/*
* Use is subject to license terms.
*
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses
* algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
{
unsigned int i;
/* m1, m2 are statically-allocated mp_int of exactly the size we need */
if (a_bits < 521) {
if (a==r) return MP_OKAY;
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
} else {
}
if ( a != r ) {
for (i = 0; i < ECP521_DIGITS; i++) {
}
}
MP_USED(r) = ECP521_DIGITS;
}
s_mp_clamp(r);
}
return res;
}
/* Compute the square of polynomial a, reduce modulo p521. Store the
* result in r. r could be a. Uses optimized modular reduction for p521.
*/
{
MP_CHECKOK(mp_sqr(a, r));
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p521.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p521. */
{
MP_CHECKOK(mp_mul(a, b, r));
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
{
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_mul(a, &t, r));
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
{
if (name == ECCurve_NIST_P521) {
}
return MP_OKAY;
}