/*
* Copyright (c) 2003, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifndef HEADLESS
#include <jlong.h>
#include <jni_util.h>
#include <math.h>
#include "sun_java2d_opengl_OGLRenderer.h"
#include "OGLRenderer.h"
#include "OGLRenderQueue.h"
#include "OGLSurfaceData.h"
/**
* Note: Some of the methods in this file apply a "magic number"
* translation to line segments. The OpenGL specification lays out the
* "diamond exit rule" for line rasterization, but it is loose enough to
* allow for a wide range of line rendering hardware. (It appears that
* some hardware, such as the Nvidia GeForce2 series, does not even meet
* the spec in all cases.) As such it is difficult to find a mapping
* between the Java2D and OpenGL line specs that works consistently across
* all hardware combinations.
*
* Therefore the "magic numbers" you see here have been empirically derived
* after testing on a variety of graphics hardware in order to find some
* reasonable middle ground between the two specifications. The general
* approach is to apply a fractional translation to vertices so that they
* hit pixel centers and therefore touch the same pixels as in our other
* pipelines. Emphasis was placed on finding values so that OGL lines with
* a slope of +/- 1 hit all the same pixels as our other (software) loops.
* The stepping in other diagonal lines rendered with OGL may deviate
* slightly from those rendered with our software loops, but the most
* important thing is that these magic numbers ensure that all OGL lines
* hit the same endpoints as our software loops.
*
* If you find it necessary to change any of these magic numbers in the
* future, just be sure that you test the changes across a variety of
* hardware to ensure consistent rendering everywhere.
*/
void
OGLRenderer_DrawLine(OGLContext *oglc, jint x1, jint y1, jint x2, jint y2)
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_DrawLine");
RETURN_IF_NULL(oglc);
CHECK_PREVIOUS_OP(GL_LINES);
if (y1 == y2) {
// horizontal
GLfloat fx1 = (GLfloat)x1;
GLfloat fx2 = (GLfloat)x2;
GLfloat fy = ((GLfloat)y1) + 0.2f;
if (x1 > x2) {
GLfloat t = fx1; fx1 = fx2; fx2 = t;
}
j2d_glVertex2f(fx1+0.2f, fy);
j2d_glVertex2f(fx2+1.2f, fy);
} else if (x1 == x2) {
// vertical
GLfloat fx = ((GLfloat)x1) + 0.2f;
GLfloat fy1 = (GLfloat)y1;
GLfloat fy2 = (GLfloat)y2;
if (y1 > y2) {
GLfloat t = fy1; fy1 = fy2; fy2 = t;
}
j2d_glVertex2f(fx, fy1+0.2f);
j2d_glVertex2f(fx, fy2+1.2f);
} else {
// diagonal
GLfloat fx1 = (GLfloat)x1;
GLfloat fy1 = (GLfloat)y1;
GLfloat fx2 = (GLfloat)x2;
GLfloat fy2 = (GLfloat)y2;
if (x1 < x2) {
fx1 += 0.2f;
fx2 += 1.0f;
} else {
fx1 += 0.8f;
fx2 -= 0.2f;
}
if (y1 < y2) {
fy1 += 0.2f;
fy2 += 1.0f;
} else {
fy1 += 0.8f;
fy2 -= 0.2f;
}
j2d_glVertex2f(fx1, fy1);
j2d_glVertex2f(fx2, fy2);
}
}
void
OGLRenderer_DrawRect(OGLContext *oglc, jint x, jint y, jint w, jint h)
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_DrawRect");
if (w < 0 || h < 0) {
return;
}
RETURN_IF_NULL(oglc);
if (w < 2 || h < 2) {
// If one dimension is less than 2 then there is no
// gap in the middle - draw a solid filled rectangle.
CHECK_PREVIOUS_OP(GL_QUADS);
GLRECT_BODY_XYWH(x, y, w+1, h+1);
} else {
GLfloat fx1 = ((GLfloat)x) + 0.2f;
GLfloat fy1 = ((GLfloat)y) + 0.2f;
GLfloat fx2 = fx1 + ((GLfloat)w);
GLfloat fy2 = fy1 + ((GLfloat)h);
// Avoid drawing the endpoints twice.
// Also prefer including the endpoints in the
// horizontal sections which draw pixels faster.
