/*
* Copyright (c) 1998, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package javax.swing.tree;
import javax.swing.event.TreeModelEvent;
import java.awt.Dimension;
import java.awt.Rectangle;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.NoSuchElementException;
import java.util.Stack;
/**
* NOTE: This will become more open in a future release.
* <p>
* <strong>Warning:</strong>
* Serialized objects of this class will not be compatible with
* future Swing releases. The current serialization support is
* appropriate for short term storage or RMI between applications running
* the same version of Swing. As of 1.4, support for long term storage
* of all JavaBeans<sup><font size="-2">TM</font></sup>
* has been added to the <code>java.beans</code> package.
* Please see {@link java.beans.XMLEncoder}.
*
* @author Scott Violet
*/
public class FixedHeightLayoutCache extends AbstractLayoutCache {
/** Root node. */
private FHTreeStateNode root;
/** Number of rows currently visible. */
private int rowCount;
/**
* Used in getting sizes for nodes to avoid creating a new Rectangle
* every time a size is needed.
*/
private Rectangle boundsBuffer;
/**
* Maps from TreePath to a FHTreeStateNode.
*/
private Hashtable<TreePath, FHTreeStateNode> treePathMapping;
/**
* Used for getting path/row information.
*/
private SearchInfo info;
private Stack<Stack<TreePath>> tempStacks;
public FixedHeightLayoutCache() {
super();
tempStacks = new Stack<Stack<TreePath>>();
boundsBuffer = new Rectangle();
treePathMapping = new Hashtable<TreePath, FHTreeStateNode>();
info = new SearchInfo();
setRowHeight(1);
}
/**
* Sets the TreeModel that will provide the data.
*
* @param newModel the TreeModel that is to provide the data
*/
public void setModel(TreeModel newModel) {
super.setModel(newModel);
rebuild(false);
}
/**
* Determines whether or not the root node from
* the TreeModel is visible.
*
* @param rootVisible true if the root node of the tree is to be displayed
* @see #rootVisible
*/
public void setRootVisible(boolean rootVisible) {
if(isRootVisible() != rootVisible) {
super.setRootVisible(rootVisible);
if(root != null) {
if(rootVisible) {
rowCount++;
root.adjustRowBy(1);
}
else {
rowCount--;
root.adjustRowBy(-1);
}
visibleNodesChanged();
}
}
}
/**
* Sets the height of each cell. If rowHeight is less than or equal to
* 0 this will throw an IllegalArgumentException.
*
* @param rowHeight the height of each cell, in pixels
*/
public void setRowHeight(int rowHeight) {
if(rowHeight <= 0)
throw new IllegalArgumentException("FixedHeightLayoutCache only supports row heights greater than 0");
if(getRowHeight() != rowHeight) {
super.setRowHeight(rowHeight);
visibleNodesChanged();
}
}
/**
* Returns the number of visible rows.
*/
public int getRowCount() {
return rowCount;
}
/**
* Does nothing, FixedHeightLayoutCache doesn't cache width, and that
* is all that could change.
*/
public void invalidatePathBounds(TreePath path) {
}
/**
* Informs the TreeState that it needs to recalculate all the sizes
* it is referencing.
*/
public void invalidateSizes() {
// Nothing to do here, rowHeight still same, which is all
// this is interested in, visible region may have changed though.
visibleNodesChanged();
}
/**
* Returns true if the value identified by row is currently expanded.
*/
public boolean isExpanded(TreePath path) {
if(path != null) {
FHTreeStateNode lastNode = getNodeForPath(path, true, false);
return (lastNode != null && lastNode.isExpanded());
}
return false;
}
/**
* Returns a rectangle giving the bounds needed to draw path.
*
* @param path a TreePath specifying a node
* @param placeIn a Rectangle object giving the available space
* @return a Rectangle object specifying the space to be used
*/
public Rectangle getBounds(TreePath path, Rectangle placeIn) {
if(path == null)
return null;
FHTreeStateNode node = getNodeForPath(path, true, false);
if(node != null)
return getBounds(node, -1, placeIn);
// node hasn't been created yet.
TreePath parentPath = path.getParentPath();
node = getNodeForPath(parentPath, true, false);
if (node != null && node.isExpanded()) {
int childIndex = treeModel.getIndexOfChild
(parentPath.getLastPathComponent(),
path.getLastPathComponent());
if(childIndex != -1)
return getBounds(node, childIndex, placeIn);
}
return null;
}
/**
* Returns the path for passed in row. If row is not visible
* null is returned.
*/
public TreePath getPathForRow(int row) {
if(row >= 0 && row < getRowCount()) {
if(root.getPathForRow(row, getRowCount(), info)) {
return info.getPath();
}
}
return null;
}
/**
* Returns the row that the last item identified in path is visible
* at. Will return -1 if any of the elements in path are not
* currently visible.
