/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2007 Jason King. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* The sparc disassembler is mostly straightforward, each instruction is
* represented by an inst_t structure. The inst_t definitions are organized
* into tables. The tables are correspond to the opcode maps documented in the
* various sparc architecture manuals. Each table defines the bit range of the
* instruction whose value act as an index into the array of instructions. A
* table can also refer to another table if needed. Each table also contains
* a function pointer of type format_fcn that knows how to output the
* instructions in the table, as well as handle any synthetic instructions
*
* Unfortunately, the changes from sparcv8 -> sparcv9 not only include new
* instructions, they sometimes renamed or just reused the same instruction to
* do different operations (i.e. the sparcv8 coprocessor instructions). To
* accommodate this, each table can define an overlay table. The overlay table
* is a list of (table index, architecture, new instruction definition) values.
*
*
* Traversal starts with the first table,
* get index value from the instruction
* if an relevant overlay entry exists for this index,
* grab the overlay definition
* else
* grab the definition from the array (corresponding to the index value)
*
* If the entry is an instruction,
* call print function of instruction.
* If the entry is a pointer to another table
* traverse the table
* If not valid,
* return an error
*
*
* To keep dis happy, for sparc, instead of actually returning an error, if
* the instruction cannot be disassembled, we instead merely place the value
* of the instruction into the output buffer.
*
* Adding new instructions:
*
* With the above information, it hopefully makes it clear how to add support
* for decoding new instructions. Presumably, with new instructions will come
* a new dissassembly mode (I.e. DIS_SPARC_V8, DIS_SPARC_V9, etc.).
*
* If the dissassembled format does not correspond to one of the existing
* formats, a new formatter will have to be written. The 'flags' value of
* inst_t is intended to instruct the corresponding formatter about how to
* output the instruction.
*
* If the corresponding entry in the correct table is currently unoccupied,
* simply replace the INVALID entry with the correct definition. The INST and
* TABLE macros are suggested to be used for this. If there is already an
* instruction defined, then the entry must be placed in an overlay table. If
* no overlay table exists for the instruction table, one will need to be
* created.
*/
#include <libdisasm.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/byteorder.h>
#include <string.h>
#include "libdisasm_impl.h"
#include "dis_sparc.h"
static const inst_t *dis_get_overlay(dis_handle_t *, const table_t *,
uint32_t);
static uint32_t dis_get_bits(uint32_t, int, int);
#if !defined(DIS_STANDALONE)
static void do_binary(uint32_t);
#endif /* DIS_STANDALONE */
dis_handle_t *
dis_handle_create(int flags, void *data, dis_lookup_f lookup_func,
dis_read_f read_func)
{
#if !defined(DIS_STANDALONE)
char *opt = NULL;
char *opt2, *save, *end;
#endif
dis_handle_t *dhp;
if ((flags & (DIS_SPARC_V8|DIS_SPARC_V9|DIS_SPARC_V9_SGI)) == 0) {
(void) dis_seterrno(E_DIS_INVALFLAG);
return (NULL);
}
if ((dhp = dis_zalloc(sizeof (struct dis_handle))) == NULL) {
(void) dis_seterrno(E_DIS_NOMEM);
return (NULL);
}
dhp->dh_lookup = lookup_func;
dhp->dh_read = read_func;
dhp->dh_flags = flags;