CHECK_PREVIOUS_OP(GL_LINES);
// top
j2d_glVertex2f(fx1, fy1);
j2d_glVertex2f(fx2+1.0f, fy1);
// right
j2d_glVertex2f(fx2, fy1+1.0f);
j2d_glVertex2f(fx2, fy2);
// bottom
j2d_glVertex2f(fx1, fy2);
j2d_glVertex2f(fx2+1.0f, fy2);
// left
j2d_glVertex2f(fx1, fy1+1.0f);
j2d_glVertex2f(fx1, fy2);
}
}
void
OGLRenderer_DrawPoly(OGLContext *oglc,
jint nPoints, jint isClosed,
jint transX, jint transY,
jint *xPoints, jint *yPoints)
{
jboolean isEmpty = JNI_TRUE;
jint mx, my;
jint i;
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_DrawPoly");
if (xPoints == NULL || yPoints == NULL) {
J2dRlsTraceLn(J2D_TRACE_ERROR,
"OGLRenderer_DrawPoly: points array is null");
return;
}
RETURN_IF_NULL(oglc);
// Note that BufferedRenderPipe.drawPoly() has already rejected polys
// with nPoints<2, so we can be certain here that we have nPoints>=2.
mx = xPoints[0];
my = yPoints[0];
CHECK_PREVIOUS_OP(GL_LINE_STRIP);
for (i = 0; i < nPoints; i++) {
jint x = xPoints[i];
jint y = yPoints[i];
isEmpty = isEmpty && (x == mx && y == my);
// Translate each vertex by a fraction so that we hit pixel centers.
j2d_glVertex2f((GLfloat)(x + transX) + 0.5f,
(GLfloat)(y + transY) + 0.5f);
}
if (isClosed && !isEmpty &&
(xPoints[nPoints-1] != mx ||
yPoints[nPoints-1] != my))
{
// In this case, the polyline's start and end positions are
// different and need to be closed manually; we do this by adding
// one more segment back to the starting position. Note that we
// do not need to fill in the last pixel (as we do in the following
// block) because we are returning to the starting pixel, which
// has already been filled in.
j2d_glVertex2f((GLfloat)(mx + transX) + 0.5f,
(GLfloat)(my + transY) + 0.5f);
RESET_PREVIOUS_OP(); // so that we don't leave the line strip open
} else if (!isClosed || isEmpty) {
// OpenGL omits the last pixel in a polyline, so we fix this by
// adding a one-pixel segment at the end. Also, if the polyline
// never went anywhere (isEmpty is true), we need to use this
// workaround to ensure that a single pixel is touched.
CHECK_PREVIOUS_OP(GL_LINES); // this closes the line strip first
mx = xPoints[nPoints-1] + transX;
my = yPoints[nPoints-1] + transY;
j2d_glVertex2i(mx, my);
j2d_glVertex2i(mx+1, my+1);
// no need for RESET_PREVIOUS_OP, as the line strip is no longer open
} else {
RESET_PREVIOUS_OP(); // so that we don't leave the line strip open
}
}
JNIEXPORT void JNICALL
Java_sun_java2d_opengl_OGLRenderer_drawPoly
(JNIEnv *env, jobject oglr,
jintArray xpointsArray, jintArray ypointsArray,
jint nPoints, jboolean isClosed,
jint transX, jint transY)
{
jint *xPoints, *yPoints;
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_drawPoly");
xPoints = (jint *)
(*env)->GetPrimitiveArrayCritical(env, xpointsArray, NULL);
if (xPoints != NULL) {
yPoints = (jint *)
(*env)->GetPrimitiveArrayCritical(env, ypointsArray, NULL);
if (yPoints != NULL) {
OGLContext *oglc = OGLRenderQueue_GetCurrentContext();
OGLRenderer_DrawPoly(oglc,
nPoints, isClosed,
transX, transY,
xPoints, yPoints);
// 6358147: reset current state, and ensure rendering is
// flushed to dest
if (oglc != NULL) {
RESET_PREVIOUS_OP();
j2d_glFlush();
}
(*env)->ReleasePrimitiveArrayCritical(env, ypointsArray, yPoints,
JNI_ABORT);
}
(*env)->ReleasePrimitiveArrayCritical(env, xpointsArray, xPoints,
JNI_ABORT);
}
}
void
OGLRenderer_DrawScanlines(OGLContext *oglc,
jint scanlineCount, jint *scanlines)
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_DrawScanlines");
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(scanlines);
CHECK_PREVIOUS_OP(GL_LINES);
while (scanlineCount > 0) {
// Translate each vertex by a fraction so
// that we hit pixel centers.
