#!/usr/bin/sh
#
# dtruss - print process system call time details.
# Written using DTrace (Solaris 10 3/05).
#
# $Id: dtruss 9 2007-08-07 10:21:07Z brendan $
#
# USAGE: dtruss [-acdeflhoLs] [-t syscall] { -p PID | -n name | command }
#
# -p PID # examine this PID
# -n name # examine this process name
# -t syscall # examine this syscall only
# -a # print all details
# -c # print system call counts
# -d # print relative timestamps (us)
# -e # print elapsed times (us)
# -f # follow children as they are forked
# -l # force printing of pid/lwpid per line
# -o # print on cpu times (us)
# -s # print stack backtraces
# -L # don't print pid/lwpid per line
# -b bufsize # dynamic variable buf size (default is "4m")
# eg,
# dtruss df -h # run and examine the "df -h" command
# dtruss -p 1871 # examine PID 1871
# dtruss -n tar # examine all processes called "tar"
# dtruss -f test.sh # run test.sh and follow children
#
# See the man page dtruss(1M) for further details.
#
# SEE ALSO: procsystime # DTraceToolkit
# dapptrace # DTraceToolkit
# truss
#
# COPYRIGHT: Copyright (c) 2005, 2006, 2007 Brendan Gregg.
#
# CDDL HEADER START
#
# The contents of this file are subject to the terms of the
# Common Development and Distribution License, Version 1.0 only
# (the "License"). You may not use this file except in compliance
# with the License.
#
# You can obtain a copy of the license at Docs/cddl1.txt
# or http://www.opensolaris.org/os/licensing.
# See the License for the specific language governing permissions
# and limitations under the License.
#
# CDDL HEADER END
#
# TODO: Track signals, more output formatting.
#
# 29-Apr-2005 Brendan Gregg Created this.
# 09-May-2005 " " Fixed evaltime (thanks Adam L.)
# 16-May-2005 " " Added -t syscall tracing.
# 17-Jun-2005 " " Added -s stack backtraces.
# 17-Jun-2005 " " Last update.
# 29-Jun-2007 " " Used progenyof() (thanks Aaron Gutman).
# 06-Aug-2007 " " Various updates.
#
##############################
# --- Process Arguments ---
#
### Default variables
opt_pid=0; opt_name=0; pid=0; pname="."; opt_elapsed=0; opt_cpu=0
opt_counts=0; opt_relative=0; opt_printid=0; opt_follow=0; opt_command=0
command=""; opt_buf=0; buf="4m"; opt_trace=0; trace="."; opt_stack=0
### Process options
while getopts ab:cdefhln:op:st:L name
do
case $name in
b) opt_buf=1; buf=$OPTARG ;;
p) opt_pid=1; pid=$OPTARG ;;
n) opt_name=1; pname=$OPTARG ;;
t) opt_trace=1; trace=$OPTARG ;;
a) opt_counts=1; opt_relative=1; opt_elapsed=1; opt_follow=1
opt_printid=1; opt_cpu=1 ;;
c) opt_counts=1 ;;
d) opt_relative=1 ;;
e) opt_elapsed=1 ;;
f) opt_follow=1 ;;
l) opt_printid=1 ;;
o) opt_cpu=1 ;;
L) opt_printid=-1 ;;
s) opt_stack=-1 ;;
h|?) cat <<-END >&2
USAGE: dtruss [-acdefholLs] [-t syscall] { -p PID | -n name | command }
-p PID # examine this PID
-n name # examine this process name
-t syscall # examine this syscall only
-a # print all details
-c # print syscall counts
-d # print relative times (us)
-e # print elapsed times (us)
-f # follow children (-p or cmd only)
-l # force printing pid/lwpid
-o # print on cpu times
-s # print stack backtraces
-L # don't print pid/lwpid
-b bufsize # dynamic variable buf size
eg,
dtruss df -h # run and examine "df -h"
dtruss -p 1871 # examine PID 1871
dtruss -n tar # examine all processes called "tar"
dtruss -f test.sh # run test.sh and follow children
END
exit 1
esac
done
shift `expr $OPTIND - 1`
### Option logic
if [ $opt_pid -eq 0 -a $opt_name -eq 0 ]; then
opt_command=1
if [ "$*" = "" ]; then
$0 -h
exit
fi
command="$*" # yes, I meant $*!
