on v9 */
/* TODO: compat - NULL to %priv_nn */
static const char *v9_privreg_names[32] = {
"%tpc", "%tnpc", "%tstate", "%tt",
"%tick", "%tba", "%pstate", "%tl",
"%pil", "%cwp", "%cansave", "%canrestore",
"%cleanwin", "%otherwin", "%wstate", "%fq",
"%gl", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "%ver"
};
/* hyper privileged register names on v9 */
static const char *v9_hprivreg_names[32] = {
"%hpstate", "%htstate", NULL, "%hintp",
NULL, "%htba", "%hver", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "%hstick_cmpr"
};
static const uint32_t v9_pr_rdmask = 0x80017fff;
static const uint32_t v9_pr_wrmask = 0x00017fff;
static const uint32_t v9_hpr_rdmask = 0x8000006b;
static const uint32_t v9_hpr_wrmask = 0x8000006b;
static const char *prefetch_str[32] = {
"#n_reads", "#one_read",
"#n_writes", "#one_write",
"#page", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, "#unified", NULL, NULL,
"#n_reads_strong", "#one_read_strong",
"#n_writes_strong", "#one_write_strong",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL
};
static void prt_field(const char *, uint32_t, int);
static const char *get_regname(dis_handle_t *, int, uint32_t);
static int32_t sign_extend(int32_t, int32_t);
static void prt_name(dis_handle_t *, const char *, int);
#define IMM_SIGNED 0x01 /* Is immediate value signed */
#define IMM_ADDR 0x02 /* Is immediate value part of an address */
static void prt_imm(dis_handle_t *, uint32_t, int);
static void prt_asi(dis_handle_t *, uint32_t);
static const char *get_asi_name(uint8_t);
static void prt_address(dis_handle_t *, uint32_t, int);
static void prt_aluargs(dis_handle_t *, uint32_t, uint32_t);
static void bprintf(dis_handle_t *, const char *, ...);
/*
* print out val (which is 'bitlen' bits long) in binary
*/
#if defined(DIS_STANDALONE)
/* ARGSUSED */
void
prt_binary(uint32_t val, int bitlen)
{
}
#else
void
prt_binary(uint32_t val, int bitlen)
{
int i;
for (i = bitlen - 1; i >= 0; --i) {
(void) fprintf(stderr, ((val & (1L << i)) != 0) ? "1" : "0");
if (i % 4 == 0 && i != 0)
(void) fprintf(stderr, " ");
}
}
#endif /* DIS_STANDALONE */
/*
* print out a call instruction
* format: call address <name>
*/
/* ARGSUSED1 */
int
fmt_call(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
int32_t disp;
size_t curlen;
int octal = ((dhp->dh_flags & DIS_OCTAL) != 0);
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f1.op, 2);
prt_field("disp30", f->f1.disp30, 30);
}
disp = sign_extend(f->f1.disp30, 30) * 4;
prt_name(dhp, inp->in_data.in_def.in_name, 1);
bprintf(dhp, (octal != 0) ? "%s0%-11lo" : "%s0x%-10lx",
(disp < 0) ? "-" : "+",
(disp < 0) ? (-disp) : disp);
(void) strlcat(dhp->dh_buf, " <", dhp->dh_buflen);
curlen = strlen(dhp->dh_buf);
dhp->dh_lookup(dhp->dh_data, dhp->dh_addr + (int64_t)disp,
dhp->dh_buf + curlen, dhp->dh_buflen - curlen - 1, NULL,
NULL);
(void) strlcat(dhp->dh_buf, ">", dhp->dh_buflen);
return (0);
}
int
fmt_sethi(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f2.op, 2);
prt_field("op2", f->f2.op2, 3);
prt_field("rd", f->f2.rd, 5);
prt_field("imm22", f->f2.imm22, 22);
}
if (idx == 0) {
/* unimp / illtrap */
prt_name(dhp, inp->in_data.in_def.in_name, 1);
prt_imm(dhp, f->f2.imm22, 0);
return (0);
}
if (f->f2.imm22 == 0 && f->f2.rd == 0) {
prt_name(dhp, "nop", 0);
return (0);
}
/* ?? Should we return -1 if rd == 0 && disp != 0 */
prt_name(dhp, inp->in_data.in_def.in_name, 1);
bprintf(dhp,
((dhp->dh_flags & DIS_OCTAL) != 0) ?
"%%hi(0%lo), %s" : "%%hi(0x%lx), %s",
f->f2.imm22 << 10,
reg_names[f->f2.rd]);
return (0);
}
/* ARGSUSED3 */
int
fmt_branch(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
const char *name = inp->in_data.in_def.in_name;
const char *r = NULL;
const char *annul = "";
const char *pred = "";
char buf[15];
ifmt_t *f = (ifmt_t *)&instr;
size_t curlen;
int32_t disp;
uint32_t flags = inp->in_data.in_def.in_flags;
int octal = ((dhp->dh_flags & DIS_OCTAL) != 0);
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f2.op, 2);
prt_field("op2", f->f2.op2, 3);
switch (FLG_DISP_VAL(flags)) {
case DISP22:
prt_field("cond", f->f2a.cond, 4);
prt_field("a", f->f2a.a, 1);
prt_field("disp22", f->f2a.disp22, 22);
break;
case DISP19:
prt_field("cond", f->f2a.cond, 4);
prt_field("a", f->f2a.a, 1);
prt_field("p", f->f2b.p, 1);
prt_field("cc", f->f2b.cc, 2);
prt_field("disp19", f->f2b.disp19, 19);
break;
case DISP16:
prt_field("bit 28", ((instr & (1L << 28)) >> 28), 1);
prt_field("rcond", f->f2c.cond, 3);
prt_field("p", f->f2c.p, 1);
prt_field("rs1", f->f2c.rs1, 5);
prt_field("d16hi", f->f2c.d16hi, 2);
prt_field("d16lo", f->f2c.d16lo, 14);
break;
}
}
if (f->f2b.op2 == 0x01 && idx == 0x00 && f->f2b.p == 1 &&
f->f2b.cc == 0x02 && ((dhp->dh_debug & DIS_DEBUG_SYN_ALL) != 0)) {
name = "iprefetch";
flags = FLG_RS1(REG_NONE)|FLG_DISP(DISP19);
}
switch (FLG_DISP_VAL(flags)) {
case DISP22:
disp = sign_extend(f->f2a.disp22, 22);
break;
case DISP19:
disp = sign_extend(f->f2b.disp19, 19);
break;
case DISP16:
disp = sign_extend((f->f2c.d16hi << 14)|f->f2c.d16lo, 16);
break;
}
disp *= 4;
if ((FLG_RS1_VAL(flags) == REG_ICC) || (FLG_RS1_VAL(flags) == REG_FCC))
r = get_regname(dhp, FLG_RS1_VAL(flags), f->f2b.cc);
else
r = get_regname(dhp, FLG_RS1_VAL(flags), f->f2c.rs1);
if (r == NULL)
return (-1);
if (f->f2a.a == 1)
annul = ",a";
if ((flags & FLG_PRED) != 0) {
if (f->f2b.p == 0) {
pred = ",pn";
} else {
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) != 0)
pred = ",pt";
}
}
(void) snprintf(buf, sizeof (buf), "%s%s%s", name, annul, pred);
prt_name(dhp, buf, 1);
switch (FLG_DISP_VAL(flags)) {
case DISP22:
bprintf(dhp,
(octal != 0) ? "%s0%-11lo <" : "%s0x%-10lx <",
(disp < 0) ? "-" : "+",
(disp < 0) ? (-disp) : disp);
break;
case DISP19:
bprintf(dhp,
(octal != 0) ? "%s, %s0%-5lo <" :
"%s, %s0x%-04lx <", r,
(disp < 0) ? "-" : "+",
(disp < 0) ? (-disp) : disp);
break;
case DISP16:
bprintf(dhp,
(octal != 0) ? "%s, %s0%-6lo <" : "%s, %s0x%-5lx <",
r,
(disp < 0) ? "-" : "+",
(disp < 0) ? (-disp) : disp);
break;
}
curlen = strlen(dhp->dh_buf);
dhp->dh_lookup(dhp->dh_data, dhp->dh_addr + (int64_t)disp,
dhp->dh_buf + curlen, dhp->dh_buflen - curlen - 1, NULL, NULL);
(void) strlcat(dhp->dh_buf, ">", dhp->dh_buflen);
return (0);
}
/*
* print out the compare and swap instructions (casa/casxa)
* format: casa/casxa [%rs1] imm_asi, %rs2, %rd
* casa/casxa [%rs1] %asi, %rs2, %rd
*
* If DIS_DEBUG_SYN_ALL is set, synthetic instructions are emitted
* when an immediate ASI value is given as follows:
*
* casa [%rs1]#ASI_P, %rs2, %rd -> cas [%rs1], %rs2, %rd
* casa [%rs1]#ASI_P_L, %rs2, %rd -> casl [%rs1], %rs2, %rd
* casxa [%rs1]#ASI_P, %rs2, %rd -> casx [%rs1], %rs2, %rd
* casxa [%rs1]#ASI_P_L, %rs2, %rd -> casxl [%rs1], %rs2, %rd
*/
static int
fmt_cas(dis_handle_t *dhp, uint32_t instr, const char *name)
{
ifmt_t *f = (ifmt_t *)&instr;
const char *asistr = NULL;
int noasi = 0;
asistr = get_asi_name(f->f3.asi);
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT)) != 0) {
if (f->f3.op3 == 0x3c && f->f3.i == 0) {
if (f->f3.asi == 0x80) {
noasi = 1;
name = "cas";
}
if (f->f3.asi == 0x88) {
noasi = 1;
name = "casl";
}
}
if (f->f3.op3 == 0x3e && f->f3.i == 0) {
if (f->f3.asi == 0x80) {
noasi = 1;
name = "casx";
}
if (f->f3.asi == 0x88) {
noasi = 1;
name = "casxl";
}
}
}
prt_name(dhp, name, 1);
bprintf(dhp, "[%s]", reg_names[f->f3.rs1]);
if (noasi == 0) {
(void) strlcat(dhp->dh_buf, " ", dhp->dh_buflen);
prt_asi(dhp, instr);
}
bprintf(dhp, ", %s, %s", reg_names[f->f3.rs2], reg_names[f->f3.rd]);
if (noasi == 0 && asistr != NULL)
bprintf(dhp, "\t<%s>", asistr);
return (0);
}
/*
* format a load/store instruction
* format: ldXX [%rs1 + %rs2], %rd load, i==0
* ldXX [%rs1 +/- nn], %rd load, i==1
* ldXX [%rs1 + %rs2] #XX, %rd load w/ imm_asi, i==0
* ldXX [%rs1 +/- nn] %asi, %rd load from asi[%asi], i==1
*
* stXX %rd, [%rs1 + %rs2] store, i==0
* stXX %rd, [%rs1 +/- nn] store, i==1
* stXX %rd, [%rs1 + %rs1] #XX store to imm_asi, i==0
* stXX %rd, [%rs1 +/-nn] %asi store to asi[%asi], i==1
*
* The register sets used for %rd are set in the instructions flags field
* The asi variants are used if FLG_ASI is set in the instructions flags field
*
* If DIS_DEBUG_SYNTH_ALL or DIS_DEBUG_COMPAT are set,
* When %rs1, %rs2 or nn are 0, they are not printed, i.e.
* [ %rs1 + 0x0 ], %rd -> [%rs1], %rd for example
*
* The following synthetic instructions are also implemented:
*
* stb %g0, [addr] -> clrb [addr] DIS_DEBUG_SYNTH_ALL
* sth %g0, [addr] -> crlh [addr] DIS_DEBUG_SYNTH_ALL
* stw %g0, [addr] -> clr [addr] DIS_DEBUG_SYNTH_ALL|DIS_DEBUG_COMPAT
* stx %g0, [addr] -> clrx [addr] DIS_DEBUG_SYNTH_ALL
*
* If DIS_DEBUG_COMPAT is set, the following substitutions also take place
* lduw -> ld
* ldtw -> ld
* stuw -> st
* sttw -> st
*/
int
fmt_ls(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
const char *regstr = NULL;
const char *asistr = NULL;
const char *iname = inp->in_data.in_def.in_name;
uint32_t flags = inp->in_data.in_def.in_flags;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f3.op, 2);
prt_field("op3", f->f3.op3, 6);
prt_field("rs1", f->f3.rs1, 5);
prt_field("i", f->f3.i, 1);
if (f->f3.i != 0) {
prt_field("simm13", f->f3a.simm13, 13);
} else {
if ((flags & FLG_ASI) != 0)
prt_field("imm_asi", f->f3.asi, 8);
prt_field("rs2", f->f3.rs2, 5);
}
prt_field("rd", f->f3.rd, 5);
}
if (idx == 0x2d || idx == 0x3d) {
/* prefetch / prefetcha */
prt_name(dhp, iname, 1);
prt_address(dhp, instr, 0);
if (idx == 0x3d) {
(void) strlcat(dhp->dh_buf, " ", dhp->dh_buflen);
prt_asi(dhp, instr);
}
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
/* fcn field is the same as rd */
if (prefetch_str[f->f3.rd] != NULL)
(void) strlcat(dhp->dh_buf, prefetch_str[f->f3.rd],
dhp->dh_buflen);
else
prt_imm(dhp, f->f3.rd, 0);
if (idx == 0x3d && f->f3.i == 0) {
asistr = get_asi_name(f->f3.asi);
if (asistr != NULL)
bprintf(dhp, "\t<%s>", asistr);
}
return (0);
}
/* casa / casxa */
if (idx == 0x3c || idx == 0x3e)
return (fmt_cas(dhp, instr, iname));
/* synthetic instructions & special cases */
switch (idx) {
case 0x00:
/* ld */
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0)
iname = "lduw";
break;
case 0x03:
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0)
iname = "ldtw";
break;
case 0x04:
/* stw */
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0)
iname = "stuw";
if ((dhp->dh_flags & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL))
== 0)
break;
if (f->f3.rd == 0) {
iname = "clr";
flags = FLG_RD(REG_NONE);
}
break;
case 0x05:
/* stb */
if ((dhp->dh_flags & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL))
== 0)
break;
if (f->f3.rd == 0) {
iname = "clrb";
flags = FLG_RD(REG_NONE);
}
break;
case 0x06:
/* sth */
if ((dhp->dh_flags & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL))
== 0)
break;
if (f->f3.rd == 0) {
iname = "clrh";
flags = FLG_RD(REG_NONE);
}
break;
case 0x07:
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0)
iname = "sttw";
break;
case 0x0e:
/* stx */
if ((dhp->dh_flags & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL))
== 0)
break;
if (f->f3.rd == 0) {
iname = "clrx";
flags = FLG_RD(REG_NONE);
}
break;
case 0x13:
/* ldtwa */
if (((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0) &&
((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) != 0))
iname = "ldtwa";
break;
case 0x17:
/* sttwa */
if (((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0) &&
((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) != 0))