*/
public int getRowForPath(TreePath path) {
if(path == null || root == null)
return -1;
FHTreeStateNode node = getNodeForPath(path, true, false);
if(node != null)
return node.getRow();
TreePath parentPath = path.getParentPath();
node = getNodeForPath(parentPath, true, false);
if(node != null && node.isExpanded()) {
return node.getRowToModelIndex(treeModel.getIndexOfChild
(parentPath.getLastPathComponent(),
path.getLastPathComponent()));
}
return -1;
}
/**
* Returns the path to the node that is closest to x,y. If
* there is nothing currently visible this will return null, otherwise
* it'll always return a valid path. If you need to test if the
* returned object is exactly at x, y you should get the bounds for
* the returned path and test x, y against that.
*/
public TreePath getPathClosestTo(int x, int y) {
if(getRowCount() == 0)
return null;
int row = getRowContainingYLocation(y);
return getPathForRow(row);
}
/**
* Returns the number of visible children for row.
*/
public int getVisibleChildCount(TreePath path) {
FHTreeStateNode node = getNodeForPath(path, true, false);
if(node == null)
return 0;
return node.getTotalChildCount();
}
/**
* Returns an Enumerator that increments over the visible paths
* starting at the passed in location. The ordering of the enumeration
* is based on how the paths are displayed.
*/
public Enumeration<TreePath> getVisiblePathsFrom(TreePath path) {
if(path == null)
return null;
FHTreeStateNode node = getNodeForPath(path, true, false);
if(node != null) {
return new VisibleFHTreeStateNodeEnumeration(node);
}
TreePath parentPath = path.getParentPath();
node = getNodeForPath(parentPath, true, false);
if(node != null && node.isExpanded()) {
return new VisibleFHTreeStateNodeEnumeration(node,
treeModel.getIndexOfChild(parentPath.getLastPathComponent(),
path.getLastPathComponent()));
}
return null;
}
/**
* Marks the path <code>path</code> expanded state to
* <code>isExpanded</code>.
*/
public void setExpandedState(TreePath path, boolean isExpanded) {
if(isExpanded)
ensurePathIsExpanded(path, true);
else if(path != null) {
TreePath parentPath = path.getParentPath();
// YECK! Make the parent expanded.
if(parentPath != null) {
FHTreeStateNode parentNode = getNodeForPath(parentPath,
false, true);
if(parentNode != null)
parentNode.makeVisible();
}
// And collapse the child.
FHTreeStateNode childNode = getNodeForPath(path, true,
false);
if(childNode != null)
childNode.collapse(true);
}
}
/**
* Returns true if the path is expanded, and visible.
*/
public boolean getExpandedState(TreePath path) {
FHTreeStateNode node = getNodeForPath(path, true, false);
return (node != null) ? (node.isVisible() && node.isExpanded()) :
false;
}
//
// TreeModelListener methods
//
/**
* <p>Invoked after a node (or a set of siblings) has changed in some
* way. The node(s) have not changed locations in the tree or
* altered their children arrays, but other attributes have
* changed and may affect presentation. Example: the name of a
* file has changed, but it is in the same location in the file
* system.</p>
*
* <p>e.path() returns the path the parent of the changed node(s).</p>
*
* <p>e.childIndices() returns the index(es) of the changed node(s).</p>
*/
public void treeNodesChanged(TreeModelEvent e) {
if(e != null) {
int changedIndexs[];
FHTreeStateNode changedParent = getNodeForPath
(e.getTreePath(), false, false);
int maxCounter;
changedIndexs = e.getChildIndices();
/* Only need to update the children if the node has been
expanded once. */
// PENDING(scott): make sure childIndexs is sorted!
if (changedParent != null) {
if (changedIndexs != null &&
(maxCounter = changedIndexs.length) > 0) {
Object parentValue = changedParent.getUserObject();
for(int counter = 0; counter < maxCounter; counter++) {
FHTreeStateNode child = changedParent.
getChildAtModelIndex(changedIndexs[counter]);
if(child != null) {
child.setUserObject(treeModel.getChild(parentValue,
changedIndexs[counter]));
}
}
if(changedParent.isVisible() && changedParent.isExpanded())
visibleNodesChanged();
}
// Null for root indicates it changed.
else if (changedParent == root && changedParent.isVisible() &&
changedParent.isExpanded()) {
visibleNodesChanged();
}
}
}
}
/**
* <p>Invoked after nodes have been inserted into the tree.</p>
*
* <p>e.path() returns the parent of the new nodes
* <p>e.childIndices() returns the indices of the new nodes in
* ascending order.
*/
public void treeNodesInserted(TreeModelEvent e) {
if(e != null) {
int changedIndexs[];
FHTreeStateNode changedParent = getNodeForPath
(e.getTreePath(), false, false);
int maxCounter;
changedIndexs = e.getChildIndices();
/* Only need to update the children if the node has been
expanded once. */
// PENDING(scott): make sure childIndexs is sorted!
