/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley 4.3 BSD
* under license from the Regents of the University of California.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Warning! Things are arranged very carefully in this file to
* allow read-only data to be moved to the text segment. The
* various DES tables must appear before any function definitions
* (this is arranged by including them immediately below) and partab
* must also appear before and function definitions
* This arrangement allows all data up through the first text to
* be moved to text.
*/
#ifndef _KERNEL
#endif
#ifdef CRYPT
#ifdef sun
#else
#endif
#include "des_soft.h"
/*
* Fast (?) software implementation of DES
* Works on a VAX too.
* Won't work without 8 bit chars and 32 bit longs
*/
#endif /* def CRYPT */
#ifndef _KERNEL
/*
* Table giving odd parity in the low bit for ASCII characters
*/
0x01, 0x01, 0x02, 0x02, 0x04, 0x04, 0x07, 0x07,
0x08, 0x08, 0x0b, 0x0b, 0x0d, 0x0d, 0x0e, 0x0e,
0x10, 0x10, 0x13, 0x13, 0x15, 0x15, 0x16, 0x16,
0x19, 0x19, 0x1a, 0x1a, 0x1c, 0x1c, 0x1f, 0x1f,
0x20, 0x20, 0x23, 0x23, 0x25, 0x25, 0x26, 0x26,
0x29, 0x29, 0x2a, 0x2a, 0x2c, 0x2c, 0x2f, 0x2f,
0x31, 0x31, 0x32, 0x32, 0x34, 0x34, 0x37, 0x37,
0x38, 0x38, 0x3b, 0x3b, 0x3d, 0x3d, 0x3e, 0x3e,
0x40, 0x40, 0x43, 0x43, 0x45, 0x45, 0x46, 0x46,
0x49, 0x49, 0x4a, 0x4a, 0x4c, 0x4c, 0x4f, 0x4f,
0x51, 0x51, 0x52, 0x52, 0x54, 0x54, 0x57, 0x57,
0x58, 0x58, 0x5b, 0x5b, 0x5d, 0x5d, 0x5e, 0x5e,
0x61, 0x61, 0x62, 0x62, 0x64, 0x64, 0x67, 0x67,
0x68, 0x68, 0x6b, 0x6b, 0x6d, 0x6d, 0x6e, 0x6e,
0x70, 0x70, 0x73, 0x73, 0x75, 0x75, 0x76, 0x76,
0x79, 0x79, 0x7a, 0x7a, 0x7c, 0x7c, 0x7f, 0x7f,
};
/*
* Add odd parity to low bit of 8 byte key
*/
void
des_setparity(char *p)
{
int i;
for (i = 0; i < 8; i++) {
*p = partab[*p & 0x7f];
p++;
}
}
#endif /* def _KERNEL */
#ifdef CRYPT
/*
* Software encrypt or decrypt a block of data (multiple of 8 bytes)
* Do the CBC ourselves if needed.
*/
int
{
/* EXPORT DELETE START */
short i;
unsigned mode;
unsigned dir;
while (len != 0) {
switch (mode) {
case CBC:
switch (dir) {
case ENCRYPT:
for (i = 0; i < 8; i++)
for (i = 0; i < 8; i++)
break;
case DECRYPT:
for (i = 0; i < 8; i++)
for (i = 0; i < 8; i++) {
}
break;
}
break;
case ECB:
break;
}
buf += 8;
len -= 8;
}
/* EXPORT DELETE END */
return (1);
}
/*
* Set the key and direction for an encryption operation
* We build the 16 key entries here
*/
static void
{
/* EXPORT DELETE START */
long C, D;
short i;
/*
* First, generate C and D by permuting
* the key. The low order bit of each
* 8-bit char is not used, so C and D are only 28
* bits apiece.
*/
{
short bit;
C = D = 0;
for (i = 0; i < 28; i++) {
C <<= 1;
D <<= 1;
C |= 1;
D |= 1;
}
}
/*
* To generate Ki, rotate C and D according
* to schedule and pick up a permutation
* using PC2.
*/
for (i = 0; i < 16; i++) {
chunk_t *c;
short j, k, bit;
long bbit;
/*
* Do the "left shift" (rotate)
* We know we always rotate by either 1 or 2 bits
* the shifts table tells us if its 2
*/
C <<= 1;
if (C & BIT28)
C |= 1;
D <<= 1;
if (D & BIT28)
D |= 1;
if (shifts[i]) {
C <<= 1;
if (C & BIT28)
C |= 1;
D <<= 1;
if (D & BIT28)
D |= 1;
}
/*
* get Ki. Note C and D are concatenated.
*/
bit = 0;
switch (dir) {
case ENCRYPT:
case DECRYPT:
}
c->long0 = 0;
c->long1 = 0;
for (j = 0; j < 4; j++) {
for (k = 0; k < 6; k++) {
bit++;
}
bbit >>= 8;
}
}
/* EXPORT DELETE END */
}
/*
* Do an encryption operation
* Much pain is taken (with preprocessor) to avoid loops so the compiler
* can do address arithmetic instead of doing it at runtime.
* Note that the byte-to-chunk conversion is necessary to guarantee
* processor byte-order independence.
*/
static void
{
/* EXPORT DELETE START */
/*
* Initial permutation
* and byte to chunk conversion
*/
{
short i, pbit;
if (w & *lp++) {
if (pbit < 32)
else
}
}
if (w & *lp++) {
if (pbit < 32)
else
}
}
}
/*
* Expand 8 bits of 32 bit R to 48 bit R
*/
}
/*
* Inner part of the algorithm:
* Expand R from 32 to 48 bits; xor key value;
* apply S boxes; permute 32 bits of output
*/
/* CSTYLED */ \
do_R_to_ER(=, 0); \
/* CSTYLED */ \
do_R_to_ER(|=, 1); \
/* CSTYLED */ \
do_R_to_ER(|=, 2); \
/* CSTYLED */ \
do_R_to_ER(|=, 3); \
R.long0 = \
outR = \
}
/*
* Do a cipher step
* Apply inner part; do xor and exchange of 32 bit parts
*/
}
/*
* Apply the 16 ciphering steps
*/
{
}
/*
* Final permutation
* and chunk to byte conversion
*/
{
short i, pbit;
if (w & *lp++) {
if (pbit < 32)
else
}
}
if (w & *lp++) {
if (pbit < 32)
else
}
}
}
/* EXPORT DELETE END */
}
#endif /* def CRYPT */