/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Plugin library for PCI Express and PCI (SHPC) hotplug controller
*/
#include <stddef.h>
#include <locale.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <locale.h>
#include <langinfo.h>
#include <time.h>
#include <sys/param.h>
#include <stdarg.h>
#include <libdevinfo.h>
#include <libdevice.h>
#define CFGA_PLUGIN_LIB
#include <config_admin.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/dditypes.h>
#include <sys/pci.h>
#include <libintl.h>
#include <dirent.h>
#include <limits.h>
#include <sys/mkdev.h>
#include "../../../../uts/common/sys/hotplug/pci/pcie_hp.h"
#include "../../../../common/pci/pci_strings.h"
#include <libhotplug.h>
extern const struct pci_class_strings_s class_pci[];
extern int class_pci_items;
#define MSG_HOTPLUG_DISABLED \
"Error: hotplug service is probably not running, " \
"please use 'svcadm enable hotplug' to enable the service. " \
"See cfgadm_shp(1M) for more details."
#define DEVICES_DIR "/devices"
#define SLASH "/"
#define GET_DYN(a) (strstr((a), CFGA_DYN_SEP))
/*
* Set the version number
*/
int cfga_version = CFGA_HSL_V2;
#ifdef DEBUG
#define SHP_DBG 1
#endif
#if !defined(TEXT_DOMAIN)
#define TEXT_DOMAIN "SYS_TEST"
#endif
/*
* DEBUGING LEVEL
*
* External routines: 1 - 2
* Internal routines: 3 - 4
*/
#ifdef SHP_DBG
int shp_debug = 1;
#define DBG(level, args) \
{ if (shp_debug >= (level)) printf args; }
#define DBG_F(level, args) \
{ if (shp_debug >= (level)) fprintf args; }
#else
#define DBG(level, args) /* nothing */
#define DBG_F(level, args) /* nothing */
#endif
#define CMD_ACQUIRE 0
#define CMD_GETSTAT 1
#define CMD_LIST 2
#define CMD_SLOT_CONNECT 3
#define CMD_SLOT_DISCONNECT 4
#define CMD_SLOT_CONFIGURE 5
#define CMD_SLOT_UNCONFIGURE 6
#define CMD_SLOT_INSERT 7
#define CMD_SLOT_REMOVE 8
#define CMD_OPEN 9
#define CMD_FSTAT 10
#define ERR_NOMEM 11
#define ERR_AP_INVAL 12
#define ERR_AP_ERR 13
#define ERR_NO_DEVICE 14
static char *
cfga_errstrs[] = {
/* n */ "acquire ",
/* n */ "get-status ",
/* n */ "list ",
/* n */ "connect ",
/* n */ "disconnect ",
/* n */ "configure ",
/* n */ "unconfigure ",
/* n */ "insert ",
/* n */ "remove ",
/* n */ "open ",
/* n */ "fstat ",
/* y */ "out of memory ",
/* y */ "invalid attachment point ",
/* y */ "invalid transition ",
/* y */ "no device is present ",
NULL
};
#define HELP_HEADER 1
#define HELP_CONFIG 2
#define HELP_LED_CNTRL 3
#define HELP_UNKNOWN 4
#define SUCCESS 5
#define FAILED 6
#define UNKNOWN 7
#define MAXLINE 256
extern int errno;
static void cfga_err(char **errstring, int code);
static cfga_err_t fix_ap_name(char *ap_log_id, const char *ap_id,
char *slot_name, char **errstring);
static cfga_err_t check_options(const char *options);
static void cfga_msg(struct cfga_msg *msgp, const char *str);
static char *findlink(char *ap_phys_id);
static char *
cfga_strs[] = {
NULL,
"\nPCI hotplug specific commands:",
"\t-c [connect|disconnect|configure|unconfigure|insert|remove] "
"ap_id [ap_id...]",
"\t-x led[=[fault|power|active|attn],mode=[on|off|blink]] ap_id [ap_id...]",
"\tunknown command or option: ",
"success ",
"failed ",
"unknown",
NULL
};
#define MAX_FORMAT 80
#define ENABLE_SLOT 0
#define DISABLE_SLOT 1
#define ENABLE_AUTOCNF 2
#define DISABLE_AUTOCNF 3
#define LED 4
#define MODE 5
typedef enum { PCIEHPC_FAULT_LED, PCIEHPC_POWER_LED, PCIEHPC_ATTN_LED,
PCIEHPC_ACTIVE_LED} pciehpc_led_t;
typedef enum { PCIEHPC_BOARD_UNKNOWN, PCIEHPC_BOARD_PCI_HOTPLUG }
pciehpc_board_type_t;
/*
* Board Type
*/
static char *
board_strs[] = {
/* n */ "???", /* PCIEHPC_BOARD_UNKNOWN */
/* n */ "hp", /* PCIEHPC_BOARD_PCI_HOTPLUG */
/* n */ NULL
};
/*
* HW functions
*/
static char *
func_strs[] = {
/* n */ "enable_slot",
/* n */ "disable_slot",
/* n */ "enable_autoconfig",
/* n */ "disable_autoconfig",
/* n */ "led",
/* n */ "mode",
/* n */ NULL
};
/*
* LED strings
*/
static char *
led_strs[] = {
/* n */ "fault", /* PCIEHPC_FAULT_LED */
/* n */ "power", /* PCIEHPC_POWER_LED */
/* n */ "attn", /* PCIEHPC_ATTN_LED */
/* n */ "active", /* PCIEHPC_ACTIVE_LED */
/* n */ NULL
};
static char *
led_strs2[] = {
/* n */ PCIEHPC_PROP_LED_FAULT, /* PCIEHPC_FAULT_LED */
/* n */ PCIEHPC_PROP_LED_POWER, /* PCIEHPC_POWER_LED */
/* n */ PCIEHPC_PROP_LED_ATTN, /* PCIEHPC_ATTN_LED */
/* n */ PCIEHPC_PROP_LED_ACTIVE, /* PCIEHPC_ACTIVE_LED */
/* n */ NULL
};
#define FAULT 0
#define POWER 1
#define ATTN 2
#define ACTIVE 3
static char *
mode_strs[] = {
/* n */ "off", /* OFF */
/* n */ "on", /* ON */
/* n */ "blink", /* BLINK */
/* n */ NULL
};
#define OFF 0
#define ON 1
#define BLINK 2
#define cfga_errstrs(i) cfga_errstrs[(i)]
#define cfga_eid(a, b) (((a) << 8) + (b))
#define MAXDEVS 32
typedef enum {
SOLARIS_SLT_NAME,
PROM_SLT_NAME
} slt_name_src_t;
struct searcharg {
char *devpath;
char slotnames[MAXDEVS][MAXNAMELEN];
int minor;
di_prom_handle_t promp;
slt_name_src_t slt_name_src;
};
static void *private_check;
/*
* Return the corresponding hp node for a given ap_id, it is the caller's
* responsibility to call hp_fini() to free the snapshot.