iname = "sttwa";
break;
case 0x21:
case 0x25:
/*
* on sparcv8 it merely says that rd != 1 should generate an
* exception, on v9, it is illegal
*/
if ((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) == 0)
break;
iname = (idx == 0x21) ? "ldx" : "stx";
if (f->f3.rd > 1)
return (-1);
break;
case 0x31:
/* stda */
switch (f->f3.asi) {
case 0xc0:
case 0xc1:
case 0xc8:
case 0xc9:
case 0xc2:
case 0xc3:
case 0xca:
case 0xcb:
case 0xc4:
case 0xc5:
case 0xcc:
case 0xcd:
/*
* store partial floating point, only valid w/
* vis
*
* Somewhat confusingly, it uses the same op
* code as 'stda' -- store double to alternate
* space. It is distinguised by specific
* imm_asi values (as seen above), and
* has a slightly different output syntax
*/
if ((dhp->dh_flags & DIS_SPARC_V9_SGI) == 0)
break;
if (f->f3.i != 0)
break;
prt_name(dhp, iname, 1);
bprintf(dhp, "%s, %s, [%s] ",
get_regname(dhp, REG_FPD, f->f3.rd),
get_regname(dhp, REG_FPD, f->f3.rs2),
get_regname(dhp, REG_FPD, f->f3.rs1));
prt_asi(dhp, instr);
asistr = get_asi_name(f->f3.asi);
if (asistr != NULL)
bprintf(dhp, "\t<%s>", asistr);
return (0);
default:
break;
}
}
regstr = get_regname(dhp, FLG_RD_VAL(flags), f->f3.rd);
if (f->f3.i == 0)
asistr = get_asi_name(f->f3.asi);
prt_name(dhp, iname, 1);
if ((flags & FLG_STORE) != 0) {
if (regstr[0] != '\0') {
(void) strlcat(dhp->dh_buf, regstr, dhp->dh_buflen);
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
}
prt_address(dhp, instr, 0);
if ((flags & FLG_ASI) != 0) {
(void) strlcat(dhp->dh_buf, " ", dhp->dh_buflen);
prt_asi(dhp, instr);
}
} else {
prt_address(dhp, instr, 0);
if ((flags & FLG_ASI) != 0) {
(void) strlcat(dhp->dh_buf, " ", dhp->dh_buflen);
prt_asi(dhp, instr);
}
if (regstr[0] != '\0') {
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
(void) strlcat(dhp->dh_buf, regstr, dhp->dh_buflen);
}
}
if ((flags & FLG_ASI) != 0 && asistr != NULL)
bprintf(dhp, "\t<%s>", asistr);
return (0);
}
static int
fmt_cpop(dis_handle_t *dhp, uint32_t instr, const inst_t *inp)
{
ifmt_t *f = (ifmt_t *)&instr;
int flags = FLG_P1(REG_CP)|FLG_P2(REG_CP)|FLG_NOIMM|FLG_P3(REG_CP);
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->fcp.op, 2);
prt_field("op3", f->fcp.op3, 6);
prt_field("opc", f->fcp.opc, 9);
prt_field("rs1", f->fcp.rs1, 5);
prt_field("rs2", f->fcp.rs2, 5);
prt_field("rd", f->fcp.rd, 5);
}
prt_name(dhp, inp->in_data.in_def.in_name, 1);
prt_imm(dhp, f->fcp.opc, 0);
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
(void) prt_aluargs(dhp, instr, flags);
return (0);
}
static int
dis_fmt_rdwr(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
const char *psr_str = "%psr";
const char *wim_str = "%wim";
const char *tbr_str = "%tbr";
const char *name = inp->in_data.in_def.in_name;
const char *regstr = NULL;
ifmt_t *f = (ifmt_t *)&instr;
int rd = (idx < 0x30);
int v9 = (dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI));
int ridx = f->f3.rs1;
int i, first;
int pr_rs1 = 1;
int pr_rs2 = 1;
int use_mask = 1;
uint32_t mask;
if (rd == 0)
ridx = f->f3.rd;
switch (idx) {
case 0x28:
/* rd */
/* stbar */
if ((f->f3.rd == 0) && (f->f3.rs1 == 15) && (f->f3.i == 0)) {
prt_name(dhp, "stbar", 0);
return (0);
}
/* membar */
if ((v9 != 0) && (f->f3.rd == 0) && (f->f3.rs1 == 15) &&
(f->f3.i == 1) && ((f->i & (1L << 12)) == 0)) {
prt_name(dhp, "membar",
((f->fmb.cmask != 0) || (f->fmb.mmask != 0)));
first = 0;
for (i = 0; i < 4; ++i) {
if ((f->fmb.cmask & (1L << i)) != 0) {
bprintf(dhp, "%s%s",
(first != 0) ? "|" : "",
membar_cmask[i]);
first = 1;
}
}
for (i = 0; i < 5; ++i) {
if ((f->fmb.mmask & (1L << i)) != 0) {
bprintf(dhp, "%s%s",
(first != 0) ? "|" : "",
membar_mmask[i]);
first = 1;
}
}
return (0);
}
if (v9 != 0) {
regstr = v9_asr_names[ridx];
mask = v9_asr_rdmask;
} else {
regstr = asr_names[ridx];
mask = asr_rdmask;
}
break;
case 0x29:
if (v9 != 0) {
regstr = v9_hprivreg_names[ridx];
mask = v9_hpr_rdmask;
} else {
regstr = psr_str;
use_mask = 0;
}
break;
case 0x2a:
if (v9 != 0) {
regstr = v9_privreg_names[ridx];
mask = v9_pr_rdmask;
} else {
regstr = wim_str;
use_mask = 0;
}
break;
case 0x2b:
if (v9 != 0) {
/* flushw */
prt_name(dhp, name, 0);
return (0);
}
regstr = tbr_str;
use_mask = 0;
break;
case 0x30:
if (v9 != 0) {
regstr = v9_asr_names[ridx];
mask = v9_asr_wrmask;
} else {
regstr = asr_names[ridx];
mask = asr_wrmask;
}
/*
* sir is shoehorned in here, per Ultrasparc 2007
* hyperprivileged edition, section 7.88, all of
* these must be true to distinguish from WRasr
*/
if (v9 != 0 && f->f3.rd == 15 && f->f3.rs1 == 0 &&
f->f3.i == 1) {
prt_name(dhp, "sir", 1);
prt_imm(dhp, sign_extend(f->f3a.simm13, 13),
IMM_SIGNED);
return (0);
}
/* synth: mov */
if ((dhp->dh_debug & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL))
== 0)
break;
if (v9 == 0) {
if (f->f3.rs1 == 0) {
name = "mov";
pr_rs1 = 0;
}
if ((f->f3.i == 0 && f->f3.rs2 == 0) ||
(f->f3.i == 1 && f->f3a.simm13 == 0)) {
name = "mov";
pr_rs2 = 0;
}
}
if (pr_rs1 == 0)
pr_rs2 = 1;
break;
case 0x31:
/*
* NOTE: due to the presence of an overlay entry for another
* table, this case only happens when doing v8 instructions
* only
*/
regstr = psr_str;
use_mask = 0;
break;
case 0x32:
if (v9 != 0) {
regstr = v9_privreg_names[ridx];
mask = v9_pr_wrmask;
} else {
regstr = wim_str;
use_mask = 0;
}
break;
case 0x33:
if (v9 != 0) {
if (ridx == 30) {
/* special case for halt */
prt_name(dhp, "halt", 0);
return (0);
}
regstr = v9_hprivreg_names[ridx];
mask = v9_hpr_wrmask;
} else {
regstr = tbr_str;
use_mask = 0;
}
break;
}
if (regstr == NULL)
return (-1);
if (use_mask != 0 && ((1L << ridx) & mask) == 0)
return (-1);
prt_name(dhp, name, 1);
if (rd != 0) {
bprintf(dhp, "%s, %s", regstr, reg_names[f->f3.rd]);
} else {
if (pr_rs1 == 1)