GLfloat x1 = ((GLfloat)*(scanlines++)) + 0.2f;
GLfloat x2 = ((GLfloat)*(scanlines++)) + 1.2f;
GLfloat y = ((GLfloat)*(scanlines++)) + 0.5f;
j2d_glVertex2f(x1, y);
j2d_glVertex2f(x2, y);
scanlineCount--;
}
}
void
OGLRenderer_FillRect(OGLContext *oglc, jint x, jint y, jint w, jint h)
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_FillRect");
if (w <= 0 || h <= 0) {
return;
}
RETURN_IF_NULL(oglc);
CHECK_PREVIOUS_OP(GL_QUADS);
GLRECT_BODY_XYWH(x, y, w, h);
}
void
OGLRenderer_FillSpans(OGLContext *oglc, jint spanCount, jint *spans)
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_FillSpans");
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(spans);
CHECK_PREVIOUS_OP(GL_QUADS);
while (spanCount > 0) {
jint x1 = *(spans++);
jint y1 = *(spans++);
jint x2 = *(spans++);
jint y2 = *(spans++);
GLRECT_BODY_XYXY(x1, y1, x2, y2);
spanCount--;
}
}
#define FILL_PGRAM(fx11, fy11, dx21, dy21, dx12, dy12) \
do { \
j2d_glVertex2f(fx11, fy11); \
j2d_glVertex2f(fx11 + dx21, fy11 + dy21); \
j2d_glVertex2f(fx11 + dx21 + dx12, fy11 + dy21 + dy12); \
j2d_glVertex2f(fx11 + dx12, fy11 + dy12); \
} while (0)
void
OGLRenderer_FillParallelogram(OGLContext *oglc,
jfloat fx11, jfloat fy11,
jfloat dx21, jfloat dy21,
jfloat dx12, jfloat dy12)
{
J2dTraceLn6(J2D_TRACE_INFO,
"OGLRenderer_FillParallelogram "
"(x=%6.2f y=%6.2f "
"dx1=%6.2f dy1=%6.2f "
"dx2=%6.2f dy2=%6.2f)",
fx11, fy11,
dx21, dy21,
dx12, dy12);
RETURN_IF_NULL(oglc);
CHECK_PREVIOUS_OP(GL_QUADS);
FILL_PGRAM(fx11, fy11, dx21, dy21, dx12, dy12);
}
void
OGLRenderer_DrawParallelogram(OGLContext *oglc,
jfloat fx11, jfloat fy11,
jfloat dx21, jfloat dy21,
jfloat dx12, jfloat dy12,
jfloat lwr21, jfloat lwr12)
{
// dx,dy for line width in the "21" and "12" directions.
jfloat ldx21 = dx21 * lwr21;
jfloat ldy21 = dy21 * lwr21;
jfloat ldx12 = dx12 * lwr12;
jfloat ldy12 = dy12 * lwr12;
// calculate origin of the outer parallelogram
jfloat ox11 = fx11 - (ldx21 + ldx12) / 2.0f;
jfloat oy11 = fy11 - (ldy21 + ldy12) / 2.0f;
J2dTraceLn8(J2D_TRACE_INFO,
"OGLRenderer_DrawParallelogram "
"(x=%6.2f y=%6.2f "
"dx1=%6.2f dy1=%6.2f lwr1=%6.2f "
"dx2=%6.2f dy2=%6.2f lwr2=%6.2f)",
fx11, fy11,
dx21, dy21, lwr21,
dx12, dy12, lwr12);
RETURN_IF_NULL(oglc);
CHECK_PREVIOUS_OP(GL_QUADS);
// Only need to generate 4 quads if the interior still
// has a hole in it (i.e. if the line width ratio was
// less than 1.0)
if (lwr21 < 1.0f && lwr12 < 1.0f) {
// Note: "TOP", "BOTTOM", "LEFT" and "RIGHT" here are
// relative to whether the dxNN variables are positive
// and negative. The math works fine regardless of
// their signs, but for conceptual simplicity the
// comments will refer to the sides as if the dxNN
// were all positive. "TOP" and "BOTTOM" segments
// are defined by the dxy21 deltas. "LEFT" and "RIGHT"
// segments are defined by the dxy12 deltas.