*/
static cfga_err_t
physpath2node(const char *physpath, char **errstring, hp_node_t *nodep)
{
char *rpath;
char *cp;
hp_node_t node;
size_t len;
if (getuid() != 0 && geteuid() != 0)
return (CFGA_ERROR);
if ((rpath = malloc(strlen(physpath) + 1)) == NULL) {
cfga_err(errstring, ERR_NOMEM);
return (CFGA_ERROR);
}
(void) strcpy(rpath, physpath);
/* Remove devices prefix (if any) */
len = strlen(DEVICES_DIR);
if (strncmp(rpath, DEVICES_DIR SLASH, len + strlen(SLASH)) == 0) {
(void) memmove(rpath, rpath + len,
strlen(rpath + len) + 1);
}
/* Remove dynamic component if any */
if ((cp = GET_DYN(rpath)) != NULL) {
*cp = '\0';
}
/* Remove minor name (if any) */
if ((cp = strrchr(rpath, ':')) == NULL) {
free(rpath);
return (CFGA_INVAL);
}
*cp = '\0';
cp++;
DBG(1, ("rpath=%s,cp=%s\n", rpath, cp));
if ((node = hp_init(rpath, cp, 0)) == NULL) {
if (errno == EBADF) {
/* No reponse to operations on the door file. */
assert(errstring != NULL);
*errstring = strdup(MSG_HOTPLUG_DISABLED);
free(rpath);
return (CFGA_NOTSUPP);
}
free(rpath);
return (CFGA_ERROR);
}
free(rpath);
*nodep = node;
return (CFGA_OK);
}
typedef struct error_size_cb_arg {
size_t rsrc_width;
size_t info_width;
int cnt;
} error_size_cb_arg_t;
/*
* Callback function for hp_traverse(), to sum up the
* maximum length for error message display.
*/
static int
error_sizeup_cb(hp_node_t node, void *arg)
{
error_size_cb_arg_t *sizearg = (error_size_cb_arg_t *)arg;
size_t len;
/* Only process USAGE nodes */
if (hp_type(node) != HP_NODE_USAGE)
return (HP_WALK_CONTINUE);
sizearg->cnt++;
/* size up resource name */
len = strlen(hp_name(node));
if (sizearg->rsrc_width < len)
sizearg->rsrc_width = len;
/* size up usage description */
len = strlen(hp_usage(node));
if (sizearg->info_width < len)
sizearg->info_width = len;
return (HP_WALK_CONTINUE);
}
typedef struct error_sum_cb_arg {
char **table;
char *format;
} error_sum_cb_arg_t;
/*
* Callback function for hp_traverse(), to add the error
* message to he table.
*/
static int
error_sumup_cb(hp_node_t node, void *arg)
{
error_sum_cb_arg_t *sumarg = (error_sum_cb_arg_t *)arg;
char **table = sumarg->table;
char *format = sumarg->format;
/* Only process USAGE nodes */
if (hp_type(node) != HP_NODE_USAGE)
return (HP_WALK_CONTINUE);
(void) strcat(*table, "\n");
(void) sprintf(&((*table)[strlen(*table)]),
format, hp_name(node), hp_usage(node));
return (HP_WALK_CONTINUE);
}
/*
* Takes an opaque rcm_info_t pointer and a character pointer, and appends
* the rcm_info_t data in the form of a table to the given character pointer.
*/
static void
pci_rcm_info_table(hp_node_t node, char **table)
{
int i;
size_t w;
size_t width = 0;
size_t w_rsrc = 0;
size_t w_info = 0;
size_t table_size = 0;
uint_t tuples = 0;
char *rsrc;
char *info;
char *newtable;
static char format[MAX_FORMAT];
error_size_cb_arg_t sizearg;
error_sum_cb_arg_t sumarg;
/* Protect against invalid arguments */
if (table == NULL)
return;
/* Set localized table header strings */
rsrc = dgettext(TEXT_DOMAIN, "Resource");
info = dgettext(TEXT_DOMAIN, "Information");
/* A first pass, to size up the RCM information */
sizearg.rsrc_width = strlen(rsrc);
sizearg.info_width = strlen(info);
sizearg.cnt = 0;
(void) hp_traverse(node, &sizearg, error_sizeup_cb);
/* If nothing was sized up above, stop early */
if (sizearg.cnt == 0)
return;
w_rsrc = sizearg.rsrc_width;
w_info = sizearg.info_width;
tuples = sizearg.cnt;
/* Adjust column widths for column headings */
if ((w = strlen(rsrc)) > w_rsrc)
w_rsrc = w;
else if ((w_rsrc - w) % 2)
w_rsrc++;
if ((w = strlen(info)) > w_info)
w_info = w;
else if ((w_info - w) % 2)
w_info++;
/*
* Compute the total line width of each line,
* accounting for intercolumn spacing.