bprintf(dhp, "%s, ", reg_names[f->f3.rs1]);
if (pr_rs2 != 0) {
if (f->f3.i == 1)
prt_imm(dhp, sign_extend(f->f3a.simm13, 13),
IMM_SIGNED);
else
(void) strlcat(dhp->dh_buf,
reg_names[f->f3.rs2], dhp->dh_buflen);
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
}
(void) strlcat(dhp->dh_buf, regstr, dhp->dh_buflen);
}
return (0);
}
/* ARGSUSED3 */
int
fmt_trap(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
int v9 = ((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) != 0);
int p_rs1, p_t;
if (f->ftcc.undef != 0)
return (-1);
if (icc_names[f->ftcc.cc] == NULL)
return (-1);
if (f->ftcc.i == 1 && f->ftcc.undef2 != 0)
return (-1);
if (f->ftcc2.i == 0 && f->ftcc2.undef2 != 0)
return (-1);
p_rs1 = ((f->ftcc.rs1 != 0) ||
((dhp->dh_debug & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL)) == 0));
if (f->ftcc.i == 0) {
p_t = (f->f3.rs2 != 0 || p_rs1 == 0);
bprintf(dhp, "%-9s %s%s%s%s%s", inp->in_data.in_def.in_name,
(v9 != 0) ? icc_names[f->ftcc2.cc] : "",
(v9 != 0) ? ", " : "",
(p_rs1 != 0) ? reg_names[f->ftcc2.rs1] : "",
(p_rs1 != 0) ? " + " : "",
(p_t != 0) ? reg_names[f->f3.rs2] : "");
} else {
bprintf(dhp, "%-9s %s%s%s%s0x%x", inp->in_data.in_def.in_name,
(v9 != 0) ? icc_names[f->ftcc2.cc] : "",
(v9 != 0) ? ", " : "",
(p_rs1 != 0) ? reg_names[f->ftcc2.rs1] : "",
(p_rs1 != 0) ? " + " : "",
f->ftcc.immtrap);
}
return (0);
}
static int
prt_shift(dis_handle_t *dhp, uint32_t instr, const inst_t *inp)
{
char name[5];
uint32_t cnt;
ifmt_t *f = (ifmt_t *)&instr;
int octal = ((dhp->dh_flags & DIS_OCTAL) != 0);
name[0] = '\0';
(void) strlcat(name, inp->in_data.in_def.in_name, sizeof (name));
if (f->f3b.i == 1)
cnt = f->f3.rs2;
if (f->f3b.x == 1 && ((dhp->dh_flags & DIS_SPARC_V8) == 0)) {
cnt = f->f3b.shcnt;
(void) strlcat(name, "x", sizeof (name));
}
prt_name(dhp, name, 1);
if (f->f3b.i == 1)
bprintf(dhp, (octal != 0) ? "%s, 0%lo, %s" : "%s, 0x%lx, %s",
reg_names[f->f3.rs1], cnt, reg_names[f->f3.rd]);
else
bprintf(dhp, "%s, %s, %s", reg_names[f->f3.rs1],
reg_names[f->f3.rs2], reg_names[f->f3.rd]);
return (0);
}
/* ARGSUSED3 */
static int
prt_jmpl(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
const char *name = inp->in_data.in_def.in_name;
ifmt_t *f = (ifmt_t *)&instr;
if (f->f3.rd == 15 && ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0))
name = "call";
if (f->f3.rd == 0) {
if (f->f3.i == 1 && f->f3a.simm13 == 8) {
if (f->f3.rs1 == 15) {
prt_name(dhp, "retl", 0);
return (0);
}
if (f->f3.rs1 == 31) {
prt_name(dhp, "ret", 0);
return (0);
}
}
name = "jmp";
}
prt_name(dhp, name, 1);
prt_address(dhp, instr, 1);
if (f->f3.rd == 0)
return (0);
if (f->f3.rd == 15 && ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0))
return (0);
bprintf(dhp, ", %s", reg_names[f->f3.rd]);
return (0);
}
int
fmt_alu(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
const char *name = inp->in_data.in_def.in_name;
int flags = inp->in_data.in_def.in_flags;
int arg = 0;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f3.op, 2);
prt_field("op3", f->f3.op3, 6);
prt_field("rs1", f->f3.rs1, 5);
switch (idx) {
/* TODO: more formats */
default:
if (f->f3.i == 0)
prt_field("rs2", f->f3.rs2, 5);
else
prt_field("simm13", f->f3a.simm13, 13);
prt_field("rd", f->f3.rd, 5);
}
}
switch (idx) {
case 0x00:
/* add */
if ((dhp->dh_debug & DIS_DEBUG_SYN_ALL) == 0)
break;
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 == 1) {
name = "inc";
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE)|FLG_NOIMM;
break;
}
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 != 1) {
name = "inc";
flags = FLG_P1(REG_NONE);
break;
}
break;
case 0x02:
/* or */
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT))
== 0)
break;
if ((dhp->dh_debug & DIS_DEBUG_SYN_ALL) != 0) {
if (f->f3.rs1 == f->f3.rd) {
name = "bset";
flags = FLG_P1(REG_NONE);
break;
}
}
if (((f->f3.i == 0 && f->f3.rs2 == 0) ||
(f->f3.i == 1 && f->f3a.simm13 == 0)) &&
(f->f3.rs1 == 0)) {
name = "clr";
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE)|FLG_NOIMM;
break;
}
if (f->f3.rs1 == 0) {
name = "mov";
flags = FLG_P1(REG_NONE);
break;
}
break;
case 0x04:
/* sub */
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT))
== 0)
break;
if (f->f3.rs1 == 0 && f->f3.i == 0 && f->f3.rs2 == f->f3.rd) {
name = "neg";
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE);
break;
}
if (f->f3.rs1 == 0 && f->f3.i == 0 && f->f3.rs2 != f->f3.rd) {
name = "neg";
flags = FLG_P1(REG_NONE);
break;
}
if ((dhp->dh_debug & DIS_DEBUG_SYN_ALL) == 0)
break;
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 == 1) {
name = "dec";
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE)|FLG_NOIMM;
break;
}
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 != 1) {
name = "dec";
flags = FLG_P1(REG_NONE);
break;
}
break;
case 0x07:
/* xnor */
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT))
== 0)
break;
/*
* xnor -> not when you have:
* xnor %rs1, 0x0 or %g0, %rd
*/
if ((f->f3.i == 0 && f->f3.rs2 != 0) ||
(f->f3.i == 1 && f->f3a.simm13 != 0))
break;
name = "not";
if (f->f3.rs1 == f->f3.rd)
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE)|FLG_NOIMM|
FLG_P3(REG_INT);
else
flags = FLG_P1(REG_INT)|FLG_P2(REG_NONE)|FLG_NOIMM|
FLG_P3(REG_INT);
break;
case 0x10:
/* addcc */
if ((dhp->dh_debug & DIS_DEBUG_SYN_ALL) == 0)
break;
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 == 1) {
name = "inccc";
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE)|FLG_NOIMM;
break;
}
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 != 1) {
name = "inccc";
flags = FLG_P1(REG_NONE);
break;
}
break;
case 0x11:
/* andcc */
if (f->f3.rd != 0)
break;
if ((dhp->dh_debug & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL))
== 0)
break;
