/*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
*
* - Neither the name of Oracle nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This source code is provided to illustrate the usage of a given feature
* or technique and has been deliberately simplified. Additional steps
* required for a production-quality application, such as security checks,
* input validation and proper error handling, might not be present in
* this sample code.
*/
/**
* A sorter for TableModels. The sorter has a model (conforming to TableModel)
* and itself implements TableModel. TableSorter does not store or copy
* the data in the TableModel, instead it maintains an array of
* integers which it keeps the same size as the number of rows in its
* model. When the model changes it notifies the sorter that something
* has changed eg. "rowsAdded" so that its internal array of integers
* can be reallocated. As requests are made of the sorter (like
* getValueAt(row, col) it redirects them to its model via the mapping
* array. That way the TableSorter appears to hold another copy of the table
* with the rows in a different order. The sorting algorthm used is stable
* which means that it does not move around rows when its comparison
* function returns 0 to denote that they are equivalent.
*
* @author Philip Milne
*/
@SuppressWarnings("serial")
int indexes[];
boolean ascending = true;
int compares;
public TableSorter() {
}
}
}
// Check for nulls
// If both values are null return 0
return 0;
return -1;
return 1;
}
/* We copy all returned values from the getValue call in case
an optimised model is reusing one object to return many values.
The Number subclasses in the JDK are immutable and so will not be used
in this way but other subclasses of Number might want to do this to save
space and avoid unnecessary heap allocation.
*/
return -1;
return 1;
} else {
return 0;
}
return -1;
return 1;
} else {
return 0;
}
if (result < 0) {
return -1;
} else if (result > 0) {
return 1;
} else {
return 0;
}
return 0;
} else if (b1) // Define false < true
{
return 1;
} else {
return -1;
}
} else {
if (result < 0) {
return -1;
} else if (result > 0) {
return 1;
} else {
return 0;
}
}
}
compares++;
if (result != 0) {
}
}
return 0;
}
public void reallocateIndexes() {
// Set up a new array of indexes with the right number of elements
// for the new data model.
// Initialise with the identity mapping.
}
}
super.tableChanged(e);
}
public void checkModel() {
}
}
checkModel();
compares = 0;
// n2sort();
// qsort(0, indexes.length-1);
}
public void n2sort() {
for (int i = 0; i < getRowCount(); i++) {
for (int j = i + 1; j < getRowCount(); j++) {
swap(i, j);
}
}
}
}
// This is a home-grown implementation which we have not had time
// to research - it may perform poorly in some circumstances. It
// requires twice the space of an in-place algorithm and makes
// NlogN assigments shuttling the values between the two
// arrays. The number of compares appears to vary between N-1 and
// NlogN depending on the initial order but the main reason for
// using it here is that, unlike qsort, it is stable.
return;
}
int p = low;
int q = middle;
/* This is an optional short-cut; at each recursive call,
check to see if the elements in this subset are already
ordered. If so, no further comparisons are needed; the
sub-array can just be copied. The array must be copied rather
than assigned otherwise sister calls in the recursion might
get out of sinc. When the number of elements is three they
are partitioned so that the first set, [low, mid), has one
element and and the second, [mid, high), has two. We skip the
optimisation when the number of elements is three or less as
the first compare in the normal merge will produce the same
sequence of steps. This optimisation seems to be worthwhile
for partially ordered lists but some analysis is needed to
find out how the performance drops to Nlog(N) as the initial
order diminishes - it may drop very quickly. */
return;
}
// A normal merge.
} else {
}
}
}
public void swap(int i, int j) {
}
// The mapping only affects the contents of the data rows.
// Pass all requests to these rows through the mapping array: "indexes".
checkModel();
}
checkModel();
}
sortByColumn(column, true);
}
sort(this);
super.tableChanged(new TableModelEvent(this));
}
// There is no-where else to put this.
// Add a mouse listener to the Table to trigger a table sort
// when a column heading is clicked in the JTable.
final TableSorter sorter = this;
tableView.setColumnSelectionAllowed(false);
public void mouseClicked(MouseEvent e) {
}
}
};
}
}