*/
width = w_info + w_rsrc + 4;
/* Allocate space for the table */
table_size = (2 + tuples) * (width + 1) + 2;
if (*table == NULL) {
/* zero fill for the strcat() call below */
*table = calloc(table_size, sizeof (char));
if (*table == NULL)
return;
} else {
newtable = realloc(*table, strlen(*table) + table_size);
if (newtable == NULL)
return;
else
*table = newtable;
}
/* Place a table header into the string */
/* The resource header */
(void) strcat(*table, "\n");
w = strlen(rsrc);
for (i = 0; i < ((w_rsrc - w) / 2); i++)
(void) strcat(*table, " ");
(void) strcat(*table, rsrc);
for (i = 0; i < ((w_rsrc - w) / 2); i++)
(void) strcat(*table, " ");
/* The information header */
(void) strcat(*table, " ");
w = strlen(info);
for (i = 0; i < ((w_info - w) / 2); i++)
(void) strcat(*table, " ");
(void) strcat(*table, info);
for (i = 0; i < ((w_info - w) / 2); i++)
(void) strcat(*table, " ");
/* Underline the headers */
(void) strcat(*table, "\n");
for (i = 0; i < w_rsrc; i++)
(void) strcat(*table, "-");
(void) strcat(*table, " ");
for (i = 0; i < w_info; i++)
(void) strcat(*table, "-");
/* Construct the format string */
(void) snprintf(format, MAX_FORMAT, "%%-%ds %%-%ds",
(int)w_rsrc, (int)w_info);
/* Add the tuples to the table string */
sumarg.table = table;
sumarg.format = format;
(void) hp_traverse(node, &sumarg, error_sumup_cb);
}
/*
* Figure out the target kernel state for a given cfgadm
* change-state operation.
*/
static cfga_err_t
cfga_target_state(cfga_cmd_t state_change_cmd, int *state)
{
switch (state_change_cmd) {
case CFGA_CMD_CONNECT:
*state = DDI_HP_CN_STATE_POWERED;
break;
case CFGA_CMD_DISCONNECT:
*state = DDI_HP_CN_STATE_PRESENT;
break;
case CFGA_CMD_CONFIGURE:
*state = DDI_HP_CN_STATE_ENABLED;
break;
case CFGA_CMD_UNCONFIGURE:
*state = DDI_HP_CN_STATE_POWERED;
break;
default:
return (CFGA_ERROR);
}
return (CFGA_OK);
}
/*
* Translate kernel state to cfgadm receptacle state and occupant state.
*/
static cfga_err_t
cfga_get_state(hp_node_t connector, ap_rstate_t *rs, ap_ostate_t *os)
{
int state;
hp_node_t port;
state = hp_state(connector);
/* Receptacle state */
switch (state) {
case DDI_HP_CN_STATE_EMPTY:
*rs = AP_RSTATE_EMPTY;
break;
case DDI_HP_CN_STATE_PRESENT:
*rs = AP_RSTATE_DISCONNECTED;
break;
case DDI_HP_CN_STATE_POWERED:
case DDI_HP_CN_STATE_ENABLED:
*rs = AP_RSTATE_CONNECTED;
break;
/*
* Connector state can only be one of
* Empty, Present, Powered, Enabled.
*/
default:
return (CFGA_ERROR);
}
/*
* Occupant state
*/
port = hp_child(connector);
while (port != NULL) {
DBG(1, ("cfga_get_state:(%x)\n", hp_state(port)));
/*
* Mark occupant state as "configured" if at least one of the
* associated ports is at state "offline" or above. Driver
* attach ("online" state) is not necessary here.
*/
if (hp_state(port) >= DDI_HP_CN_STATE_OFFLINE)
break;
port = hp_sibling(port);
}
if (port != NULL)
*os = AP_OSTATE_CONFIGURED;
else
*os = AP_OSTATE_UNCONFIGURED;
return (CFGA_OK);
}
/*
* Transitional Diagram:
*
* empty unconfigure
* (remove) ^| (physically insert card)
* |V
* disconnect configure
* "-c DISCONNECT" ^| "-c CONNECT"
* |V "-c CONFIGURE"
* connect unconfigure -> connect configure
* <-
* "-c UNCONFIGURE"
*
*/
/*ARGSUSED*/
cfga_err_t
cfga_change_state(cfga_cmd_t state_change_cmd, const char *ap_id,
const char *options, struct cfga_confirm *confp,
struct cfga_msg *msgp, char **errstring, cfga_flags_t flags)
{
int rv, state, new_state;
uint_t hpflags = 0;
hp_node_t node;
hp_node_t results = NULL;
if ((rv = check_options(options)) != CFGA_OK) {
return (rv);
}
if (errstring != NULL)
*errstring = NULL;
rv = CFGA_OK;
DBG(1, ("cfga_change_state:(%s)\n", ap_id));
rv = physpath2node(ap_id, errstring, &node);
if (rv != CFGA_OK)
return (rv);
/*
* Check for the FORCE flag. It is only used
* for DISCONNECT or UNCONFIGURE state changes.
*/
if (flags & CFGA_FLAG_FORCE)
hpflags |= HPFORCE;
state = hp_state(node);
/*
* Which state should we drive to ?
