/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* _F_cplx_div_ix(b, w) returns (I * b) / w with infinities handled
* according to C99.
*
* If b and w are both finite and w is nonzero, _F_cplx_div_ix(b, w)
* delivers the complex quotient q according to the usual formula:
* let c = Re(w), and d = Im(w); then q = x + I * y where x = (b * d)
* / r and y = (b * c) / r with r = c * c + d * d. This implementa-
* tion computes intermediate results in double precision to avoid
* premature underflow or overflow.
*
* If b is neither NaN nor zero and w is zero, or if b is infinite
* and w is finite and nonzero, _F_cplx_div_ix delivers an infinite
* result. If b is finite and w is infinite, _F_cplx_div_ix delivers
* a zero result.
*
* If b and w are both zero or both infinite, or if either b or w is
* NaN, _F_cplx_div_ix delivers NaN + I * NaN. C99 doesn't specify
* these cases.
*
* This implementation can raise spurious invalid operation, inexact,
* and division-by-zero exceptions. C99 allows this.
*
* Warning: Do not attempt to "optimize" this code by removing multi-
* plications by zero.
*/
#endif
/*
* Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
*/
static int
testinff(float x)
{
union {
int i;
float f;
} xx;
xx.f = x;
}
float _Complex
_F_cplx_div_ix(float b, float _Complex w)
{
float _Complex v;
union {
int i;
float f;
float c, d;
double r, x, y;
int i, j;
/*
* The following is equivalent to
*
* c = crealf(w); d = cimagf(w);
*/
c = ((float *)&w)[0];
d = ((float *)&w)[1];
r = (double)c * c + (double)d * d;
if (r == 0.0) {
/* w is zero; multiply b by 1/Re(w) - I * Im(w) */
c = 1.0f / c;
j = testinff(b);
if (j) { /* b is infinite */
b = j;
}
((float *)&v)[0] = (b == 0.0f)? b * c : b * d;
((float *)&v)[1] = b * c;
return (v);
}
r = (double)b / r;
x = (double)d * r;
y = (double)c * r;
if (x != x || y != y) {
/*
* x or y is NaN, so b and w can't both be finite and
* nonzero. Since we handled the case w = 0 above, the
* only case to check here is when w is infinite.
*/
i = testinff(c);
j = testinff(d);
if (i | j) { /* w is infinite */
cc.f = c;
dd.f = d;
x = (double)d * b;
y = (double)c * b;
}
}
/*
* The following is equivalent to
*
* return x + I * y;
*/
((float *)&v)[0] = (float)x;
((float *)&v)[1] = (float)y;
return (v);
}