/*
* Use is subject to license terms.
*
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#include "ec2.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#endif
/* Allocate memory for a new ECGroup object. */
ECGroup *
{
#ifdef _KERNEL
#else
#endif
return NULL;
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields. */
ECGroup *
{
return NULL;
goto CLEANUP;
}
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields with
* field arithmetic implemented in Montgomery coordinates. */
ECGroup *
{
return NULL;
goto CLEANUP;
}
return NULL;
}
return group;
}
#ifdef NSS_ECC_MORE_THAN_SUITE_B
/* Construct a generic ECGroup for elliptic curves over binary polynomial
* fields. */
ECGroup *
{
return NULL;
goto CLEANUP;
}
return NULL;
}
return group;
}
#endif
/* Construct ECGroup from hex parameters and name, if any. Called by
* ECGroup_fromHex and ECGroup_fromName. */
ECGroup *
{
int bits;
/* initialize values */
/* determine number of bits */
goto CLEANUP;
}
/* determine which optimizations (if any) to use */
#ifdef NSS_ECC_MORE_THAN_SUITE_B
switch (name) {
#ifdef ECL_USE_FP
case ECCurve_SECG_PRIME_160R1:
group =
break;
#endif
case ECCurve_SECG_PRIME_192R1:
#ifdef ECL_USE_FP
group =
#else
group =
#endif
break;
case ECCurve_SECG_PRIME_224R1:
#ifdef ECL_USE_FP
group =
#else
group =
#endif
break;
case ECCurve_SECG_PRIME_256R1:
group =
break;
case ECCurve_SECG_PRIME_521R1:
group =
break;
default:
/* use generic arithmetic */
#endif
group =
#ifdef NSS_ECC_MORE_THAN_SUITE_B
}
if ((name == ECCurve_NIST_K163) ||
(name == ECCurve_NIST_B163) ||
(name == ECCurve_SECG_CHAR2_163R1)) {
} else if ((name == ECCurve_SECG_CHAR2_193R1) ||
(name == ECCurve_SECG_CHAR2_193R2)) {
} else if ((name == ECCurve_NIST_K233) ||
(name == ECCurve_NIST_B233)) {
}
#endif
} else {
goto CLEANUP;
}
/* set name, if any */
#ifdef _KERNEL
goto CLEANUP;
}
#else
}
#endif
}
return NULL;
}
return group;
}
/* Construct ECGroup from hexadecimal representations of parameters. */
ECGroup *
{
}
/* Construct ECGroup from named parameters. */
ECGroup *
{
goto CLEANUP;
}
/* construct actual group */
goto CLEANUP;
}
return NULL;
}
return group;
}
/* Validates an EC public key as described in Section 5.2.2 of X9.62. */
{
/* 1: Verify that publicValue is not the point at infinity */
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
/* 3: Verify that publicValue is on the curve. */
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
}
/* Free the memory allocated (if any) to an ECGroup object. */
void
{
return;
return;
#ifdef _KERNEL
#else
#endif
#ifdef _KERNEL
#else
#endif
}