*/
if ((state_change_cmd != CFGA_CMD_LOAD) &&
(state_change_cmd != CFGA_CMD_UNLOAD)) {
if (cfga_target_state(state_change_cmd,
&new_state) != CFGA_OK) {
hp_fini(node);
return (CFGA_ERROR);
}
}
DBG(1, ("cfga_change_state: state is %d\n", state));
switch (state_change_cmd) {
case CFGA_CMD_CONNECT:
DBG(1, ("connect\n"));
if (state == DDI_HP_CN_STATE_EMPTY) {
cfga_err(errstring, ERR_NO_DEVICE);
rv = CFGA_INVAL;
} else if (state == DDI_HP_CN_STATE_PRESENT) {
/* Connect the slot */
if (hp_set_state(node, 0, new_state, NULL,
&results) != 0) {
rv = CFGA_ERROR;
cfga_err(errstring, CMD_SLOT_CONNECT);
}
}
break;
case CFGA_CMD_DISCONNECT:
DBG(1, ("disconnect\n"));
if (state == DDI_HP_CN_STATE_EMPTY) {
cfga_err(errstring, ERR_NO_DEVICE);
rv = CFGA_INVAL;
} else if (state > DDI_HP_CN_STATE_PRESENT) {
/* Disconnect the slot */
rv = hp_set_state(node, hpflags, new_state, NULL,
&results);
if (rv != 0) {
if (rv == EBUSY)
rv = CFGA_BUSY;
else
rv = CFGA_ERROR;
if (results) {
pci_rcm_info_table(results, errstring);
hp_fini(results);
} else {
cfga_err(errstring,
CMD_SLOT_DISCONNECT);
}
}
}
break;
case CFGA_CMD_CONFIGURE:
/*
* for multi-func device we allow multiple
* configure on the same slot because one
* func can be configured and other one won't
*/
DBG(1, ("configure\n"));
if (state == DDI_HP_CN_STATE_EMPTY) {
cfga_err(errstring, ERR_NO_DEVICE);
rv = CFGA_INVAL;
} else if (hp_set_state(node, 0, new_state, NULL,
&results) != 0) {
rv = CFGA_ERROR;
cfga_err(errstring, CMD_SLOT_CONFIGURE);
}
break;
case CFGA_CMD_UNCONFIGURE:
DBG(1, ("unconfigure\n"));
if (state == DDI_HP_CN_STATE_EMPTY) {
cfga_err(errstring, ERR_NO_DEVICE);
rv = CFGA_INVAL;
} else if (state >= DDI_HP_CN_STATE_ENABLED) {
rv = hp_set_state(node, hpflags, new_state, NULL,
&results);
if (rv != 0) {
if (rv == EBUSY)
rv = CFGA_BUSY;
else
rv = CFGA_ERROR;
if (results) {
pci_rcm_info_table(results, errstring);
hp_fini(results);
} else {
cfga_err(errstring,
CMD_SLOT_UNCONFIGURE);
}
}
}
DBG(1, ("unconfigure rv:(%i)\n", rv));
break;
case CFGA_CMD_LOAD:
/* do nothing, just produce error msg as is */
if (state < DDI_HP_CN_STATE_POWERED) {
rv = CFGA_ERROR;
cfga_err(errstring, CMD_SLOT_INSERT);
} else {
cfga_err(errstring, ERR_AP_ERR);
rv = CFGA_INVAL;
}
break;
case CFGA_CMD_UNLOAD:
/* do nothing, just produce error msg as is */
if (state < DDI_HP_CN_STATE_POWERED) {
rv = CFGA_ERROR;
cfga_err(errstring, CMD_SLOT_REMOVE);
} else {
cfga_err(errstring, ERR_AP_ERR);
rv = CFGA_INVAL;
}
break;
default:
rv = CFGA_OPNOTSUPP;
break;
}
hp_fini(node);
return (rv);
}
char *
get_val_from_result(char *result)
{
char *tmp;
tmp = strchr(result, '=');
if (tmp == NULL)
return (NULL);
tmp++;
return (tmp);
}
static cfga_err_t
prt_led_mode(const char *ap_id, int repeat, char **errstring,
struct cfga_msg *msgp)
{
pciehpc_led_t led;
hp_node_t node;
char *buff;
char *cp, line[MAXLINE];
char *tmp;
char *format;
char *result;
int i, n, rv;
int len = MAXLINE;
pciehpc_led_t states[] = {
PCIEHPC_POWER_LED,
PCIEHPC_FAULT_LED,
PCIEHPC_ATTN_LED,
PCIEHPC_ACTIVE_LED
};
DBG(1, ("prt_led_mod function\n"));
if (!repeat)
cfga_msg(msgp, "Ap_Id\t\t\tLed");
rv = physpath2node(ap_id, errstring, &node);
if (rv != CFGA_OK)
return (rv);
if ((buff = malloc(MAXPATHLEN)) == NULL) {
hp_fini(node);
cfga_err(errstring, ERR_NOMEM);
return (CFGA_ERROR);
}
(void) memset(buff, 0, MAXPATHLEN);
if (fix_ap_name(buff, ap_id, hp_name(node),
errstring) != CFGA_OK) {
hp_fini(node);
free(buff);
return (CFGA_ERROR);
}
cp = line;
(void) snprintf(cp, len, "%s\t\t", buff);
len -= strlen(cp);
cp += strlen(cp);
free(buff);
n = sizeof (states)/sizeof (pciehpc_led_t);
for (i = 0; i < n; i++) {
led = states[i];
format = (i == n - 1) ? "%s=%s" : "%s=%s,";
if (hp_get_private(node, led_strs2[led], &result) != 0) {
(void) snprintf(cp, len, format,
led_strs[led], cfga_strs[UNKNOWN]);
len -= strlen(cp);
cp += strlen(cp);
DBG(1, ("%s:%s\n", led_strs[led], cfga_strs[UNKNOWN]));
} else {
/*
* hp_get_private() will return back things like
* "led_fault=off", transform it to cfgadm desired
* format.