if(changedParent != null && changedIndexs != null &&
(maxCounter = changedIndexs.length) > 0) {
boolean isVisible =
(changedParent.isVisible() &&
changedParent.isExpanded());
for(int counter = 0; counter < maxCounter; counter++) {
changedParent.childInsertedAtModelIndex
(changedIndexs[counter], isVisible);
}
if(isVisible && treeSelectionModel != null)
treeSelectionModel.resetRowSelection();
if(changedParent.isVisible())
this.visibleNodesChanged();
}
}
}
/**
* <p>Invoked after nodes have been removed from the tree. Note that
* if a subtree is removed from the tree, this method may only be
* invoked once for the root of the removed subtree, not once for
* each individual set of siblings removed.</p>
*
* <p>e.path() returns the former parent of the deleted nodes.</p>
*
* <p>e.childIndices() returns the indices the nodes had before they were deleted in ascending order.</p>
*/
public void treeNodesRemoved(TreeModelEvent e) {
if(e != null) {
int changedIndexs[];
int maxCounter;
TreePath parentPath = e.getTreePath();
FHTreeStateNode changedParentNode = getNodeForPath
(parentPath, false, false);
changedIndexs = e.getChildIndices();
// PENDING(scott): make sure that changedIndexs are sorted in
// ascending order.
if(changedParentNode != null && changedIndexs != null &&
(maxCounter = changedIndexs.length) > 0) {
Object[] children = e.getChildren();
boolean isVisible =
(changedParentNode.isVisible() &&
changedParentNode.isExpanded());
for(int counter = maxCounter - 1; counter >= 0; counter--) {
changedParentNode.removeChildAtModelIndex
(changedIndexs[counter], isVisible);
}
if(isVisible) {
if(treeSelectionModel != null)
treeSelectionModel.resetRowSelection();
if (treeModel.getChildCount(changedParentNode.
getUserObject()) == 0 &&
changedParentNode.isLeaf()) {
// Node has become a leaf, collapse it.
changedParentNode.collapse(false);
}
visibleNodesChanged();
}
else if(changedParentNode.isVisible())
visibleNodesChanged();
}
}
}
/**
* <p>Invoked after the tree has drastically changed structure from a
* given node down. If the path returned by e.getPath() is of length
* one and the first element does not identify the current root node
* the first element should become the new root of the tree.<p>
*
* <p>e.path() holds the path to the node.</p>
* <p>e.childIndices() returns null.</p>
*/
public void treeStructureChanged(TreeModelEvent e) {
if(e != null) {
TreePath changedPath = e.getTreePath();
FHTreeStateNode changedNode = getNodeForPath
(changedPath, false, false);
// Check if root has changed, either to a null root, or
// to an entirely new root.
if (changedNode == root ||
(changedNode == null &&
((changedPath == null && treeModel != null &&
treeModel.getRoot() == null) ||
(changedPath != null && changedPath.getPathCount() <= 1)))) {
rebuild(true);
}
else if(changedNode != null) {
boolean wasExpanded, wasVisible;
FHTreeStateNode parent = (FHTreeStateNode)
changedNode.getParent();
wasExpanded = changedNode.isExpanded();
wasVisible = changedNode.isVisible();
int index = parent.getIndex(changedNode);
changedNode.collapse(false);
parent.remove(index);
if(wasVisible && wasExpanded) {
int row = changedNode.getRow();
parent.resetChildrenRowsFrom(row, index,
changedNode.getChildIndex());
changedNode = getNodeForPath(changedPath, false, true);
changedNode.expand();
}
if(treeSelectionModel != null && wasVisible && wasExpanded)
treeSelectionModel.resetRowSelection();
if(wasVisible)
this.visibleNodesChanged();
}
}
}
//
// Local methods
//
private void visibleNodesChanged() {
}
/**
* Returns the bounds for the given node. If <code>childIndex</code>
* is -1, the bounds of <code>parent</code> are returned, otherwise
* the bounds of the node at <code>childIndex</code> are returned.
*/
private Rectangle getBounds(FHTreeStateNode parent, int childIndex,
Rectangle placeIn) {
boolean expanded;
int level;
int row;
Object value;
if(childIndex == -1) {
// Getting bounds for parent
row = parent.getRow();
value = parent.getUserObject();
expanded = parent.isExpanded();
level = parent.getLevel();
}
else {
row = parent.getRowToModelIndex(childIndex);
value = treeModel.getChild(parent.getUserObject(), childIndex);
expanded = false;
level = parent.getLevel() + 1;
}
Rectangle bounds = getNodeDimensions(value, row, level,
expanded, boundsBuffer);
// No node dimensions, bail.
if(bounds == null)
return null;
if(placeIn == null)
placeIn = new Rectangle();
placeIn.x = bounds.x;
placeIn.height = getRowHeight();
placeIn.y = row * placeIn.height;
placeIn.width = bounds.width;
return placeIn;
}
/**
* Adjust the large row count of the AbstractTreeUI the receiver was
* created with.
*/
private void adjustRowCountBy(int changeAmount) {
rowCount += changeAmount;
}
/**
* Adds a mapping for node.
*/
private void addMapping(FHTreeStateNode node) {
treePathMapping.put(node.getTreePath(), node);
}
/**
* Removes the mapping for a previously added node.
*/
private void removeMapping(FHTreeStateNode node) {
treePathMapping.remove(node.getTreePath());
}
/**
* Returns the node previously added for <code>path</code>. This may
* return null, if you to create a node use getNodeForPath.