dhp->dh_data = data;
dhp->dh_debug = DIS_DEBUG_COMPAT;
#if !defined(DIS_STANDALONE)
opt = getenv("_LIBDISASM_DEBUG");
if (opt == NULL)
return (dhp);
opt2 = strdup(opt);
if (opt2 == NULL) {
dis_handle_destroy(dhp);
(void) dis_seterrno(E_DIS_NOMEM);
return (NULL);
}
save = opt2;
while (opt2 != NULL) {
end = strchr(opt2, ',');
if (end != 0)
*end++ = '\0';
if (strcasecmp("synth-all", opt2) == 0)
dhp->dh_debug |= DIS_DEBUG_SYN_ALL;
if (strcasecmp("compat", opt2) == 0)
dhp->dh_debug |= DIS_DEBUG_COMPAT;
if (strcasecmp("synth-none", opt2) == 0)
dhp->dh_debug &= ~(DIS_DEBUG_SYN_ALL|DIS_DEBUG_COMPAT);
if (strcasecmp("binary", opt2) == 0)
dhp->dh_debug |= DIS_DEBUG_PRTBIN;
if (strcasecmp("format", opt2) == 0)
dhp->dh_debug |= DIS_DEBUG_PRTFMT;
if (strcasecmp("all", opt2) == 0)
dhp->dh_debug = DIS_DEBUG_ALL;
if (strcasecmp("none", opt2) == 0)
dhp->dh_debug = DIS_DEBUG_NONE;
opt2 = end;
}
free(save);
#endif /* DIS_STANDALONE */
return (dhp);
}
void
dis_handle_destroy(dis_handle_t *dhp)
{
dis_free(dhp, sizeof (dis_handle_t));
}
void
dis_set_data(dis_handle_t *dhp, void *data)
{
dhp->dh_data = data;
}
void
dis_flags_set(dis_handle_t *dhp, int f)
{
dhp->dh_flags |= f;
}
void
dis_flags_clear(dis_handle_t *dhp, int f)
{
dhp->dh_flags &= ~f;
}
/* ARGSUSED */
int
dis_max_instrlen(dis_handle_t *dhp)
{
return (4);
}
/*
* The dis_i386.c comment for this says it returns the previous instruction,
* however, I'm fairly sure it's actually returning the _address_ of the
* nth previous instruction.
*/
/* ARGSUSED */
uint64_t
dis_previnstr(dis_handle_t *dhp, uint64_t pc, int n)
{
if (n <= 0)
return (pc);
if (pc < n)
return (pc);
return (pc - n*4);
}
int
dis_disassemble(dis_handle_t *dhp, uint64_t addr, char *buf, size_t buflen)
{
const table_t *tp = &initial_table;
const inst_t *inp = NULL;
uint32_t instr;
uint32_t idx = 0;
if (dhp->dh_read(dhp->dh_data, addr, &instr, sizeof (instr)) !=
sizeof (instr))
return (-1);
dhp->dh_buf = buf;
dhp->dh_buflen = buflen;
dhp->dh_addr = addr;
buf[0] = '\0';
/* this allows sparc code to be tested on x86 */
instr = BE_32(instr);
#if !defined(DIS_STANDALONE)
if ((dhp->dh_debug & DIS_DEBUG_PRTBIN) != 0)
do_binary(instr);
#endif /* DIS_STANDALONE */
/* CONSTCOND */
while (1) {
idx = dis_get_bits(instr, tp->tbl_field, tp->tbl_len);
inp = &tp->tbl_inp[idx];
inp = dis_get_overlay(dhp, tp, idx);
if ((inp->in_type == INST_NONE) ||
((inp->in_arch & dhp->dh_flags) == 0))
goto error;
if (inp->in_type == INST_TBL) {
tp = inp->in_data.in_tbl;
continue;
}
break;
}
if (tp->tbl_fmt(dhp, instr, inp, idx) == 0)
return (0);
error:
(void) snprintf(buf, buflen,
((dhp->dh_flags & DIS_OCTAL) != 0) ? "0%011lo" : "0x%08lx",
instr);
return (0);
}
static uint32_t
dis_get_bits(uint32_t instr, int offset, int length)
{
uint32_t mask, val;
int i;
for (i = 0, mask = 0; i < length; ++i)
mask |= (1UL << i);
mask = mask << (offset - length + 1);
val = instr & mask;
val = val >> (offset - length + 1);
return (val);
}
static const inst_t *
dis_get_overlay(dis_handle_t *dhp, const table_t *tp, uint32_t idx)
{
const inst_t *ip = &tp->tbl_inp[idx];
int i;
if (tp->tbl_ovp == NULL)
return (ip);
for (i = 0; tp->tbl_ovp[i].ov_idx != -1; ++i) {
if (tp->tbl_ovp[i].ov_idx != idx)
continue;
if ((tp->tbl_ovp[i].ov_inst.in_arch & dhp->dh_flags) == 0)
continue;
ip = &tp->tbl_ovp[i].ov_inst;
break;
}
return (ip);
}
#if !defined(DIS_STANDALONE)
static void
do_binary(uint32_t instr)
{
(void) fprintf(stderr, "DISASM: ");
prt_binary(instr, 32);
(void) fprintf(stderr, "\n");
}
#endif /* DIS_STANDALONE */