*/
tmp = get_val_from_result(result);
if (tmp == NULL) {
free(result);
hp_fini(node);
return (CFGA_ERROR);
}
(void) snprintf(cp, len, format,
led_strs[led], tmp);
len -= strlen(cp);
cp += strlen(cp);
DBG(1, ("%s:%s\n", led_strs[led], tmp));
free(result);
}
}
cfga_msg(msgp, line); /* print the message */
hp_fini(node);
return (CFGA_OK);
}
/*ARGSUSED*/
cfga_err_t
cfga_private_func(const char *function, const char *ap_id,
const char *options, struct cfga_confirm *confp,
struct cfga_msg *msgp, char **errstring, cfga_flags_t flags)
{
char *str;
int len, i = 0, repeat = 0;
char buf[MAXNAMELEN];
char ptr;
cfga_err_t rv;
char *led, *mode;
hp_node_t node;
char *result;
DBG(1, ("cfgadm_private_func: ap_id:%s\n", ap_id));
DBG(2, (" options: %s\n", (options == NULL)?"null":options));
DBG(2, (" confp: %x\n", confp));
DBG(2, (" cfga_msg: %x\n", cfga_msg));
DBG(2, (" flag: %d\n", flags));
if ((rv = check_options(options)) != CFGA_OK) {
return (rv);
}
if (private_check == confp)
repeat = 1;
else
private_check = (void*)confp;
for (i = 0, str = func_strs[i], len = strlen(str);
func_strs[i] != NULL; i++) {
str = func_strs[i];
len = strlen(str);
if (strncmp(function, str, len) == 0)
break;
}
switch (i) {
case ENABLE_SLOT:
case DISABLE_SLOT:
/* pass through */
case ENABLE_AUTOCNF:
case DISABLE_AUTOCNF:
/* no action needed */
return (CFGA_OK);
break;
case LED:
/* set mode */
ptr = function[len++];
if (ptr == '=') {
str = (char *)function;
for (str = (str+len++), i = 0; *str != ',';
i++, str++) {
if (i == (MAXNAMELEN - 1))
break;
buf[i] = *str;
DBG_F(2, (stdout, "%c\n", buf[i]));
}
buf[i] = '\0'; str++;
DBG(2, ("buf = %s\n", buf));
/* ACTIVE=3,ATTN=2,POWER=1,FAULT=0 */
if (strcmp(buf, led_strs[POWER]) == 0)
led = PCIEHPC_PROP_LED_POWER;
else if (strcmp(buf, led_strs[FAULT]) == 0)
led = PCIEHPC_PROP_LED_FAULT;
else if (strcmp(buf, led_strs[ATTN]) == 0)
led = PCIEHPC_PROP_LED_ATTN;
else if (strcmp(buf, led_strs[ACTIVE]) == 0)
led = PCIEHPC_PROP_LED_ACTIVE;
else return (CFGA_INVAL);
len = strlen(func_strs[MODE]);
if ((strncmp(str, func_strs[MODE], len) == 0) &&
(*(str+(len)) == '=')) {
for (str = (str+(++len)), i = 0;
*str != NULL; i++, str++) {
buf[i] = *str;
}
}
buf[i] = '\0';
DBG(2, ("buf_mode= %s\n", buf));
/* ON = 1, OFF = 0 */
if (strcmp(buf, mode_strs[ON]) == 0)
mode = PCIEHPC_PROP_VALUE_ON;
else if (strcmp(buf, mode_strs[OFF]) == 0)
mode = PCIEHPC_PROP_VALUE_OFF;
else if (strcmp(buf, mode_strs[BLINK]) == 0)
mode = PCIEHPC_PROP_VALUE_BLINK;
else return (CFGA_INVAL);
/* sendin */
(void) memset(buf, 0, sizeof (buf));
(void) snprintf(buf, sizeof (buf), "%s=%s",
led, mode);
buf[MAXNAMELEN - 1] = '\0';
break;
} else if (ptr == '\0') {
/* print mode */
DBG(1, ("Print mode\n"));
return (prt_led_mode(ap_id, repeat, errstring,
msgp));
}
default:
DBG(1, ("default\n"));
errno = EINVAL;
return (CFGA_INVAL);
}
rv = physpath2node(ap_id, errstring, &node);
if (rv != CFGA_OK)
return (rv);
if (hp_set_private(node, buf, &result) != 0) {
hp_fini(node);
return (CFGA_ERROR);
}
hp_fini(node);
return (CFGA_OK);
}
/*ARGSUSED*/
cfga_err_t cfga_test(const char *ap_id, const char *options,
struct cfga_msg *msgp, char **errstring, cfga_flags_t flags)
{
cfga_err_t rv;
if (errstring != NULL)
*errstring = NULL;
if ((rv = check_options(options)) != CFGA_OK) {
return (rv);
}
DBG(1, ("cfga_test:(%s)\n", ap_id));
/* will need to implement pci CTRL command */
return (CFGA_NOTSUPP);
}
/*
* The slot-names property describes the external labeling of add-in slots.
* This property is an encoded array, an integer followed by a list of
* strings. The return value from di_prop_lookup_ints for slot-names is -1.
* The expected return value should be the number of elements.
* Di_prop_decode_common does not decode encoded data from software,
* such as the solaris device tree, unlike from the prom.
* Di_prop_decode_common takes the size of the encoded data and mods
* it with the size of int. The size of the encoded data for slot-names is 9
* and the size of int is 4, yielding a non zero result. A value of -1 is used
* to indicate that the number of elements can not be determined.
* Di_prop_decode_common can be modified to decode encoded data from the solaris
* device tree.
*/
static int
fixup_slotname(int rval, int *intp, struct searcharg *slotarg)
{
if ((slotarg->slt_name_src == PROM_SLT_NAME) && (rval == -1)) {
return (DI_WALK_TERMINATE);
} else {
int i;
char *tmptr = (char *)(intp+1);
DBG(1, ("slot-bitmask: %x \n", *intp));
rval = (rval -1) * 4;
for (i = 0; i <= slotarg->minor; i++) {
DBG(2, ("curr slot-name: %s \n", tmptr));
if (i >= MAXDEVS)
return (DI_WALK_TERMINATE);
if ((*intp >> i) & 1) {
/* assign tmptr */
DBG(2, ("slot-name: %s \n", tmptr));
if (i == slotarg->minor)
(void) strcpy(slotarg->slotnames[i],
tmptr);
/* wind tmptr to next \0 */
while (*tmptr != '\0') {
tmptr++;
}
tmptr++;
} else {
/* point at unknown string */
if (i == slotarg->minor)
(void) strcpy(slotarg->slotnames[i],
"unknown");
}
}
}
return (DI_WALK_TERMINATE);
}
static int
find_slotname(di_node_t din, di_minor_t dim, void *arg)
{
struct searcharg *slotarg = (struct searcharg *)arg;
di_prom_handle_t ph = (di_prom_handle_t)slotarg->promp;
di_prom_prop_t prom_prop;
di_prop_t solaris_prop;
int *intp, rval;
char *devname;
char fulldevname[MAXNAMELEN];
slotarg->minor = dim->dev_minor % 256;
DBG(2, ("minor number:(%i)\n", slotarg->minor));
DBG(2, ("hot plug slots found so far:(%i)\n", 0));
if ((devname = di_devfs_path(din)) != NULL) {
(void) snprintf(fulldevname, MAXNAMELEN,
"/devices%s:%s", devname, di_minor_name(dim));
di_devfs_path_free(devname);
}
if (strcmp(fulldevname, slotarg->devpath) == 0) {
/*
* Check the Solaris device tree first
* in the case of a DR operation
*/
solaris_prop = di_prop_hw_next(din, DI_PROP_NIL);
while (solaris_prop != DI_PROP_NIL) {
if (strcmp("slot-names", di_prop_name(solaris_prop))
== 0) {
rval = di_prop_lookup_ints(DDI_DEV_T_ANY,
din, di_prop_name(solaris_prop), &intp);
slotarg->slt_name_src = SOLARIS_SLT_NAME;
return (fixup_slotname(rval, intp, slotarg));
}
solaris_prop = di_prop_hw_next(din, solaris_prop);
}
/*
* Check the prom device tree which is populated at boot.
