/*
* Use is subject to license terms.
*
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast modular reduction for p224 = 2^224 - 2^96 + 1. a can be r. Uses
* algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
* Implementation of the NIST Elliptic Curves over Prime Fields. */
{
int r3b;
#ifdef ECL_THIRTY_TWO_BIT
#else
#endif
/* reduction not needed if a is not larger than field size */
if (a_used < ECP224_DIGITS) {
if (a == r) return MP_OKAY;
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size, use regular
* reduction */
} else {
#ifdef ECL_THIRTY_TWO_BIT
/* copy out upper words of a */
switch (a_used) {
case 14:
case 13:
case 12:
case 11:
case 10:
case 9:
case 8:
}
/* implement r = (a3a,a2,a1,a0)
+(a5a, a4,a3b, 0)
+( 0, a6,a5b, 0)
-( 0 0, 0|a6b, a6a|a5b )
-( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
if (carry) {
}
while (r3b > 0) {
int tmp;
if (carry) {
}
if (carry) {
}
}
while (r3b < 0) {
}
/* check for final reduction */
/* now the only way we are over is if the top 4 words are all ones */
/* one last subraction */
}
if (a != r) {
}
/* set the lower words of r */
MP_USED(r) = 7;
#else
/* copy out upper words of a */
switch (a_used) {
case 7:
case 6:
case 5:
case 4:
}
/* implement r = (a3a,a2,a1,a0)
+(a5a, a4,a3b, 0)
+( 0, a6,a5b, 0)
-( 0 0, 0|a6b, a6a|a5b )
-( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
if (carry) {
}
/* if the value is negative, r3 has a 2's complement
* high value */
while (r3b > 0) {
r3 &= 0xffffffff;
if (carry) {
}
if (carry) {
}
}
while (r3b < 0) {
}
/* check for final reduction */
/* now the only way we are over is if the top 4 words are all ones */
/* one last subraction */
}
if (a != r) {
}
/* set the lower words of r */
MP_USED(r) = 4;
#endif
}
return res;
}
/* Compute the square of polynomial a, reduce modulo p224. Store the
* result in r. r could be a. Uses optimized modular reduction for p224.
*/
{
MP_CHECKOK(mp_sqr(a, r));
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p224.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p224. */
{
MP_CHECKOK(mp_mul(a, b, r));
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
{
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_mul(a, &t, r));
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
{
if (name == ECCurve_NIST_P224) {
}
return MP_OKAY;
}