// Each segment includes its starting corner and comes
// to just short of the following corner. Thus, each
// corner is included just once and the only lengths
// needed are the original parallelogram delta lengths
// and the "line width deltas". The sides will cover
// the following relative territories:
//
// T T T T T R
// L R
// L R
// L R
// L R
// L B B B B B
// TOP segment, to left side of RIGHT edge
// "width" of original pgram, "height" of hor. line size
fx11 = ox11;
fy11 = oy11;
FILL_PGRAM(fx11, fy11, dx21, dy21, ldx12, ldy12);
// RIGHT segment, to top of BOTTOM edge
// "width" of vert. line size , "height" of original pgram
fx11 = ox11 + dx21;
fy11 = oy11 + dy21;
FILL_PGRAM(fx11, fy11, ldx21, ldy21, dx12, dy12);
// BOTTOM segment, from right side of LEFT edge
// "width" of original pgram, "height" of hor. line size
fx11 = ox11 + dx12 + ldx21;
fy11 = oy11 + dy12 + ldy21;
FILL_PGRAM(fx11, fy11, dx21, dy21, ldx12, ldy12);
// LEFT segment, from bottom of TOP edge
// "width" of vert. line size , "height" of inner pgram
fx11 = ox11 + ldx12;
fy11 = oy11 + ldy12;
FILL_PGRAM(fx11, fy11, ldx21, ldy21, dx12, dy12);
} else {
// The line width ratios were large enough to consume
// the entire hole in the middle of the parallelogram
// so we can just issue one large quad for the outer
// parallelogram.
dx21 += ldx21;
dy21 += ldy21;
dx12 += ldx12;
dy12 += ldy12;
FILL_PGRAM(ox11, oy11, dx21, dy21, dx12, dy12);
}
}
static GLhandleARB aaPgramProgram = 0;
/*
* This shader fills the space between an outer and inner parallelogram.
* It can be used to draw an outline by specifying both inner and outer
* values. It fills pixels by estimating what portion falls inside the
* outer shape, and subtracting an estimate of what portion falls inside
* the inner shape. Specifying both inner and outer values produces a
* standard "wide outline". Specifying an inner shape that falls far
* outside the outer shape allows the same shader to fill the outer
* shape entirely since pixels that fall within the outer shape are never
* inside the inner shape and so they are filled based solely on their
* coverage of the outer shape.
*
* The setup code renders this shader over the bounds of the outer
* shape (or the only shape in the case of a fill operation) and
* sets the texture 0 coordinates so that 0,0=>0,1=>1,1=>1,0 in those
* texture coordinates map to the four corners of the parallelogram.
* Similarly the texture 1 coordinates map the inner shape to the
* unit square as well, but in a different coordinate system.
*
* When viewed in the texture coordinate systems the parallelograms
* we are filling are unit squares, but the pixels have then become
* tiny parallelograms themselves. Both of the texture coordinate
* systems are affine transforms so the rate of change in X and Y
* of the texture coordinates are essentially constants and happen
* to correspond to the size and direction of the slanted sides of
* the distorted pixels relative to the "square mapped" boundary
* of the parallelograms.
*
* The shader uses the dFdx() and dFdy() functions to measure the "rate
* of change" of these texture coordinates and thus gets an accurate
* measure of the size and shape of a pixel relative to the two
* parallelograms. It then uses the bounds of the size and shape
* of a pixel to intersect with the unit square to estimate the
* coverage of the pixel. Unfortunately, without a lot more work
* to calculate the exact area of intersection between a unit
* square (the original parallelogram) and a parallelogram (the
* distorted pixel), this shader only approximates the pixel
* coverage, but emperically the estimate is very useful and
* produces visually pleasing results, if not theoretically accurate.
*/
static const char *aaPgramShaderSource =
"void main() {"
// Calculate the vectors for the "legs" of the pixel parallelogram
// for the outer parallelogram.
" vec2 oleg1 = dFdx(gl_TexCoord[0].st);"
" vec2 oleg2 = dFdy(gl_TexCoord[0].st);"
// Calculate the bounds of the distorted pixel parallelogram.