* If this fails, give up and set the slot name to null.
*/
prom_prop = di_prom_prop_next(ph, din, DI_PROM_PROP_NIL);
while (prom_prop != DI_PROM_PROP_NIL) {
if (strcmp("slot-names", di_prom_prop_name(prom_prop))
== 0) {
rval = di_prom_prop_lookup_ints(ph,
din, di_prom_prop_name(prom_prop), &intp);
slotarg->slt_name_src = PROM_SLT_NAME;
return (fixup_slotname(rval, intp, slotarg));
}
prom_prop = di_prom_prop_next(ph, din, prom_prop);
}
*slotarg->slotnames[slotarg->minor] = '\0';
return (DI_WALK_TERMINATE);
} else
return (DI_WALK_CONTINUE);
}
static int
find_physical_slot_names(const char *devcomp, struct searcharg *slotarg)
{
di_node_t root_node;
DBG(1, ("find_physical_slot_names\n"));
if ((root_node = di_init("/", DINFOCPYALL|DINFOPATH))
== DI_NODE_NIL) {
DBG(1, ("di_init() failed\n"));
return (-1);
}
slotarg->devpath = (char *)devcomp;
if ((slotarg->promp = di_prom_init()) == DI_PROM_HANDLE_NIL) {
DBG(1, ("di_prom_init() failed\n"));
di_fini(root_node);
return (-1);
}
(void) di_walk_minor(root_node, "ddi_ctl:attachment_point:pci",
0, (void *)slotarg, find_slotname);
di_prom_fini(slotarg->promp);
di_fini(root_node);
if (slotarg->slotnames[0] != NULL)
return (0);
else
return (-1);
}
static void
get_type(const char *boardtype, const char *cardtype, char *buf)
{
/* for type string assembly in get_type() */
#define TPCT(s) (void) strlcat(buf, (s), CFGA_TYPE_LEN)
if (strcmp(cardtype, "unknown") == 0) {
TPCT("unknown");
return;
}
TPCT(cardtype);
TPCT("/");
if (strcmp(boardtype, PCIEHPC_PROP_VALUE_PCIHOTPLUG) == 0)
TPCT(board_strs[PCIEHPC_BOARD_PCI_HOTPLUG]);
else
TPCT(board_strs[PCIEHPC_BOARD_UNKNOWN]);
}
/*
* call-back function for di_devlink_walk
* if the link lives in /dev/cfg copy its name
*/
static int
found_devlink(di_devlink_t link, void *ap_log_id)
{
if (strncmp("/dev/cfg/", di_devlink_path(link), 9) == 0) {
/* copy everything but /dev/cfg/ */
(void) strcpy((char *)ap_log_id, di_devlink_path(link) + 9);
DBG(1, ("found_devlink: %s\n", (char *)ap_log_id));
return (DI_WALK_TERMINATE);
}
return (DI_WALK_CONTINUE);
}
/*
* Walk throught the cached /dev link tree looking for links to the ap
* if none are found return an error
*/
static cfga_err_t
check_devlinks(char *ap_log_id, const char *ap_id)
{
di_devlink_handle_t hdl;
DBG(1, ("check_devlinks: %s\n", ap_id));
hdl = di_devlink_init(NULL, 0);
if (strncmp("/devices/", ap_id, 9) == 0) {
/* ap_id is a valid minor_path with /devices prepended */
(void) di_devlink_walk(hdl, NULL, ap_id + 8, DI_PRIMARY_LINK,
(void *)ap_log_id, found_devlink);
} else {
DBG(1, ("check_devlinks: invalid ap_id: %s\n", ap_id));
return (CFGA_ERROR);
}
(void) di_devlink_fini(&hdl);
if (ap_log_id[0] != '\0')
return (CFGA_OK);
else
return (CFGA_ERROR);
}
/*
* most of this is needed to compensate for
* differences between various platforms
*/
static cfga_err_t
fix_ap_name(char *ap_log_id, const char *ap_id, char *slot_name,
char **errstring)
{
char *buf;
char *tmp;
char *ptr;
di_node_t ap_node;
ap_log_id[0] = '\0';
if (check_devlinks(ap_log_id, ap_id) == CFGA_OK)
return (CFGA_OK);
DBG(1, ("fix_ap_name: %s\n", ap_id));
if ((buf = malloc(strlen(ap_id) + 1)) == NULL) {
cfga_err(errstring, ERR_NOMEM);
DBG(1, ("malloc failed\n"));
return (CFGA_ERROR);
}
(void) strcpy(buf, ap_id);
tmp = buf + sizeof ("/devices") - 1;
ptr = strchr(tmp, ':');
ptr[0] = '\0';
DBG(1, ("fix_ap_name: %s\n", tmp));
ap_node = di_init(tmp, DINFOMINOR);
if (ap_node == DI_NODE_NIL) {
cfga_err(errstring, ERR_AP_INVAL);
DBG(1, ("fix_ap_name: failed to snapshot node\n"));
return (CFGA_ERROR);
}
(void) snprintf(ap_log_id, strlen(ap_id) + 1, "%s%i:%s",
di_driver_name(ap_node), di_instance(ap_node), slot_name);
DBG(1, ("fix_ap_name: %s\n", ap_log_id));
di_fini(ap_node);
free(buf);
return (CFGA_OK);
}
static int
findlink_cb(di_devlink_t devlink, void *arg)
{
(*(char **)arg) = strdup(di_devlink_path(devlink));
return (DI_WALK_TERMINATE);
}
/*
* returns an allocated string containing the full path to the devlink for
* <ap_phys_id> in the devlink database; we expect only one devlink per
* <ap_phys_id> so we return the first encountered