*/
private FHTreeStateNode getMapping(TreePath path) {
return treePathMapping.get(path);
}
/**
* Sent to completely rebuild the visible tree. All nodes are collapsed.
*/
private void rebuild(boolean clearSelection) {
Object rootUO;
treePathMapping.clear();
if(treeModel != null && (rootUO = treeModel.getRoot()) != null) {
root = createNodeForValue(rootUO, 0);
root.path = new TreePath(rootUO);
addMapping(root);
if(isRootVisible()) {
rowCount = 1;
root.row = 0;
}
else {
rowCount = 0;
root.row = -1;
}
root.expand();
}
else {
root = null;
rowCount = 0;
}
if(clearSelection && treeSelectionModel != null) {
treeSelectionModel.clearSelection();
}
this.visibleNodesChanged();
}
/**
* Returns the index of the row containing location. If there
* are no rows, -1 is returned. If location is beyond the last
* row index, the last row index is returned.
*/
private int getRowContainingYLocation(int location) {
if(getRowCount() == 0)
return -1;
return Math.max(0, Math.min(getRowCount() - 1,
location / getRowHeight()));
}
/**
* Ensures that all the path components in path are expanded, accept
* for the last component which will only be expanded if expandLast
* is true.
* Returns true if succesful in finding the path.
*/
private boolean ensurePathIsExpanded(TreePath aPath,
boolean expandLast) {
if(aPath != null) {
// Make sure the last entry isn't a leaf.
if(treeModel.isLeaf(aPath.getLastPathComponent())) {
aPath = aPath.getParentPath();
expandLast = true;
}
if(aPath != null) {
FHTreeStateNode lastNode = getNodeForPath(aPath, false,
true);
if(lastNode != null) {
lastNode.makeVisible();
if(expandLast)
lastNode.expand();
return true;
}
}
}
return false;
}
/**
* Creates and returns an instance of FHTreeStateNode.
*/
private FHTreeStateNode createNodeForValue(Object value,int childIndex) {
return new FHTreeStateNode(value, childIndex, -1);
}
/**
* Messages getTreeNodeForPage(path, onlyIfVisible, shouldCreate,
* path.length) as long as path is non-null and the length is > 0.
* Otherwise returns null.
*/
private FHTreeStateNode getNodeForPath(TreePath path,
boolean onlyIfVisible,
boolean shouldCreate) {
if(path != null) {
FHTreeStateNode node;
node = getMapping(path);
if(node != null) {
if(onlyIfVisible && !node.isVisible())
return null;
return node;
}
if(onlyIfVisible)
return null;
// Check all the parent paths, until a match is found.
Stack<TreePath> paths;
if(tempStacks.size() == 0) {
paths = new Stack<TreePath>();
}
else {
paths = tempStacks.pop();
}
try {
paths.push(path);
path = path.getParentPath();
node = null;
while(path != null) {
node = getMapping(path);
if(node != null) {
// Found a match, create entries for all paths in
// paths.
while(node != null && paths.size() > 0) {
path = paths.pop();
node = node.createChildFor(path.
getLastPathComponent());
}
return node;
}
paths.push(path);
path = path.getParentPath();
}
}
finally {
paths.removeAllElements();
tempStacks.push(paths);
}
// If we get here it means they share a different root!
return null;
}
return null;
}
/**
* FHTreeStateNode is used to track what has been expanded.
* FHTreeStateNode differs from VariableHeightTreeState.TreeStateNode
* in that it is highly model intensive. That is almost all queries to a
* FHTreeStateNode result in the TreeModel being queried. And it
* obviously does not support variable sized row heights.
*/
private class FHTreeStateNode extends DefaultMutableTreeNode {
/** Is this node expanded? */
protected boolean isExpanded;
/** Index of this node from the model. */
protected int childIndex;
/** Child count of the receiver. */
protected int childCount;
/** Row of the receiver. This is only valid if the row is expanded.
*/
protected int row;
/** Path of this node. */
protected TreePath path;
public FHTreeStateNode(Object userObject, int childIndex, int row) {
super(userObject);
this.childIndex = childIndex;
this.row = row;
}
//
// Overriden DefaultMutableTreeNode methods
//
/**
* Messaged when this node is added somewhere, resets the path
* and adds a mapping from path to this node.
*/
public void setParent(MutableTreeNode parent) {
super.setParent(parent);
if(parent != null) {
path = ((FHTreeStateNode)parent).getTreePath().
pathByAddingChild(getUserObject());
addMapping(this);
}
}
/**
* Messaged when this node is removed from its parent, this messages
* <code>removedFromMapping</code> to remove all the children.
*/
public void remove(int childIndex) {
FHTreeStateNode node = (FHTreeStateNode)getChildAt(childIndex);
node.removeFromMapping();
super.remove(childIndex);
}
/**
* Messaged to set the user object. This resets the path.
*/
public void setUserObject(Object o) {
super.setUserObject(o);
if(path != null) {
FHTreeStateNode parent = (FHTreeStateNode)getParent();
if(parent != null)
resetChildrenPaths(parent.getTreePath());
else
resetChildrenPaths(null);
}
}
//
//
/**
* Returns the index of the receiver in the model.