fi
if [ $opt_follow -eq 1 -o $opt_name -eq 1 ]; then
if [ $opt_printid -ne -1 ]; then
opt_printid=1
else
opt_printid=0
fi
fi
if [ $opt_follow -eq 1 -a $opt_name -eq 1 ]; then
echo "ERROR: -f option cannot be used with -n (use -p or cmd instead)."
exit 1
fi
### Option translation
if [ "$trace" = "exec" ]; then trace="exece"; fi
if [ "$trace" = "fork" ]; then trace="forksys"; fi
if [ "$trace" = "time" ]; then trace="gtime"; fi
if [ "$trace" = "exit" ]; then trace="rexit"; fi
#################################
# --- Main Program, DTrace ---
#
### Define D Script
dtrace='
#pragma D option quiet
#pragma D option switchrate=10
/*
* Command line arguments
*/
inline int OPT_command = '$opt_command';
inline int OPT_follow = '$opt_follow';
inline int OPT_printid = '$opt_printid';
inline int OPT_relative = '$opt_relative';
inline int OPT_elapsed = '$opt_elapsed';
inline int OPT_cpu = '$opt_cpu';
inline int OPT_counts = '$opt_counts';
inline int OPT_pid = '$opt_pid';
inline int OPT_name = '$opt_name';
inline int OPT_trace = '$opt_trace';
inline int OPT_stack = '$opt_stack';
inline string NAME = "'$pname'";
inline string TRACE = "'$trace'";
dtrace:::BEGIN
{
/* print header */
OPT_printid ? printf("%-9s ", "PID/LWP") : 1;
OPT_relative ? printf("%8s ", "RELATIVE") : 1;
OPT_elapsed ? printf("%7s ", "ELAPSD") : 1;
OPT_cpu ? printf("%6s ", "CPU") : 1;
printf("SYSCALL(args) \t\t = return\n");
}
/*
* Save syscall entry info
*/
syscall:::entry
/((OPT_command || OPT_pid) && pid == $target) ||
(OPT_name && execname == NAME) ||
(OPT_follow && progenyof($target))/
{
/* set start details */
self->start = timestamp;
self->vstart = vtimestamp;
self->arg0 = arg0;
self->arg1 = arg1;
self->arg2 = arg2;
self->arg3 = arg3;
/* count occurances */
OPT_counts == 1 ? @Counts[probefunc] = count() : 1;
}
/*
* Follow children
* (vfork() is only executed by a process running in an S10-branded zone.)
*/
syscall::forksys:return,
syscall::vfork:return
/(OPT_follow && progenyof($target)) && (!OPT_trace || (TRACE == probefunc))/
{
/* print output */
self->code = errno == 0 ? "" : "Err#";
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d: ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d: ", 0) : 1;
OPT_cpu ? printf("%6d ", 0) : 1;
printf("%s(0x%X, 0x%X, 0x%X)\t\t = %d %s%d\n", probefunc,
self->arg0, self->arg1, self->arg2, (int)arg0, self->code,
(int)errno);
}
/*
* Check for syscall tracing
*/
syscall:::entry
/OPT_trace && probefunc != TRACE/
{
/* drop info */
self->start = 0;
self->vstart = 0;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/*
* Print return data
*/
/*
* The following code is written in an intentionally repetative way.
* The first versions had no code redundancies, but performed badly during
* benchmarking. The priority here is speed, not cleverness. I know there
* are many obvious shortcuts to this code, I have tried them. This style has
* shown in benchmarks to be the fastest (fewest probes fired, fewest actions).