if (((dhp->dh_debug & DIS_DEBUG_COMPAT) != 0) &&
((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) == 0))
break;
name = "btst";
flags = FLG_P1(REG_NONE);
f->f3.rd = f->f3.rs1;
break;
case 0x12:
/* orcc */
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT))
== 0)
break;
if (f->f3.rs1 == 0 && f->f3.rd == 0 && f->f3.i == 0) {
name = "tst";
flags = FLG_P1(REG_NONE)|FLG_P3(REG_NONE);
break;
}
if (f->f3.rs2 == 0 && f->f3.rd == 0 && f->f3.i == 0) {
name = "tst";
flags = FLG_P2(REG_NONE)|FLG_P3(REG_NONE);
break;
}
break;
case 0x14:
/* subcc */
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT))
== 0)
break;
if (f->f3.rd == 0) {
name = "cmp";
flags = FLG_P3(REG_NONE);
break;
}
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) != 0)
break;
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 == 1) {
name = "deccc";
flags = FLG_P1(REG_NONE)|FLG_P2(REG_NONE)|FLG_NOIMM;
break;
}
if (f->f3.rs1 == f->f3.rd && f->f3.i == 1 &&
f->f3a.simm13 != 1) {
name = "deccc";
flags = FLG_P1(REG_NONE);
break;
}
break;
case 0x25:
case 0x26:
case 0x27:
return (prt_shift(dhp, instr, inp));
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
return (dis_fmt_rdwr(dhp, instr, inp, idx));
case 0x36:
case 0x37:
/* NOTE: overlayed on v9 */
if ((dhp->dh_flags & DIS_SPARC_V8) != 0)
return (fmt_cpop(dhp, instr, inp));
break;
case 0x38:
/* jmpl */
return (prt_jmpl(dhp, instr, inp, idx));
case 0x39:
/* rett / return */
prt_name(dhp, name, 1);
prt_address(dhp, instr, 1);
return (0);
case 0x3b:
/* flush */
prt_name(dhp, name, 1);
prt_address(dhp, instr, 0);
return (0);
case 0x3c:
case 0x3d:
/* save / restore */
if ((dhp->dh_debug & (DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT))
== 0)
break;
if (f->f3.rs1 != 0 || f->f3.rs2 != 0 || f->f3.rd != 0)
break;
if (f->f3.i != 0 && ((dhp->dh_debug & DIS_DEBUG_COMPAT) != 0))
break;
prt_name(dhp, name, 0);
return (0);
}
if (FLG_P1_VAL(flags) != REG_NONE || FLG_P2_VAL(flags) != REG_NONE ||
FLG_P3_VAL(flags) != REG_NONE)
arg = 1;
prt_name(dhp, name, (arg != 0));
prt_aluargs(dhp, instr, flags);
return (0);
}
/* ARGSUSED1 */
int
fmt_regwin(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
prt_name(dhp, inp->in_data.in_def.in_name, 0);
return (0);
}
/* ARGSUSED1 */
int
fmt_trap_ret(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
prt_name(dhp, inp->in_data.in_def.in_name, 1);
if (f->f3.rd == 0xf) {
/* jpriv */
prt_address(dhp, instr, 1);
}
return (0);
}
/* ARGSUSED3 */
int
fmt_movcc(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
const char **regs = NULL;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f3c.op, 2);
prt_field("op3", f->f3c.op3, 6);
prt_field("cond", f->f3c.cond, 4);
prt_field("cc2", f->f3c.cc2, 1);
prt_field("cc", f->f3c.cc, 2);
prt_field("i", f->f3c.i, 1);
if (f->f3c.i == 0)
prt_field("rs2", f->f3.rs2, 5);
else
prt_field("simm11", f->f3c.simm11, 11);
prt_field("rd", f->f3.rd, 5);
}
if (f->f3c.cc2 == 0) {
regs = fcc_names;
} else {
regs = icc_names;
if (regs[f->f3c.cc] == NULL)
return (-1);
}
prt_name(dhp, inp->in_data.in_def.in_name, 1);
bprintf(dhp, "%s, ", regs[f->f3c.cc]);
if (f->f3c.i == 1)
prt_imm(dhp, sign_extend(f->f3c.simm11, 11), IMM_SIGNED);
else
(void) strlcat(dhp->dh_buf, reg_names[f->f3.rs2],
dhp->dh_buflen);
bprintf(dhp, ", %s", reg_names[f->f3.rd]);
return (0);
}
/* ARGSUSED3 */
int
fmt_movr(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
prt_name(dhp, inp->in_data.in_def.in_name, 1);
bprintf(dhp, "%s, ", reg_names[f->f3d.rs1]);
if (f->f3d.i == 1)
prt_imm(dhp, sign_extend(f->f3d.simm10, 10), IMM_SIGNED);
else
(void) strlcat(dhp->dh_buf, reg_names[f->f3.rs2],
dhp->dh_buflen);
bprintf(dhp, ", %s", reg_names[f->f3.rd]);
return (0);
}
/* ARGSUSED3 */
int
fmt_fpop1(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
int flags = inp->in_data.in_def.in_flags;
flags |= FLG_NOIMM;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f3.op, 2);
prt_field("op3", f->f3.op3, 6);
prt_field("opf", f->fcmp.opf, 9);
prt_field("rs1", f->f3.rs1, 5);
prt_field("rs2", f->f3.rs2, 5);
prt_field("rd", f->f3.rd, 5);
}
prt_name(dhp, inp->in_data.in_def.in_name, 1);
prt_aluargs(dhp, instr, flags);
return (0);
}
int
fmt_fpop2(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
static const char *condstr_icc[16] = {
"n", "e", "le", "l", "leu", "lu", "neg", "vs",
"a", "nz", "g", "ge", "gu", "geu", "pos", "vc"
};
static const char *condstr_fcc[16] = {
"n", "nz", "lg", "ul", "l", "ug", "g", "u",
"a", "e", "ue", "ge", "uge", "le", "ule", "o"
};
ifmt_t *f = (ifmt_t *)&instr;
const char *ccstr = "";
char name[15];
int flags = inp->in_data.in_def.in_flags;
int is_cmp = (idx == 0x51 || idx == 0x52 || idx == 0x53 ||
idx == 0x55 || idx == 0x56 || idx == 0x57);
int is_fmov = (idx & 0x3f);
int is_v9 = ((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) != 0);
int is_compat = ((dhp->dh_debug & DIS_DEBUG_COMPAT) != 0);
int p_cc = 0;
is_fmov = (is_fmov == 0x1 || is_fmov == 0x2 || is_fmov == 0x3);
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f3.op, 2);
prt_field("op3", f->f3.op3, 6);
prt_field("opf", f->fcmp.opf, 9);
switch (idx & 0x3f) {
case 0x51:
case 0x52:
case 0x53:
case 0x55:
case 0x56:
case 0x57:
prt_field("cc", f->fcmp.cc, 2);
prt_field("rs1", f->f3.rs1, 5);
prt_field("rs2", f->f3.rs2, 5);
break;
case 0x01:
case 0x02:
case 0x03:
prt_field("opf_low", f->fmv.opf, 6);
prt_field("cond", f->fmv.cond, 4);
prt_field("opf_cc", f->fmv.cc, 3);
prt_field("rs2", f->fmv.rs2, 5);
break;
default:
prt_field("rs1", f->f3.rs1, 5);
prt_field("rs2", f->f3.rs2, 5);
prt_field("rd", f->f3.rd, 5);
}
}
name[0] = '\0';
(void) strlcat(name, inp->in_data.in_def.in_name, sizeof (name));
if (is_fmov != 0) {
(void) strlcat(name,
(f->fmv.cc < 4) ? condstr_fcc[f->fmv.cond]