" vec2 corner = gl_TexCoord[0].st - (oleg1+oleg2)/2.0;"
" vec2 omin = min(corner, corner+oleg1);"
" omin = min(omin, corner+oleg2);"
" omin = min(omin, corner+oleg1+oleg2);"
" vec2 omax = max(corner, corner+oleg1);"
" omax = max(omax, corner+oleg2);"
" omax = max(omax, corner+oleg1+oleg2);"
// Calculate the vectors for the "legs" of the pixel parallelogram
// for the inner parallelogram.
" vec2 ileg1 = dFdx(gl_TexCoord[1].st);"
" vec2 ileg2 = dFdy(gl_TexCoord[1].st);"
// Calculate the bounds of the distorted pixel parallelogram.
" corner = gl_TexCoord[1].st - (ileg1+ileg2)/2.0;"
" vec2 imin = min(corner, corner+ileg1);"
" imin = min(imin, corner+ileg2);"
" imin = min(imin, corner+ileg1+ileg2);"
" vec2 imax = max(corner, corner+ileg1);"
" imax = max(imax, corner+ileg2);"
" imax = max(imax, corner+ileg1+ileg2);"
// Clamp the bounds of the parallelograms to the unit square to
// estimate the intersection of the pixel parallelogram with
// the unit square. The ratio of the 2 rectangle areas is a
// reasonable estimate of the proportion of coverage.
" vec2 o1 = clamp(omin, 0.0, 1.0);"
" vec2 o2 = clamp(omax, 0.0, 1.0);"
" float oint = (o2.y-o1.y)*(o2.x-o1.x);"
" float oarea = (omax.y-omin.y)*(omax.x-omin.x);"
" vec2 i1 = clamp(imin, 0.0, 1.0);"
" vec2 i2 = clamp(imax, 0.0, 1.0);"
" float iint = (i2.y-i1.y)*(i2.x-i1.x);"
" float iarea = (imax.y-imin.y)*(imax.x-imin.x);"
// Proportion of pixel in outer shape minus the proportion
// of pixel in the inner shape == the coverage of the pixel
// in the area between the two.
" float coverage = oint/oarea - iint / iarea;"
" gl_FragColor = gl_Color * coverage;"
"}";
#define ADJUST_PGRAM(V1, DV, V2) \
do { \
if ((DV) >= 0) { \
(V2) += (DV); \
} else { \
(V1) += (DV); \
} \
} while (0)
// Invert the following transform:
// DeltaT(0, 0) == (0, 0)
// DeltaT(1, 0) == (DX1, DY1)
// DeltaT(0, 1) == (DX2, DY2)
// DeltaT(1, 1) == (DX1+DX2, DY1+DY2)
// TM00 = DX1, TM01 = DX2, (TM02 = X11)
// TM10 = DY1, TM11 = DY2, (TM12 = Y11)
// Determinant = TM00*TM11 - TM01*TM10
// = DX1*DY2 - DX2*DY1
// Inverse is:
// IM00 = TM11/det, IM01 = -TM01/det
// IM10 = -TM10/det, IM11 = TM00/det
// IM02 = (TM01 * TM12 - TM11 * TM02) / det,
// IM12 = (TM10 * TM02 - TM00 * TM12) / det,
#define DECLARE_MATRIX(MAT) \
jfloat MAT ## 00, MAT ## 01, MAT ## 02, MAT ## 10, MAT ## 11, MAT ## 12
#define GET_INVERTED_MATRIX(MAT, X11, Y11, DX1, DY1, DX2, DY2, RET_CODE) \
do { \
jfloat det = DX1*DY2 - DX2*DY1; \
if (det == 0) { \
RET_CODE; \
} \
MAT ## 00 = DY2/det; \
MAT ## 01 = -DX2/det; \
MAT ## 10 = -DY1/det; \
MAT ## 11 = DX1/det; \
MAT ## 02 = (DX2 * Y11 - DY2 * X11) / det; \
MAT ## 12 = (DY1 * X11 - DX1 * Y11) / det; \
} while (0)
#define TRANSFORM(MAT, TX, TY, X, Y) \
do { \
TX = (X) * MAT ## 00 + (Y) * MAT ## 01 + MAT ## 02; \
TY = (X) * MAT ## 10 + (Y) * MAT ## 11 + MAT ## 12; \
} while (0)
void
OGLRenderer_FillAAParallelogram(OGLContext *oglc, OGLSDOps *dstOps,
jfloat fx11, jfloat fy11,
jfloat dx21, jfloat dy21,
jfloat dx12, jfloat dy12)
{
DECLARE_MATRIX(om);
// parameters for parallelogram bounding box
jfloat bx11, by11, bx22, by22;
// parameters for uv texture coordinates of parallelogram corners
jfloat u11, v11, u12, v12, u21, v21, u22, v22;
J2dTraceLn6(J2D_TRACE_INFO,
"OGLRenderer_FillAAParallelogram "
"(x=%6.2f y=%6.2f "
"dx1=%6.2f dy1=%6.2f "
"dx2=%6.2f dy2=%6.2f)",
fx11, fy11,
dx21, dy21,
dx12, dy12);
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(dstOps);
GET_INVERTED_MATRIX(om, fx11, fy11, dx21, dy21, dx12, dy12,
return);
CHECK_PREVIOUS_OP(OGL_STATE_PGRAM_OP);
bx11 = bx22 = fx11;
by11 = by22 = fy11;