*/
static char *
findlink(char *ap_phys_id)
{
di_devlink_handle_t hdl;
char *path = NULL;
hdl = di_devlink_init(NULL, 0);
if (strncmp("/devices/", ap_phys_id, 9) == 0)
ap_phys_id += 8;
(void) di_devlink_walk(hdl, "^cfg/.+$", ap_phys_id, DI_PRIMARY_LINK,
(void *)&path, findlink_cb);
(void) di_devlink_fini(&hdl);
return (path);
}
/*
* returns CFGA_OK if it can succesfully retrieve the devlink info associated
* with devlink for <ap_phys_id> which will be returned through <ap_info>
*/
cfga_err_t
get_dli(char *dlpath, char *ap_info, int ap_info_sz)
{
int fd;
fd = di_dli_openr(dlpath);
if (fd < 0)
return (CFGA_ERROR);
(void) read(fd, ap_info, ap_info_sz);
ap_info[ap_info_sz - 1] = '\0';
di_dli_close(fd);
return (CFGA_OK);
}
static cfga_err_t
cfga_get_condition(hp_node_t node, ap_condition_t *cond)
{
char *condition;
/* "condition" bus specific commands */
if (hp_get_private(node, PCIEHPC_PROP_SLOT_CONDITION,
&condition) != 0) {
*cond = AP_COND_UNKNOWN;
return (CFGA_ERROR);
}
condition = get_val_from_result(condition);
if (strcmp(condition, PCIEHPC_PROP_COND_OK) == 0)
*cond = AP_COND_OK;
else if (strcmp(condition, PCIEHPC_PROP_COND_FAILING) == 0)
*cond = AP_COND_FAILING;
else if (strcmp(condition, PCIEHPC_PROP_COND_FAILED) == 0)
*cond = AP_COND_FAILED;
else if (strcmp(condition, PCIEHPC_PROP_COND_UNUSABLE) == 0)
*cond = AP_COND_UNUSABLE;
else if (strcmp(condition, PCIEHPC_PROP_COND_UNKNOWN) == 0)
*cond = AP_COND_UNKNOWN;
else
return (CFGA_ERROR);
return (CFGA_OK);
}
/*ARGSUSED*/
cfga_err_t
cfga_list_ext(const char *ap_id, cfga_list_data_t **cs,
int *nlist, const char *options, const char *listopts, char **errstring,
cfga_flags_t flags)
{
char *boardtype;
char *cardtype;
struct searcharg slotname_arg;
int rv = CFGA_OK;
char *dlpath = NULL;
hp_node_t node;
ap_rstate_t rs;
ap_ostate_t os;
ap_condition_t cond;
if ((rv = check_options(options)) != CFGA_OK) {
return (rv);
}
if (errstring != NULL)
*errstring = NULL;
DBG(1, ("cfga_list_ext:(%s)\n", ap_id));
if (cs == NULL || nlist == NULL) {
rv = CFGA_ERROR;
return (rv);
}
*nlist = 1;
if ((*cs = malloc(sizeof (cfga_list_data_t))) == NULL) {
cfga_err(errstring, ERR_NOMEM);
DBG(1, ("malloc failed\n"));
rv = CFGA_ERROR;
return (rv);
}
(void) memset(*cs, 0, sizeof (cfga_list_data_t));
rv = physpath2node(ap_id, errstring, &node);
if (rv != CFGA_OK) {
DBG(1, ("physpath2node failed\n"));
return (rv);
}
if (cfga_get_state(node, &rs, &os) != CFGA_OK) {
DBG(1, ("cfga_get_state failed\n"));
hp_fini(node);
return (CFGA_ERROR);
}
switch (rs) {
case AP_RSTATE_EMPTY:
(*cs)->ap_r_state = CFGA_STAT_EMPTY;
DBG(2, ("ap_rstate = CFGA_STAT_EMPTY\n"));
break;
case AP_RSTATE_DISCONNECTED:
(*cs)->ap_r_state = CFGA_STAT_DISCONNECTED;
DBG(2, ("ap_rstate = CFGA_STAT_DISCONNECTED\n"));
break;
case AP_RSTATE_CONNECTED:
(*cs)->ap_r_state = CFGA_STAT_CONNECTED;
DBG(2, ("ap_rstate = CFGA_STAT_CONNECTED\n"));
break;
default:
cfga_err(errstring, CMD_GETSTAT);
rv = CFGA_ERROR;
hp_fini(node);
return (rv);
}
switch (os) {
case AP_OSTATE_CONFIGURED:
(*cs)->ap_o_state = CFGA_STAT_CONFIGURED;
DBG(2, ("ap_ostate = CFGA_STAT_CONFIGURED\n"));
break;
case AP_OSTATE_UNCONFIGURED:
(*cs)->ap_o_state = CFGA_STAT_UNCONFIGURED;
DBG(2, ("ap_ostate = CFGA_STAT_UNCONFIGURED\n"));
break;
default:
cfga_err(errstring, CMD_GETSTAT);
rv = CFGA_ERROR;
hp_fini(node);
return (rv);
}
(void) cfga_get_condition(node, &cond);
switch (cond) {
case AP_COND_OK:
(*cs)->ap_cond = CFGA_COND_OK;
DBG(2, ("ap_cond = CFGA_COND_OK\n"));
break;
case AP_COND_FAILING:
(*cs)->ap_cond = CFGA_COND_FAILING;
DBG(2, ("ap_cond = CFGA_COND_FAILING\n"));
break;
case AP_COND_FAILED:
(*cs)->ap_cond = CFGA_COND_FAILED;
DBG(2, ("ap_cond = CFGA_COND_FAILED\n"));
break;
case AP_COND_UNUSABLE:
(*cs)->ap_cond = CFGA_COND_UNUSABLE;
DBG(2, ("ap_cond = CFGA_COND_UNUSABLE\n"));
break;
case AP_COND_UNKNOWN:
(*cs)->ap_cond = CFGA_COND_UNKNOWN;
DBG(2, ("ap_cond = CFGA_COND_UNKNOW\n"));
break;
default:
cfga_err(errstring, CMD_GETSTAT);
rv = CFGA_ERROR;
hp_fini(node);
return (rv);
}
/*
* We're not busy since the entrance into the kernel has been
* sync'ed via libhotplug.