*/
public int getChildIndex() {
return childIndex;
}
/**
* Returns the <code>TreePath</code> of the receiver.
*/
public TreePath getTreePath() {
return path;
}
/**
* Returns the child for the passed in model index, this will
* return <code>null</code> if the child for <code>index</code>
* has not yet been created (expanded).
*/
public FHTreeStateNode getChildAtModelIndex(int index) {
// PENDING: Make this a binary search!
for(int counter = getChildCount() - 1; counter >= 0; counter--)
if(((FHTreeStateNode)getChildAt(counter)).childIndex == index)
return (FHTreeStateNode)getChildAt(counter);
return null;
}
/**
* Returns true if this node is visible. This is determined by
* asking all the parents if they are expanded.
*/
public boolean isVisible() {
FHTreeStateNode parent = (FHTreeStateNode)getParent();
if(parent == null)
return true;
return (parent.isExpanded() && parent.isVisible());
}
/**
* Returns the row of the receiver.
*/
public int getRow() {
return row;
}
/**
* Returns the row of the child with a model index of
* <code>index</code>.
*/
public int getRowToModelIndex(int index) {
FHTreeStateNode child;
int lastRow = getRow() + 1;
int retValue = lastRow;
// This too could be a binary search!
for(int counter = 0, maxCounter = getChildCount();
counter < maxCounter; counter++) {
child = (FHTreeStateNode)getChildAt(counter);
if(child.childIndex >= index) {
if(child.childIndex == index)
return child.row;
if(counter == 0)
return getRow() + 1 + index;
return child.row - (child.childIndex - index);
}
}
// YECK!
return getRow() + 1 + getTotalChildCount() -
(childCount - index);
}
/**
* Returns the number of children in the receiver by descending all
* expanded nodes and messaging them with getTotalChildCount.
*/
public int getTotalChildCount() {
if(isExpanded()) {
FHTreeStateNode parent = (FHTreeStateNode)getParent();
int pIndex;
if(parent != null && (pIndex = parent.getIndex(this)) + 1 <
parent.getChildCount()) {
// This node has a created sibling, to calc total
// child count directly from that!
FHTreeStateNode nextSibling = (FHTreeStateNode)parent.
getChildAt(pIndex + 1);
return nextSibling.row - row -
(nextSibling.childIndex - childIndex);
}
else {
int retCount = childCount;
for(int counter = getChildCount() - 1; counter >= 0;
counter--) {
retCount += ((FHTreeStateNode)getChildAt(counter))
.getTotalChildCount();
}
return retCount;
}
}
return 0;
}
/**
* Returns true if this node is expanded.
*/
public boolean isExpanded() {
return isExpanded;
}
/**
* The highest visible nodes have a depth of 0.
*/
public int getVisibleLevel() {
if (isRootVisible()) {
return getLevel();
} else {
return getLevel() - 1;
}
}
/**
* Recreates the receivers path, and all its childrens paths.
*/
protected void resetChildrenPaths(TreePath parentPath) {
removeMapping(this);
if(parentPath == null)
path = new TreePath(getUserObject());
else
path = parentPath.pathByAddingChild(getUserObject());
addMapping(this);
for(int counter = getChildCount() - 1; counter >= 0; counter--)
((FHTreeStateNode)getChildAt(counter)).
resetChildrenPaths(path);
}
/**
* Removes the receiver, and all its children, from the mapping
* table.
*/
protected void removeFromMapping() {
if(path != null) {
removeMapping(this);
for(int counter = getChildCount() - 1; counter >= 0; counter--)
((FHTreeStateNode)getChildAt(counter)).removeFromMapping();
}
}
/**
* Creates a new node to represent <code>userObject</code>.
* This does NOT check to ensure there isn't already a child node
* to manage <code>userObject</code>.
*/
protected FHTreeStateNode createChildFor(Object userObject) {
int newChildIndex = treeModel.getIndexOfChild
(getUserObject(), userObject);
if(newChildIndex < 0)
return null;
FHTreeStateNode aNode;
FHTreeStateNode child = createNodeForValue(userObject,
newChildIndex);
int childRow;
if(isVisible()) {
childRow = getRowToModelIndex(newChildIndex);
}
else {
childRow = -1;
}
child.row = childRow;
for(int counter = 0, maxCounter = getChildCount();
counter < maxCounter; counter++) {
aNode = (FHTreeStateNode)getChildAt(counter);
if(aNode.childIndex > newChildIndex) {
insert(child, counter);
return child;
}
}
add(child);
return child;
}
/**
* Adjusts the receiver, and all its children rows by
* <code>amount</code>.
*/
protected void adjustRowBy(int amount) {
row += amount;
if(isExpanded) {
for(int counter = getChildCount() - 1; counter >= 0;
counter--)
((FHTreeStateNode)getChildAt(counter)).adjustRowBy(amount);
}
}
/**
* Adjusts this node, its child, and its parent starting at
* an index of <code>index</code> index is the index of the child
* to start adjusting from, which is not necessarily the model
* index.