: condstr_icc[f->fmv.cond],
sizeof (name));
}
prt_name(dhp, name, 1);
if (is_cmp != 0)
ccstr = fcc_names[f->fcmp.cc];
if (is_fmov != 0)
ccstr = (f->fmv.cc < 4) ? fcc_names[f->fmv.cc & 0x3]
: icc_names[f->fmv.cc & 0x3];
if (ccstr == NULL)
return (-1);
p_cc = (is_compat == 0 || is_v9 != 0 ||
(is_cmp != 0 && f->fcmp.cc != 0) ||
(is_fmov != 0 && f->fmv.cc != 0));
if (p_cc != 0)
bprintf(dhp, "%s, ", ccstr);
prt_aluargs(dhp, instr, flags);
return (0);
}
int
fmt_vis(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
int flags = inp->in_data.in_def.in_flags;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f3.op, 2);
prt_field("op3", f->f3.op3, 6);
prt_field("opf", f->fcmp.opf, 9);
if (idx == 0x081) {
prt_field("mode", instr & 02L, 2);
} else {
prt_field("rs1", f->f3.rs1, 5);
prt_field("rs2", f->f3.rs2, 5);
prt_field("rd", f->f3.rd, 5);
}
}
prt_name(dhp, inp->in_data.in_def.in_name, 1);
if (idx == 0x081) {
/* siam */
bprintf(dhp, "%d", instr & 0x7L);
return (0);
}
prt_aluargs(dhp, instr, flags);
return (0);
}
/* ARGSUSED3 */
int
fmt_fused(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
int flags = inp->in_data.in_def.in_flags;
prt_name(dhp, inp->in_data.in_def.in_name, 1);
bprintf(dhp, "%s, %s, %s, %s",
get_regname(dhp, FLG_P1_VAL(flags), f->fused.rs1),
get_regname(dhp, FLG_P1_VAL(flags), f->fused.rs2),
get_regname(dhp, FLG_P1_VAL(flags), f->fused.rs3),
get_regname(dhp, FLG_P1_VAL(flags), f->fused.rd));
return (0);
}
/* ARGSUSED3 */
int
fmt_cbcond(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
const char *name = inp->in_data.in_def.in_name;
const char *regname = NULL;
ifmt_t *f = (ifmt_t *)&instr;
uint32_t flags = inp->in_data.in_def.in_flags;
int32_t disp;
size_t curlen;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->f2d.op, 2);
prt_field("c_hi", f->f2d.c_hi, 2);
prt_field("c_lo", f->f2d.c_lo, 3);
prt_field("cc2", f->f2d.cc2, 1);
prt_field("d10_hi", f->f2d.d10_hi, 2);
prt_field("i", f->f2d.i, 1);
prt_field("rs1", f->f2d.rs1, 5);
prt_field("d10_lo", f->f2d.d10_lo, 8);
prt_field("rs2", f->f2d.rs2, 5);
}
disp = sign_extend((f->f2d.d10_hi << 8)|(f->f2d.d10_lo), 10);
disp *= 4;
prt_name(dhp, name, 1);
regname = get_regname(dhp, FLG_RS1_VAL(flags), f->f2d.rs1);
bprintf(dhp, "%s, ", regname);
if (f->f2d.i == 1) {
prt_imm(dhp, sign_extend(f->f2d.rs2, 5), IMM_SIGNED);
} else {
regname = get_regname(dhp, FLG_RS1_VAL(flags), f->f2d.rs2);
bprintf(dhp, "%s", regname);
}
bprintf(dhp, ", %s0x%-5lx <", (disp < 0) ? "-" : "+",
(disp < 0) ? (-disp) : disp);
curlen = strlen(dhp->dh_buf);
dhp->dh_lookup(dhp->dh_data, dhp->dh_addr + (int64_t)disp,
dhp->dh_buf + curlen, dhp->dh_buflen - curlen - 1, NULL, NULL);
(void) strlcat(dhp->dh_buf, ">", dhp->dh_buflen);
return (0);
}
/* ARGSUSED3 */
int
fmt_crypto(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
if ((dhp->dh_debug & DIS_DEBUG_PRTFMT) != 0) {
prt_field("op", f->fcrypto.op, 2);
prt_field("rd", f->fcrypto.rd, 5);
prt_field("op3", f->fcrypto.op3, 6);
prt_field("rs1", f->fcrypto.rs1, 5);
prt_field("opf", f->fcrypto.opf, 9);
prt_field("imm5", f->fcrypto.imm5, 5);
}
prt_name(dhp, inp->in_data.in_def.in_name, 1);
prt_imm(dhp, f->fcrypto.imm5, 0);
return (0);
}
/* ARGSUSED3 */
int
fmt_crypto4op(dis_handle_t *dhp, uint32_t instr, const inst_t *inp, int idx)
{
ifmt_t *f = (ifmt_t *)&instr;
int flags = inp->in_data.in_def.in_flags;
prt_name(dhp, inp->in_data.in_def.in_name, 1);
bprintf(dhp, "%s, %s, ", get_regname(dhp, FLG_P1_VAL(flags),
f->fused.rs1), get_regname(dhp, FLG_P1_VAL(flags), f->fused.rs2));
if (idx == 0x8) {
/* aes_kexpand1 */
prt_imm(dhp, f->fused.rs3, 0);
} else {
bprintf(dhp, "%s", get_regname(dhp, FLG_P1_VAL(flags),
f->fused.rs3));
}
bprintf(dhp, ", %s", get_regname(dhp, FLG_P1_VAL(flags), f->fused.rd));
return (0);
}
/*
* put name into the output buffer
* if add_space !=0, append a space after it
*/
static void
prt_name(dis_handle_t *dhp, const char *name, int add_space)
{
bprintf(dhp, (add_space == 0) ? "%s" : "%-9s ", name);
}
/*
* For debugging, print out a field of the instruction
* field is the name of the field
* val is the value of the field
* len is the length of the field (in bits)
*/
#if defined(DIS_STANDALONE)
/* ARGSUSED */
static void
prt_field(const char *field, uint32_t val, int len)
{
}
#else
static void
prt_field(const char *field, uint32_t val, int len)
{
(void) fprintf(stderr, "DISASM: %8s = 0x%-8x (", field, val);
prt_binary(val, len);
(void) fprintf(stderr, ")\n");
}
#endif /* DIS_STANDALONE */
/*
* sign extend a val (that is 'bits' bits in length) to a 32-bit signed
* integer
*/
static int32_t
sign_extend(int32_t val, int32_t bits)
{
if ((val & (1L << (bits - 1))) == 0)
return (val);
return ((-1L << bits) | val);
}
/*
* print out an immediate (i.e. constant) value
* val is the value
* format indicates if it is:
* 0 Unsigned
* IMM_SIGNED A signed value (prepend +/- to the value)
* IMM_ADDR Part of an address expression (prepend +/- but with a space
* between the sign and the value for things like [%i1 + 0x55]
*/
static void
prt_imm(dis_handle_t *dhp, uint32_t val, int format)
{
const char *fmtstr = NULL;
int32_t sv = (int32_t)val;
int octal = dhp->dh_flags & DIS_OCTAL;
switch (format) {
case IMM_ADDR:
if (sv < 0) {
sv = -sv;
fmtstr = (octal != 0) ? "- 0%lo" : "- 0x%lx";
} else {
fmtstr = (octal != 0) ? "+ 0%lo" : "+ 0x%lx";
}
break;
case IMM_SIGNED:
if (sv < 0) {
sv = -sv;
fmtstr = (octal != 0) ? "-0%lo" : "-0x%lx";
break;
}
/* fall through */
default:
fmtstr = (octal != 0) ? "0%lo" : "0x%lx";
}
bprintf(dhp, fmtstr, sv);
}
/*
* return the symbolic name of a register
* regset is one of the REG_* values indicating which type of register it is
* such as integer, floating point, etc.