*/
(*cs)->ap_busy = 0;
/* last change */
(*cs)->ap_status_time = hp_last_change(node);
/* board type */
if (hp_get_private(node, PCIEHPC_PROP_BOARD_TYPE, &boardtype) != 0)
boardtype = PCIEHPC_PROP_VALUE_UNKNOWN;
else
boardtype = get_val_from_result(boardtype);
/* card type */
if (hp_get_private(node, PCIEHPC_PROP_CARD_TYPE, &cardtype) != 0)
cardtype = PCIEHPC_PROP_VALUE_UNKNOWN;
else
cardtype = get_val_from_result(cardtype);
/* logical ap_id */
rv = fix_ap_name((*cs)->ap_log_id, ap_id,
hp_name(node), errstring);
DBG(1, ("logical id: %s\n", (*cs)->ap_log_id));
/* physical ap_id */
(void) strcpy((*cs)->ap_phys_id, ap_id); /* physical path of AP */
/* information */
dlpath = findlink((*cs)->ap_phys_id);
if (dlpath != NULL) {
if (get_dli(dlpath, (*cs)->ap_info,
sizeof ((*cs)->ap_info)) != CFGA_OK)
(*cs)->ap_info[0] = '\0';
free(dlpath);
}
if ((*cs)->ap_log_id[0] == '\0')
(void) strcpy((*cs)->ap_log_id, hp_name(node));
if ((*cs)->ap_info[0] == '\0') {
/* slot_names of bus node */
if (find_physical_slot_names(ap_id, &slotname_arg) != -1)
(void) strcpy((*cs)->ap_info,
slotname_arg.slotnames[slotname_arg.minor]);
}
/* class_code/subclass/boardtype */
get_type(boardtype, cardtype, (*cs)->ap_type);
DBG(1, ("cfga_list_ext return success\n"));
rv = CFGA_OK;
hp_fini(node);
return (rv);
}
/*
* This routine prints a single line of help message
*/
static void
cfga_msg(struct cfga_msg *msgp, const char *str)
{
DBG(2, ("<%s>", str));
if (msgp == NULL || msgp->message_routine == NULL)
return;
(*msgp->message_routine)(msgp->appdata_ptr, str);
(*msgp->message_routine)(msgp->appdata_ptr, "\n");
}
static cfga_err_t
check_options(const char *options)
{
struct cfga_msg *msgp = NULL;
if (options) {
cfga_msg(msgp, dgettext(TEXT_DOMAIN, cfga_strs[HELP_UNKNOWN]));
cfga_msg(msgp, options);
return (CFGA_INVAL);
}
return (CFGA_OK);
}
/*ARGSUSED*/
cfga_err_t
cfga_help(struct cfga_msg *msgp, const char *options, cfga_flags_t flags)
{
if (options) {
cfga_msg(msgp, dgettext(TEXT_DOMAIN, cfga_strs[HELP_UNKNOWN]));
cfga_msg(msgp, options);
}
DBG(1, ("cfga_help\n"));
cfga_msg(msgp, dgettext(TEXT_DOMAIN, cfga_strs[HELP_HEADER]));
cfga_msg(msgp, cfga_strs[HELP_CONFIG]);
cfga_msg(msgp, cfga_strs[HELP_LED_CNTRL]);
return (CFGA_OK);
}
/*
* cfga_err() accepts a command or error code, and converts it to a string.
* cfga_err() calls gettext() to internationalize proper messages.
*/
static void
cfga_err(char **errstring, int code)
{
int i;
int len = 0;
char *str;
char *strs[3];
/* If errstring is null, do nothing. */
if (errstring == NULL)
return;
/*
* Convert the indicated error code to a string.
*
* Command failures become "<command> failed", without translating
* the command name. Other errors use a full translation of one of
* the defined error strings.
*/
switch (code) {
case CMD_ACQUIRE:
case CMD_GETSTAT:
case CMD_LIST:
case CMD_SLOT_CONNECT:
case CMD_SLOT_DISCONNECT:
case CMD_SLOT_CONFIGURE:
case CMD_SLOT_UNCONFIGURE:
case CMD_SLOT_INSERT:
case CMD_SLOT_REMOVE:
DBG(2, ("<%s> %s\n", cfga_errstrs(code), cfga_strs[FAILED]));
strs[0] = cfga_errstrs(code);
strs[1] = dgettext(TEXT_DOMAIN, cfga_strs[FAILED]);
strs[2] = NULL;
break;
case ERR_NOMEM:
case ERR_AP_INVAL:
case ERR_AP_ERR:
case ERR_NO_DEVICE:
DBG(2, ("<%s>\n", cfga_errstrs[code]));
strs[0] = dgettext(TEXT_DOMAIN, cfga_errstrs[code]);
strs[1] = NULL;
break;
default:
/* Invalid command/error code */
return;
}
/* Compute the length of the error message */
for (i = 0; strs[i] != NULL; i++)
len += strlen(strs[i]);
/* Allocate memory for the error message */
if ((str = calloc(len + 1, 1)) == NULL)
return;
/* Concatenate the strings into the error message */
for (i = 0; strs[i] != NULL; i++)
(void) strlcat(str, strs[i], len + 1);
*errstring = str;
DBG(2, ("%s\n", *errstring));
}
/*
* cfga_ap_id_cmp -- use default_ap_id_cmp() in libcfgadm
*/