*/
protected void adjustRowBy(int amount, int startIndex) {
// Could check isVisible, but probably isn't worth it.
if(isExpanded) {
// children following startIndex.
for(int counter = getChildCount() - 1; counter >= startIndex;
counter--)
((FHTreeStateNode)getChildAt(counter)).adjustRowBy(amount);
}
// Parent
FHTreeStateNode parent = (FHTreeStateNode)getParent();
if(parent != null) {
parent.adjustRowBy(amount, parent.getIndex(this) + 1);
}
}
/**
* Messaged when the node has expanded. This updates all of
* the receivers children rows, as well as the total row count.
*/
protected void didExpand() {
int nextRow = setRowAndChildren(row);
FHTreeStateNode parent = (FHTreeStateNode)getParent();
int childRowCount = nextRow - row - 1;
if(parent != null) {
parent.adjustRowBy(childRowCount, parent.getIndex(this) + 1);
}
adjustRowCountBy(childRowCount);
}
/**
* Sets the receivers row to <code>nextRow</code> and recursively
* updates all the children of the receivers rows. The index the
* next row is to be placed as is returned.
*/
protected int setRowAndChildren(int nextRow) {
row = nextRow;
if(!isExpanded())
return row + 1;
int lastRow = row + 1;
int lastModelIndex = 0;
FHTreeStateNode child;
int maxCounter = getChildCount();
for(int counter = 0; counter < maxCounter; counter++) {
child = (FHTreeStateNode)getChildAt(counter);
lastRow += (child.childIndex - lastModelIndex);
lastModelIndex = child.childIndex + 1;
if(child.isExpanded) {
lastRow = child.setRowAndChildren(lastRow);
}
else {
child.row = lastRow++;
}
}
return lastRow + childCount - lastModelIndex;
}
/**
* Resets the receivers childrens rows. Starting with the child
* at <code>childIndex</code> (and <code>modelIndex</code>) to
* <code>newRow</code>. This uses <code>setRowAndChildren</code>
* to recursively descend children, and uses
* <code>resetRowSelection</code> to ascend parents.
*/
// This can be rather expensive, but is needed for the collapse
// case this is resulting from a remove (although I could fix
// that by having instances of FHTreeStateNode hold a ref to
// the number of children). I prefer this though, making determing
// the row of a particular node fast is very nice!
protected void resetChildrenRowsFrom(int newRow, int childIndex,
int modelIndex) {
int lastRow = newRow;
int lastModelIndex = modelIndex;
FHTreeStateNode node;
int maxCounter = getChildCount();
for(int counter = childIndex; counter < maxCounter; counter++) {
node = (FHTreeStateNode)getChildAt(counter);
lastRow += (node.childIndex - lastModelIndex);
lastModelIndex = node.childIndex + 1;
if(node.isExpanded) {
lastRow = node.setRowAndChildren(lastRow);
}
else {
node.row = lastRow++;
}
}
lastRow += childCount - lastModelIndex;
node = (FHTreeStateNode)getParent();
if(node != null) {
node.resetChildrenRowsFrom(lastRow, node.getIndex(this) + 1,
this.childIndex + 1);
}
else { // This is the root, reset total ROWCOUNT!
rowCount = lastRow;
}
}
/**
* Makes the receiver visible, but invoking
* <code>expandParentAndReceiver</code> on the superclass.
*/
protected void makeVisible() {
FHTreeStateNode parent = (FHTreeStateNode)getParent();
if(parent != null)
parent.expandParentAndReceiver();
}
/**
* Invokes <code>expandParentAndReceiver</code> on the parent,
* and expands the receiver.
*/
protected void expandParentAndReceiver() {
FHTreeStateNode parent = (FHTreeStateNode)getParent();
if(parent != null)
parent.expandParentAndReceiver();
expand();
}
/**
* Expands the receiver.
*/
protected void expand() {
if(!isExpanded && !isLeaf()) {
boolean visible = isVisible();
isExpanded = true;
childCount = treeModel.getChildCount(getUserObject());
if(visible) {
didExpand();
}
// Update the selection model.
if(visible && treeSelectionModel != null) {
treeSelectionModel.resetRowSelection();
}
}
}
/**
* Collapses the receiver. If <code>adjustRows</code> is true,
* the rows of nodes after the receiver are adjusted.
*/
protected void collapse(boolean adjustRows) {
if(isExpanded) {
if(isVisible() && adjustRows) {
int childCount = getTotalChildCount();
isExpanded = false;
adjustRowCountBy(-childCount);
// We can do this because adjustRowBy won't descend
// the children.
adjustRowBy(-childCount, 0);
}
else
isExpanded = false;
if(adjustRows && isVisible() && treeSelectionModel != null)
treeSelectionModel.resetRowSelection();
}
}
/**
* Returns true if the receiver is a leaf.
*/
public boolean isLeaf() {
TreeModel model = getModel();
return (model != null) ? model.isLeaf(this.getUserObject()) :
true;
}
/**
* Adds newChild to this nodes children at the appropriate location.
* The location is determined from the childIndex of newChild.
