/*
* Use is subject to license terms.
*
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "ecl-priv.h"
/* Returns 2^e as an integer. This is meant to be used for small powers of
* two. */
int
ec_twoTo(int e)
{
int a = 1;
int i;
for (i = 0; i < e; i++) {
a *= 2;
}
return a;
}
/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
* be an array of signed char's to output to, bitsize should be the number
* of bits of out, in is the original scalar, and w is the window size.
* NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
* Menezes, "Software implementation of elliptic curve cryptography over
* binary fields", Proc. CHES 2000. */
{
mp_int k;
MP_DIGITS(&k) = 0;
i = 0;
/* Compute wNAF form */
while (mp_cmp_z(&k) > 0) {
if (mp_isodd(&k)) {
/* Subtract off out[i]. Note mp_sub_d only works with
* unsigned digits */
if (out[i] >= 0) {
} else {
}
} else {
out[i] = 0;
}
mp_div_2(&k, &k);
i++;
}
/* Zero out the remaining elements of the out array. */
for (; i < bitsize + 1; i++) {
out[i] = 0;
}
mp_clear(&k);
return res;
}