* idx is the numeric value of the register
*
* If regset is REG_NONE, an empty, but non-NULL string is returned
* NULL may be returned if the index indicates an invalid register value
* such as with the %icc/%xcc sets
*/
static const char *
get_regname(dis_handle_t *dhp, int regset, uint32_t idx)
{
const char *regname = NULL;
switch (regset) {
case REG_INT:
regname = reg_names[idx];
break;
case REG_FP:
regname = freg_names[idx];
break;
case REG_FPD:
if (((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0) ||
((dhp->dh_flags & (DIS_SPARC_V9|DIS_SPARC_V9_SGI)) != 0))
regname = fdreg_names[idx];
else
regname = compat_fdreg_names[idx];
break;
case REG_FPQ:
if ((dhp->dh_debug & DIS_DEBUG_COMPAT) == 0)
regname = fqreg_names[idx];
else
regname = freg_names[idx];
break;
case REG_CP:
regname = cpreg_names[idx];
break;
case REG_ICC:
regname = icc_names[idx];
break;
case REG_FCC:
regname = fcc_names[idx];
break;
case REG_FSR:
regname = "%fsr";
break;
case REG_CSR:
regname = "%csr";
break;
case REG_CQ:
regname = "%cq";
break;
case REG_NONE:
regname = "";
break;
}
return (regname);
}
/*
* output the asi value from the instruction
*
* TODO: investigate if this should perhaps have a mask -- are undefined ASI
* values for an instruction still disassembled??
*/
static void
prt_asi(dis_handle_t *dhp, uint32_t instr)
{
ifmt_t *f = (ifmt_t *)&instr;
int octal = ((dhp->dh_flags & DIS_OCTAL) != 0);
if (f->f3.i != 0)
bprintf(dhp, "%%asi");
else
bprintf(dhp, (octal != 0) ? "0%03o" : "0x%02x", f->f3.asi);
}
/*
* put an address expression into the output buffer
*
* instr is the instruction to use
* if nobrackets != 0, [] are not added around the instruction
*
* Currently this option is set when printing out the address portion
* of a jmpl instruction, but otherwise 0 for load/stores
*
* If no debug flags are set, the full expression is output, even when
* %g0 or 0x0 appears in the address
*
* If DIS_DEBUG_SYN_ALL or DIS_DEBUG_COMPAT are set, when %g0 or 0x0
* appear in the address, they are not output. If the wierd (and probably
* shouldn't happen) address of [%g0 + %g0] or [%g0 + 0x0] is encountered,
* [%g0] is output
*/
static void
prt_address(dis_handle_t *dhp, uint32_t instr, int nobrackets)
{
ifmt_t *f = (ifmt_t *)&instr;
int32_t simm13;
int octal = ((dhp->dh_flags & DIS_OCTAL) != 0);
int p1 = ((dhp->dh_debug & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL)) == 0);
int p2 = ((dhp->dh_debug & (DIS_DEBUG_COMPAT|DIS_DEBUG_SYN_ALL)) == 0);
if (f->f3a.i == 0) {
p1 |= ((f->f3a.rs1 != 0) || f->f3.rs2 == 0);
p2 |= (f->f3.rs2 != 0);
bprintf(dhp, "%s%s%s%s%s",
(nobrackets == 0) ? "[" : "",
(p1 != 0) ? reg_names[f->f3a.rs1] : "",
(p1 != 0 && p2 != 0) ? " + " : "",
(p2 != 0) ? reg_names[f->f3.rs2] : "",
(nobrackets == 0) ? "]" : "");
} else {
const char *sign;
simm13 = sign_extend(f->f3a.simm13, 13);
sign = (simm13 < 0) ? "-" : "+";
p1 |= (f->f3a.rs1 != 0);
p2 |= (p1 == 0 || simm13 != 0);
if (p1 == 0 && simm13 == 0)
p2 = 1;
if (p1 == 0 && simm13 >= 0)
sign = "";
if (p2 != 0)
bprintf(dhp,
(octal != 0) ? "%s%s%s%s%s0%lo%s" :
"%s%s%s%s%s0x%lx%s",
(nobrackets == 0) ? "[" : "",
(p1 != 0) ? reg_names[f->f3a.rs1] : "",
(p1 != 0) ? " " : "",
sign,
(p1 != 0) ? " " : "",
(simm13 < 0) ? -(simm13) : simm13,
(nobrackets == 0) ? "]" : "");
else
bprintf(dhp, "%s%s%s",
(nobrackets == 0) ? "[" : "",
reg_names[f->f3a.rs1],
(nobrackets == 0) ? "]" : "");
}
}
/*
* print out the arguments to an alu operation (add, sub, etc.)
* contained in 'instr'.