*/
protected void addNode(FHTreeStateNode newChild) {
boolean added = false;
int childIndex = newChild.getChildIndex();
for(int counter = 0, maxCounter = getChildCount();
counter < maxCounter; counter++) {
if(((FHTreeStateNode)getChildAt(counter)).getChildIndex() >
childIndex) {
added = true;
insert(newChild, counter);
counter = maxCounter;
}
}
if(!added)
add(newChild);
}
/**
* Removes the child at <code>modelIndex</code>.
* <code>isChildVisible</code> should be true if the receiver
* is visible and expanded.
*/
protected void removeChildAtModelIndex(int modelIndex,
boolean isChildVisible) {
FHTreeStateNode childNode = getChildAtModelIndex(modelIndex);
if(childNode != null) {
int row = childNode.getRow();
int index = getIndex(childNode);
childNode.collapse(false);
remove(index);
adjustChildIndexs(index, -1);
childCount--;
if(isChildVisible) {
// Adjust the rows.
resetChildrenRowsFrom(row, index, modelIndex);
}
}
else {
int maxCounter = getChildCount();
FHTreeStateNode aChild;
for(int counter = 0; counter < maxCounter; counter++) {
aChild = (FHTreeStateNode)getChildAt(counter);
if(aChild.childIndex >= modelIndex) {
if(isChildVisible) {
adjustRowBy(-1, counter);
adjustRowCountBy(-1);
}
// Since matched and children are always sorted by
// index, no need to continue testing with the
// above.
for(; counter < maxCounter; counter++)
((FHTreeStateNode)getChildAt(counter)).
childIndex--;
childCount--;
return;
}
}
// No children to adjust, but it was a child, so we still need
// to adjust nodes after this one.
if(isChildVisible) {
adjustRowBy(-1, maxCounter);
adjustRowCountBy(-1);
}
childCount--;
}
}
/**
* Adjusts the child indexs of the receivers children by
* <code>amount</code>, starting at <code>index</code>.
*/
protected void adjustChildIndexs(int index, int amount) {
for(int counter = index, maxCounter = getChildCount();
counter < maxCounter; counter++) {
((FHTreeStateNode)getChildAt(counter)).childIndex += amount;
}
}
/**
* Messaged when a child has been inserted at index. For all the
* children that have a childIndex >= index their index is incremented
* by one.
*/
protected void childInsertedAtModelIndex(int index,
boolean isExpandedAndVisible) {
FHTreeStateNode aChild;
int maxCounter = getChildCount();
for(int counter = 0; counter < maxCounter; counter++) {
aChild = (FHTreeStateNode)getChildAt(counter);
if(aChild.childIndex >= index) {
if(isExpandedAndVisible) {
adjustRowBy(1, counter);
adjustRowCountBy(1);
}
/* Since matched and children are always sorted by
index, no need to continue testing with the above. */
for(; counter < maxCounter; counter++)
((FHTreeStateNode)getChildAt(counter)).childIndex++;
childCount++;
return;
}
}
// No children to adjust, but it was a child, so we still need
// to adjust nodes after this one.
if(isExpandedAndVisible) {
adjustRowBy(1, maxCounter);
adjustRowCountBy(1);
}
childCount++;
}
/**
* Returns true if there is a row for <code>row</code>.
* <code>nextRow</code> gives the bounds of the receiver.
* Information about the found row is returned in <code>info</code>.
* This should be invoked on root with <code>nextRow</code> set
* to <code>getRowCount</code>().
*/
protected boolean getPathForRow(int row, int nextRow,
SearchInfo info) {
if(this.row == row) {
info.node = this;
info.isNodeParentNode = false;
info.childIndex = childIndex;
return true;
}
FHTreeStateNode child;
FHTreeStateNode lastChild = null;
for(int counter = 0, maxCounter = getChildCount();
counter < maxCounter; counter++) {
child = (FHTreeStateNode)getChildAt(counter);
if(child.row > row) {
if(counter == 0) {
// No node exists for it, and is first.
info.node = this;
info.isNodeParentNode = true;
info.childIndex = row - this.row - 1;
return true;
}
else {
// May have been in last childs bounds.
int lastChildEndRow = 1 + child.row -
(child.childIndex - lastChild.childIndex);
if(row < lastChildEndRow) {
return lastChild.getPathForRow(row,
lastChildEndRow, info);
}
// Between last child and child, but not in last child
info.node = this;
info.isNodeParentNode = true;
info.childIndex = row - lastChildEndRow +
lastChild.childIndex + 1;
return true;
}
}
lastChild = child;
}
// Not in children, but we should have it, offset from
// nextRow.
if(lastChild != null) {
int lastChildEndRow = nextRow -
(childCount - lastChild.childIndex) + 1;
if(row < lastChildEndRow) {
return lastChild.getPathForRow(row, lastChildEndRow, info);
}
// Between last child and child, but not in last child
info.node = this;
info.isNodeParentNode = true;
info.childIndex = row - lastChildEndRow +
lastChild.childIndex + 1;
return true;
}
else {
// No children.
int retChildIndex = row - this.row - 1;
if(retChildIndex >= childCount) {
return false;
}
info.node = this;
info.isNodeParentNode = true;
info.childIndex = retChildIndex;
return true;
}
}
/**
* Asks all the children of the receiver for their totalChildCount
* and returns this value (plus stopIndex).