ADJUST_PGRAM(bx11, dx21, bx22);
ADJUST_PGRAM(by11, dy21, by22);
ADJUST_PGRAM(bx11, dx12, bx22);
ADJUST_PGRAM(by11, dy12, by22);
bx11 = (jfloat) floor(bx11);
by11 = (jfloat) floor(by11);
bx22 = (jfloat) ceil(bx22);
by22 = (jfloat) ceil(by22);
TRANSFORM(om, u11, v11, bx11, by11);
TRANSFORM(om, u21, v21, bx22, by11);
TRANSFORM(om, u12, v12, bx11, by22);
TRANSFORM(om, u22, v22, bx22, by22);
j2d_glBegin(GL_QUADS);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, u11, v11);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 5.f, 5.f);
j2d_glVertex2f(bx11, by11);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, u21, v21);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 6.f, 5.f);
j2d_glVertex2f(bx22, by11);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, u22, v22);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 6.f, 6.f);
j2d_glVertex2f(bx22, by22);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, u12, v12);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 5.f, 6.f);
j2d_glVertex2f(bx11, by22);
j2d_glEnd();
}
void
OGLRenderer_FillAAParallelogramInnerOuter(OGLContext *oglc, OGLSDOps *dstOps,
jfloat ox11, jfloat oy11,
jfloat ox21, jfloat oy21,
jfloat ox12, jfloat oy12,
jfloat ix11, jfloat iy11,
jfloat ix21, jfloat iy21,
jfloat ix12, jfloat iy12)
{
DECLARE_MATRIX(om);
DECLARE_MATRIX(im);
// parameters for parallelogram bounding box
jfloat bx11, by11, bx22, by22;
// parameters for uv texture coordinates of outer parallelogram corners
jfloat ou11, ov11, ou12, ov12, ou21, ov21, ou22, ov22;
// parameters for uv texture coordinates of inner parallelogram corners
jfloat iu11, iv11, iu12, iv12, iu21, iv21, iu22, iv22;
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(dstOps);
GET_INVERTED_MATRIX(im, ix11, iy11, ix21, iy21, ix12, iy12,
// inner parallelogram is degenerate
// therefore it encloses no area
// fill outer
OGLRenderer_FillAAParallelogram(oglc, dstOps,
ox11, oy11,
ox21, oy21,
ox12, oy12);
return);
GET_INVERTED_MATRIX(om, ox11, oy11, ox21, oy21, ox12, oy12,
return);
CHECK_PREVIOUS_OP(OGL_STATE_PGRAM_OP);
bx11 = bx22 = ox11;
by11 = by22 = oy11;
ADJUST_PGRAM(bx11, ox21, bx22);
ADJUST_PGRAM(by11, oy21, by22);
ADJUST_PGRAM(bx11, ox12, bx22);
ADJUST_PGRAM(by11, oy12, by22);
bx11 = (jfloat) floor(bx11);
by11 = (jfloat) floor(by11);
bx22 = (jfloat) ceil(bx22);
by22 = (jfloat) ceil(by22);
TRANSFORM(om, ou11, ov11, bx11, by11);
TRANSFORM(om, ou21, ov21, bx22, by11);
TRANSFORM(om, ou12, ov12, bx11, by22);
TRANSFORM(om, ou22, ov22, bx22, by22);
TRANSFORM(im, iu11, iv11, bx11, by11);
TRANSFORM(im, iu21, iv21, bx22, by11);
TRANSFORM(im, iu12, iv12, bx11, by22);
TRANSFORM(im, iu22, iv22, bx22, by22);
j2d_glBegin(GL_QUADS);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, ou11, ov11);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, iu11, iv11);
j2d_glVertex2f(bx11, by11);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, ou21, ov21);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, iu21, iv21);
j2d_glVertex2f(bx22, by11);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, ou22, ov22);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, iu22, iv22);
j2d_glVertex2f(bx22, by22);
j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, ou12, ov12);
j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, iu12, iv12);
j2d_glVertex2f(bx11, by22);
j2d_glEnd();
}
void
OGLRenderer_DrawAAParallelogram(OGLContext *oglc, OGLSDOps *dstOps,
jfloat fx11, jfloat fy11,
jfloat dx21, jfloat dy21,
jfloat dx12, jfloat dy12,
jfloat lwr21, jfloat lwr12)
{
// dx,dy for line width in the "21" and "12" directions.
