/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* @test
* @bug 7176630
* @summary Check for short writes on SocketChannels configured in blocking mode
*/
import java.net.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.concurrent.*;
import java.util.Random;
import java.util.zip.CRC32;
public class ShortWrite {
static final Random rand = new Random();
/**
* Returns a checksum on the remaining bytes in the given buffer.
*/
static long computeChecksum(ByteBuffer bb) {
CRC32 crc32 = new CRC32();
crc32.update(bb.array());
return crc32.getValue();
}
/**
* A task that reads the expected number of bytes and returns the CRC32
* of those bytes.
*/
static class Reader implements Callable<Long> {
final SocketChannel sc;
final ByteBuffer buf;
Reader(SocketChannel sc, int expectedSize) {
this.sc = sc;
this.buf = ByteBuffer.allocate(expectedSize);
}
public Long call() throws Exception {
while (buf.hasRemaining()) {
int n = sc.read(buf);
if (n == -1)
throw new RuntimeException("Premature EOF encountered");
}
buf.flip();
return computeChecksum(buf);
}
}
/**
* Run test with a write of the given number of bytes.
*/
static void test(ExecutorService pool,
SocketChannel source,
SocketChannel sink,
int size)
throws Exception
{
System.out.println(size);
// random bytes in the buffer
ByteBuffer buf = ByteBuffer.allocate(size);
rand.nextBytes(buf.array());
// submit task to read the bytes
Future<Long> result = pool.submit(new Reader(sink, size));
// write the bytes
int n = source.write(buf);
if (n != size)
throw new RuntimeException("Short write detected");
// check the bytes that were received match
buf.rewind();
long expected = computeChecksum(buf);
long actual = result.get();
if (actual != expected)
throw new RuntimeException("Checksum did not match");
}
public static void main(String[] args) throws Exception {
ExecutorService pool = Executors.newSingleThreadExecutor();
try {
try (ServerSocketChannel ssc = ServerSocketChannel.open()) {
ssc.bind(new InetSocketAddress(0));
InetAddress lh = InetAddress.getLocalHost();
int port = ssc.socket().getLocalPort();
SocketAddress sa = new InetSocketAddress(lh, port);
try (SocketChannel source = SocketChannel.open(sa);
SocketChannel sink = ssc.accept())
{
// run tests on sizes around 128k as that is the problem
// area on Windows.
int BOUNDARY = 128 * 1024;
for (int size=(BOUNDARY-2); size<=(BOUNDARY+2); size++) {
test(pool, source, sink, size);
}
// run tests on random sizes
for (int i=0; i<20; i++) {
int size = rand.nextInt(1024*1024);
test(pool, source, sink, size);
}
}
}
} finally {
pool.shutdown();
}
}
}