*/
protected int getCountTo(int stopIndex) {
FHTreeStateNode aChild;
int retCount = stopIndex + 1;
for(int counter = 0, maxCounter = getChildCount();
counter < maxCounter; counter++) {
aChild = (FHTreeStateNode)getChildAt(counter);
if(aChild.childIndex >= stopIndex)
counter = maxCounter;
else
retCount += aChild.getTotalChildCount();
}
if(parent != null)
return retCount + ((FHTreeStateNode)getParent())
.getCountTo(childIndex);
if(!isRootVisible())
return (retCount - 1);
return retCount;
}
/**
* Returns the number of children that are expanded to
* <code>stopIndex</code>. This does not include the number
* of children that the child at <code>stopIndex</code> might
* have.
*/
protected int getNumExpandedChildrenTo(int stopIndex) {
FHTreeStateNode aChild;
int retCount = stopIndex;
for(int counter = 0, maxCounter = getChildCount();
counter < maxCounter; counter++) {
aChild = (FHTreeStateNode)getChildAt(counter);
if(aChild.childIndex >= stopIndex)
return retCount;
else {
retCount += aChild.getTotalChildCount();
}
}
return retCount;
}
/**
* Messaged when this node either expands or collapses.
*/
protected void didAdjustTree() {
}
} // FixedHeightLayoutCache.FHTreeStateNode
/**
* Used as a placeholder when getting the path in FHTreeStateNodes.
*/
private class SearchInfo {
protected FHTreeStateNode node;
protected boolean isNodeParentNode;
protected int childIndex;
protected TreePath getPath() {
if(node == null)
return null;
if(isNodeParentNode)
return node.getTreePath().pathByAddingChild(treeModel.getChild
(node.getUserObject(),
childIndex));
return node.path;
}
} // FixedHeightLayoutCache.SearchInfo
/**
* An enumerator to iterate through visible nodes.
*/
// This is very similiar to
// VariableHeightTreeState.VisibleTreeStateNodeEnumeration
private class VisibleFHTreeStateNodeEnumeration
implements Enumeration<TreePath>
{
/** Parent thats children are being enumerated. */
protected FHTreeStateNode parent;
/** Index of next child. An index of -1 signifies parent should be
* visibled next. */
protected int nextIndex;
/** Number of children in parent. */
protected int childCount;
protected VisibleFHTreeStateNodeEnumeration(FHTreeStateNode node) {
this(node, -1);
}
protected VisibleFHTreeStateNodeEnumeration(FHTreeStateNode parent,
int startIndex) {
this.parent = parent;
this.nextIndex = startIndex;
this.childCount = treeModel.getChildCount(this.parent.
getUserObject());
}
/**
* @return true if more visible nodes.
*/
public boolean hasMoreElements() {
return (parent != null);
}
/**
* @return next visible TreePath.
*/
public TreePath nextElement() {
if(!hasMoreElements())
throw new NoSuchElementException("No more visible paths");
TreePath retObject;
if(nextIndex == -1)
retObject = parent.getTreePath();
else {
FHTreeStateNode node = parent.getChildAtModelIndex(nextIndex);
if(node == null)
retObject = parent.getTreePath().pathByAddingChild
(treeModel.getChild(parent.getUserObject(),
nextIndex));
else
retObject = node.getTreePath();
}
updateNextObject();
return retObject;
}
/**
* Determines the next object by invoking <code>updateNextIndex</code>
* and if not succesful <code>findNextValidParent</code>.
*/
protected void updateNextObject() {
if(!updateNextIndex()) {
findNextValidParent();
}
}
/**
* Finds the next valid parent, this should be called when nextIndex
* is beyond the number of children of the current parent.
*/
protected boolean findNextValidParent() {
if(parent == root) {
// mark as invalid!
parent = null;
return false;
}
while(parent != null) {
FHTreeStateNode newParent = (FHTreeStateNode)parent.
getParent();
if(newParent != null) {
nextIndex = parent.childIndex;
parent = newParent;
childCount = treeModel.getChildCount
(parent.getUserObject());
if(updateNextIndex())
return true;
}
else
parent = null;
}
return false;
}
/**
* Updates <code>nextIndex</code> returning false if it is beyond
* the number of children of parent.
*/
protected boolean updateNextIndex() {
// nextIndex == -1 identifies receiver, make sure is expanded
// before descend.
if(nextIndex == -1 && !parent.isExpanded()) {
return false;
}
// Check that it can have kids
if(childCount == 0) {
return false;
}
// Make sure next index not beyond child count.
else if(++nextIndex >= childCount) {
return false;
}
FHTreeStateNode child = parent.getChildAtModelIndex(nextIndex);
if(child != null && child.isExpanded()) {
parent = child;
nextIndex = -1;
childCount = treeModel.getChildCount(child.getUserObject());
}
return true;
}
} // FixedHeightLayoutCache.VisibleFHTreeStateNodeEnumeration
}