jfloat ldx21, ldy21, ldx12, ldy12;
// parameters for "outer" parallelogram
jfloat ofx11, ofy11, odx21, ody21, odx12, ody12;
// parameters for "inner" parallelogram
jfloat ifx11, ify11, idx21, idy21, idx12, idy12;
J2dTraceLn8(J2D_TRACE_INFO,
"OGLRenderer_DrawAAParallelogram "
"(x=%6.2f y=%6.2f "
"dx1=%6.2f dy1=%6.2f lwr1=%6.2f "
"dx2=%6.2f dy2=%6.2f lwr2=%6.2f)",
fx11, fy11,
dx21, dy21, lwr21,
dx12, dy12, lwr12);
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(dstOps);
// calculate true dx,dy for line widths from the "line width ratios"
ldx21 = dx21 * lwr21;
ldy21 = dy21 * lwr21;
ldx12 = dx12 * lwr12;
ldy12 = dy12 * lwr12;
// calculate coordinates of the outer parallelogram
ofx11 = fx11 - (ldx21 + ldx12) / 2.0f;
ofy11 = fy11 - (ldy21 + ldy12) / 2.0f;
odx21 = dx21 + ldx21;
ody21 = dy21 + ldy21;
odx12 = dx12 + ldx12;
ody12 = dy12 + ldy12;
// Only process the inner parallelogram if the line width ratio
// did not consume the entire interior of the parallelogram
// (i.e. if the width ratio was less than 1.0)
if (lwr21 < 1.0f && lwr12 < 1.0f) {
// calculate coordinates of the inner parallelogram
ifx11 = fx11 + (ldx21 + ldx12) / 2.0f;
ify11 = fy11 + (ldy21 + ldy12) / 2.0f;
idx21 = dx21 - ldx21;
idy21 = dy21 - ldy21;
idx12 = dx12 - ldx12;
idy12 = dy12 - ldy12;
OGLRenderer_FillAAParallelogramInnerOuter(oglc, dstOps,
ofx11, ofy11,
odx21, ody21,
odx12, ody12,
ifx11, ify11,
idx21, idy21,
idx12, idy12);
} else {
OGLRenderer_FillAAParallelogram(oglc, dstOps,
ofx11, ofy11,
odx21, ody21,
odx12, ody12);
}
}
void
OGLRenderer_EnableAAParallelogramProgram()
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_EnableAAParallelogramProgram");
if (aaPgramProgram == 0) {
aaPgramProgram = OGLContext_CreateFragmentProgram(aaPgramShaderSource);
if (aaPgramProgram == 0) {
J2dRlsTraceLn(J2D_TRACE_ERROR,
"OGLRenderer_EnableAAParallelogramProgram: "
"error creating program");
return;
}
}
j2d_glUseProgramObjectARB(aaPgramProgram);
}
void
OGLRenderer_DisableAAParallelogramProgram()
{
J2dTraceLn(J2D_TRACE_INFO, "OGLRenderer_DisableAAParallelogramProgram");
j2d_glUseProgramObjectARB(0);
}
#endif /* !HEADLESS */