*/
/* print 3 args, return as hex */
syscall::lwp_sigmask:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(0x%X, 0x%X, 0x%X)\t\t = 0x%X %s%d\n", probefunc,
(int)self->arg0, self->arg1, self->arg2, (int)arg0,
self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 1 arg, arg0 as a string */
syscall::chdir:return,
syscall::chroot:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(\"%S\")\t\t = %d %s%d\n", probefunc,
copyinstr(self->arg0), (int)arg0,
self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 2 args, arg0 as a string */
syscall::getcwd:return,
syscall::pathconf:return,
syscall::statvfs64:return,
syscall::statvfs:return,
syscall::umount2:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(\"%S\", 0x%X)\t\t = %d %s%d\n", probefunc,
copyinstr(self->arg0), self->arg1, (int)arg0,
self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print *at() syscalls, 3 args, arg1 as a string if possible */
syscall::faccessat:return,
syscall::fchmodat:return,
syscall::fchownat:return,
syscall::fstatat:return,
syscall::fstatat64:return,
syscall::linkat:return,
syscall::mkdirat:return,
syscall::mknodat:return,
syscall::openat:return,
syscall::openat64:return,
syscall::readlinkat:return,
syscall::renameat:return,
syscall::unlinkat:return,
syscall::utimensat:return
/self->start && self->arg1 != 0/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(0x%X, \"%S\", 0x%X)\t\t = %d %s%d\n", probefunc,
(uint_t)self->arg0, copyinstr(self->arg1), self->arg2, (int)arg0,
self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 3 args, arg0 as a string */
syscall::acl:return,
syscall::mount:return,
syscall::resolvepath:return,
syscall::statfs:return,
syscall::symlinkat:return,
syscall::uucopystr:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(\"%S\", 0x%X, 0x%X)\t\t = %d %s%d\n", probefunc,
copyinstr(self->arg0), self->arg1, self->arg2, (int)arg0,
self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 3 args, arg1 as a string bounded by return value (size) */
syscall::read:return,
syscall::pread:return,
syscall::pread64:return,
syscall::write:return,
syscall::pwrite:return,
syscall::pwrite64:return
/self->start && arg0 > 0/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
this->size = arg0 > 32? 32 : arg0;
printf("%s(0x%X, \"%S\", 0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
stringof(copyin(self->arg1, this->size)), self->arg2, (int)arg0,
self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 0 arg output (there are lots more 0-arg syscalls) */
syscall::gtime:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s()\t\t = %d %s%d\n", probefunc,
(int)arg0, self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 1 arg output (there are lots more 1-arg syscalls) */
syscall::brk:return,
syscall::close:return,
syscall::stime:return,
syscall::times:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
(int)arg0, self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 2 arg output (there are lots more 2-arg syscalls) */
syscall::munmap:return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(0x%X, 0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
self->arg1, (int)arg0, self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* print 3 arg output - default */
syscall:::return
/self->start/
{
/* calculate elapsed time */
this->elapsed = timestamp - self->start;
self->start = 0;
this->cpu = vtimestamp - self->vstart;
self->vstart = 0;
self->code = errno == 0 ? "" : "Err#";
/* print optional fields */
OPT_printid ? printf("%6d/%d: ", pid, tid) : 1;
OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
OPT_elapsed ? printf("%7d ", this->elapsed/1000) : 1;
OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
/* print main data */
printf("%s(0x%X, 0x%X, 0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
self->arg1, self->arg2, (int)arg0, self->code, (int)errno);
OPT_stack ? ustack() : 1;
OPT_stack ? trace("\n") : 1;
self->arg0 = 0;
self->arg1 = 0;
self->arg2 = 0;
self->arg3 = 0;
}
/* program exited */
proc:::exit
/(OPT_command || OPT_pid) && pid == $target/
{
exit(0);
}
/* print counts */
dtrace:::END
{
OPT_counts == 1 ? printf("\n%-32s %16s\n", "CALL", "COUNT") : 1;
OPT_counts == 1 ? printa("%-32s %@16d\n", @Counts) : 1;
}
'
### Run DTrace
if [ $opt_command -eq 1 ]; then
/usr/sbin/dtrace -x dynvarsize=$buf -x evaltime=exec -n "$dtrace" \
-c "$command" >&2
elif [ $opt_pid -eq 1 ]; then
/usr/sbin/dtrace -x dynvarsize=$buf -n "$dtrace" -p "$pid" >&2
else
/usr/sbin/dtrace -x dynvarsize=$buf -n "$dtrace" >&2
fi