*
* alu instructions have the following format:
* %rs1, %rs2, %rd (i == 0)
* %rs1, 0xnnn, %rd (i == 1)
* ^ ^ ^
* | | |
* p1 p2 p3
*
* flags indicates the register set to use for each position (p1, p2, p3)
* as well as if immediate values (i == 1) are allowed
*
* if flags indicates a specific position has REG_NONE set as it's register
* set, it is omitted from the output. This is primarly used for certain
* floating point operations
*/
static void
prt_aluargs(dis_handle_t *dhp, uint32_t instr, uint32_t flags)
{
ifmt_t *f = (ifmt_t *)&instr;
const char *r1, *r2, *r3;
int p1, p2, p3;
unsigned int opf = 0;
r1 = get_regname(dhp, FLG_P1_VAL(flags), f->f3.rs1);
r2 = get_regname(dhp, FLG_P2_VAL(flags), f->f3.rs2);
r3 = get_regname(dhp, FLG_P3_VAL(flags), f->f3.rd);
p1 = (FLG_P1_VAL(flags) != REG_NONE);
p2 = (((flags & FLG_NOIMM) == 0) || (FLG_P2_VAL(flags) != REG_NONE));
p3 = (FLG_RD_VAL(flags) != REG_NONE);
if (r1 == NULL || r1[0] == '\0')
p1 = 0;
if (f->f3a.i == 0 && (r2 == NULL || r2[0] == '\0'))
p2 = 0;
if (r3 == NULL || r3[0] == '\0')
p3 = 0;
if ((f->fcmp.op == 2) && (f->fcmp.op3 == 0x36) && (f->fcmp.cc != 0))
opf = f->fcmp.opf;
if ((opf == 0x151) || (opf == 0x152)) {
(void) strlcat(dhp->dh_buf, r3, dhp->dh_buflen);
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
p3 = 0;
}
if (p1 != 0) {
(void) strlcat(dhp->dh_buf, r1, dhp->dh_buflen);
if (p2 != 0 || p3 != 0)
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
}
if (p2 != 0) {
if (f->f3.i == 0 || ((flags & FLG_NOIMM) != 0))
(void) strlcat(dhp->dh_buf, r2, dhp->dh_buflen);
else if (opf == 0x136) {
/* special case for des_kexpand */
prt_imm(dhp, f->fcrypto.imm5, 0);
} else {
prt_imm(dhp, sign_extend(f->f3a.simm13, 13),
IMM_SIGNED);
}
if (p3 != 0)
(void) strlcat(dhp->dh_buf, ", ", dhp->dh_buflen);
}
if (p3 != 0)
(void) strlcat(dhp->dh_buf, r3, dhp->dh_buflen);
}
static const char *
get_asi_name(uint8_t asi)
{
switch (asi) {
case 0x04:
return ("ASI_N");
case 0x0c:
return ("ASI_NL");
case 0x10:
return ("ASI_AIUP");
case 0x11:
return ("ASI_AIUS");
case 0x14:
return ("ASI_REAL");
case 0x15:
return ("ASI_REAL_IO");
case 0x16:
return ("ASI_BLK_AIUP");
case 0x17:
return ("ASI_BLK_AIUS");
case 0x18:
return ("ASI_AIUPL");
case 0x19:
return ("ASI_AIUSL");
case 0x1c:
return ("ASI_REAL_L");
case 0x1d:
return ("ASI_REAL_IO_L");
case 0x1e:
return ("ASI_BLK_AIUPL");
case 0x1f:
return ("ASI_BLK_AIUS_L");
case 0x20:
return ("ASI_SCRATCHPAD");
case 0x21:
return ("ASI_MMU_CONTEXTID");
case 0x22:
return ("ASI_TWINX_AIUP");
case 0x23:
return ("ASI_TWINX_AIUS");
case 0x25:
return ("ASI_QUEUE");
case 0x26:
return ("ASI_TWINX_R");
case 0x27:
return ("ASI_TWINX_N");
case 0x2a:
return ("ASI_LDTX_AIUPL");
case 0x2b:
return ("ASI_TWINX_AIUS_L");
case 0x2e:
return ("ASI_TWINX_REAL_L");
case 0x2f:
return ("ASI_TWINX_NL");
case 0x30:
return ("ASI_AIPP");
case 0x31:
return ("ASI_AIPS");
case 0x36:
return ("ASI_AIPN");
case 0x38:
return ("ASI_AIPP_L");
case 0x39:
return ("ASI_AIPS_L");
case 0x3e:
return ("ASI_AIPN_L");
case 0x41:
return ("ASI_CMT_SHARED");
case 0x4f:
return ("ASI_HYP_SCRATCHPAD");
case 0x50:
return ("ASI_IMMU");
case 0x52:
return ("ASI_MMU_REAL");
case 0x54:
return ("ASI_MMU");
case 0x55:
return ("ASI_ITLB_DATA_ACCESS_REG");
case 0x56:
return ("ASI_ITLB_TAG_READ_REG");
case 0x57:
return ("ASI_IMMU_DEMAP");
case 0x58:
return ("ASI_DMMU / ASI_UMMU");
case 0x5c:
return ("ASI_DTLB_DATA_IN_REG");
case 0x5d:
return ("ASI_DTLB_DATA_ACCESS_REG");
case 0x5e:
return ("ASI_DTLB_TAG_READ_REG");
case 0x5f:
return ("ASI_DMMU_DEMAP");
case 0x63:
return ("ASI_CMT_PER_STRAND / ASI_CMT_PER_CORE");
case 0x80:
return ("ASI_P");
case 0x81:
return ("ASI_S");
case 0x82:
return ("ASI_PNF");
case 0x83:
return ("ASI_SNF");
case 0x88:
return ("ASI_PL");
case 0x89:
return ("ASI_SL");
case 0x8a:
return ("ASI_PNFL");
case 0x8b:
return ("ASI_SNFL");
case 0xc0:
return ("ASI_PST8_P");
case 0xc1:
return ("ASI_PST8_S");
case 0xc2:
return ("ASI_PST16_P");
case 0xc3:
return ("ASI_PST16_S");
case 0xc4:
return ("ASI_PST32_P");
case 0xc5:
return ("ASI_PST32_S");
case 0xc8:
return ("ASI_PST8_PL");
case 0xc9:
return ("ASI_PST8_SL");
case 0xca:
return ("ASI_PST16_PL");
case 0xcb:
return ("ASI_PST16_SL");
case 0xcc:
return ("ASI_PST32_PL");
case 0xcd:
return ("ASI_PST32_SL");
case 0xd0:
return ("ASI_FL8_P");
case 0xd1:
return ("ASI_FL8_S");
case 0xd2:
return ("ASI_FL16_P");
case 0xd3:
return ("ASI_FL16_S");
case 0xd8:
return ("ASI_FL8_PL");
case 0xd9:
return ("ASI_FL8_SL");
case 0xda:
return ("ASI_FL16_PL");
case 0xdb:
return ("ASI_FL16_SL");
case 0xe0:
return ("ASI_BLK_COMMIT_P");
case 0xe1:
return ("ASI_BLK_SOMMIT_S");
case 0xe2:
return ("ASI_TWINX_P");
case 0xe3:
return ("ASI_TWINX_S");
case 0xea:
return ("ASI_TWINX_PL");
case 0xeb:
return ("ASI_TWINX_SL");
case 0xf0:
return ("ASI_BLK_P");
case 0xf1:
return ("ASI_BLK_S");
case 0xf8:
return ("ASI_BLK_PL");
case 0xf9:
return ("ASI_BLK_SL");
default:
return (NULL);
}
}
/*
* just a handy function that takes care of managing the buffer length
* w/ printf
*/
/*
* PRINTF LIKE 1
*/
static void
bprintf(dis_handle_t *dhp, const char *fmt, ...)
{
size_t curlen;
va_list ap;
curlen = strlen(dhp->dh_buf);
va_start(ap, fmt);
(void) vsnprintf(dhp->dh_buf + curlen, dhp->dh_buflen - curlen, fmt,
ap);
va_end(ap);
}