/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
*/
/**
* An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
* linked nodes.
*
* <p> The optional capacity bound constructor argument serves as a
* way to prevent excessive expansion. The capacity, if unspecified,
* is equal to {@link Integer#MAX_VALUE}. Linked nodes are
* dynamically created upon each insertion unless this would bring the
* deque above capacity.
*
* <p>Most operations run in constant time (ignoring time spent
* blocking). Exceptions include {@link #remove(Object) remove},
* {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
* #removeLastOccurrence removeLastOccurrence}, {@link #contains
* contains}, {@link #iterator iterator.remove()}, and the bulk
* operations, all of which run in linear time.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.6
* @author Doug Lea
* @param <E> the type of elements held in this collection
*/
public class LinkedBlockingDeque<E>
extends AbstractQueue<E>
/*
* Implemented as a simple doubly-linked list protected by a
* single lock and using conditions to manage blocking.
*
* To implement weakly consistent iterators, it appears we need to
* keep all Nodes GC-reachable from a predecessor dequeued Node.
* That would cause two problems:
* - allow a rogue Iterator to cause unbounded memory retention
* - cause cross-generational linking of old Nodes to new Nodes if
* a Node was tenured while live, which generational GCs have a
* hard time dealing with, causing repeated major collections.
* However, only non-deleted Nodes need to be reachable from
* dequeued Nodes, and reachability does not necessarily have to
* be of the kind understood by the GC. We use the trick of
* linking a Node that has just been dequeued to itself. Such a
* self-link implicitly means to jump to "first" (for next links)
* or "last" (for prev links).
*/
/*
* here, and that introduces ambiguities. Often we want the
* BlockingDeque javadoc combined with the AbstractQueue
* implementation, so a lot of method specs are duplicated here.
*/
/** Doubly-linked list node class */
static final class Node<E> {
/**
* The item, or null if this node has been removed.
*/
E item;
/**
* One of:
* - the real predecessor Node
* - this Node, meaning the predecessor is tail
* - null, meaning there is no predecessor
*/
/**
* One of:
* - the real successor Node
* - this Node, meaning the successor is head
* - null, meaning there is no successor
*/
Node(E x) {
item = x;
}
}
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
/** Number of items in the deque */
private transient int count;
/** Maximum number of items in the deque */
private final int capacity;
/** Main lock guarding all access */
/** Condition for waiting takes */
/** Condition for waiting puts */
/**
* Creates a {@code LinkedBlockingDeque} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingDeque() {
}
/**
* Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
*
* @param capacity the capacity of this deque
* @throws IllegalArgumentException if {@code capacity} is less than 1
*/
}
/**
* Creates a {@code LinkedBlockingDeque} with a capacity of
* {@link Integer#MAX_VALUE}, initially containing the elements of
* the given collection, added in traversal order of the
* collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
try {
for (E e : c) {
if (e == null)
throw new NullPointerException();
throw new IllegalStateException("Deque full");
}
} finally {
}
}
// Basic linking and unlinking operations, called only while holding lock
/**
* Links node as first element, or returns false if full.
*/
// assert lock.isHeldByCurrentThread();
return false;
else
++count;
return true;
}
/**
* Links node as last element, or returns false if full.
*/
// assert lock.isHeldByCurrentThread();
return false;
else
++count;
return true;
}
/**
* Removes and returns first element, or null if empty.
*/
private E unlinkFirst() {
// assert lock.isHeldByCurrentThread();
if (f == null)
return null;
f.next = f; // help GC
first = n;
if (n == null)
else
--count;
return item;
}
/**
* Removes and returns last element, or null if empty.
*/
private E unlinkLast() {
// assert lock.isHeldByCurrentThread();
if (l == null)
return null;
l.prev = l; // help GC
last = p;
if (p == null)
else
--count;
return item;
}
/**
* Unlinks x.
*/
// assert lock.isHeldByCurrentThread();
if (p == null) {
unlinkFirst();
} else if (n == null) {
unlinkLast();
} else {
p.next = n;
n.prev = p;
// Don't mess with x's links. They may still be in use by
// an iterator.
--count;
}
}
// BlockingDeque methods
/**
* @throws IllegalStateException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void addFirst(E e) {
if (!offerFirst(e))
throw new IllegalStateException("Deque full");
}
/**
* @throws IllegalStateException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void addLast(E e) {
if (!offerLast(e))
throw new IllegalStateException("Deque full");
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerFirst(E e) {
if (e == null) throw new NullPointerException();
try {
} finally {
}
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerLast(E e) {
if (e == null) throw new NullPointerException();
try {
} finally {
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
if (e == null) throw new NullPointerException();
try {
} finally {
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
if (e == null) throw new NullPointerException();
try {
} finally {
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
throws InterruptedException {
if (e == null) throw new NullPointerException();
try {
if (nanos <= 0)
return false;
}
return true;
} finally {
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
throws InterruptedException {
if (e == null) throw new NullPointerException();
try {
if (nanos <= 0)
return false;
}
return true;
} finally {
}
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {
E x = pollFirst();
if (x == null) throw new NoSuchElementException();
return x;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {
E x = pollLast();
if (x == null) throw new NoSuchElementException();
return x;
}
public E pollFirst() {
try {
return unlinkFirst();
} finally {
}
}
public E pollLast() {
try {
return unlinkLast();
} finally {
}
}
try {
E x;
while ( (x = unlinkFirst()) == null)
return x;
} finally {
}
}
try {
E x;
while ( (x = unlinkLast()) == null)
return x;
} finally {
}
}
throws InterruptedException {
try {
E x;
while ( (x = unlinkFirst()) == null) {
if (nanos <= 0)
return null;
}
return x;
} finally {
}
}
throws InterruptedException {
try {
E x;
while ( (x = unlinkLast()) == null) {
if (nanos <= 0)
return null;
}
return x;
} finally {
}
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {
E x = peekFirst();
if (x == null) throw new NoSuchElementException();
return x;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {
E x = peekLast();
if (x == null) throw new NoSuchElementException();
return x;
}
public E peekFirst() {
try {
} finally {
}
}
public E peekLast() {
try {
} finally {
}
}
if (o == null) return false;
try {
unlink(p);
return true;
}
}
return false;
} finally {
}
}
if (o == null) return false;
try {
unlink(p);
return true;
}
}
return false;
} finally {
}
}
// BlockingQueue methods
/**
* Inserts the specified element at the end of this deque unless it would
* violate capacity restrictions. When using a capacity-restricted deque,
* it is generally preferable to use method {@link #offer(Object) offer}.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @throws IllegalStateException if the element cannot be added at this
* time due to capacity restrictions
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
addLast(e);
return true;
}
/**
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
return offerLast(e);
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
putLast(e);
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
throws InterruptedException {
}
/**
* Retrieves and removes the head of the queue represented by this deque.
* This method differs from {@link #poll poll} only in that it throws an
* exception if this deque is empty.
*
* <p>This method is equivalent to {@link #removeFirst() removeFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException if this deque is empty
*/
public E remove() {
return removeFirst();
}
public E poll() {
return pollFirst();
}
return takeFirst();
}
}
/**
* Retrieves, but does not remove, the head of the queue represented by
* this deque. This method differs from {@link #peek peek} only in that
* it throws an exception if this deque is empty.
*
* <p>This method is equivalent to {@link #getFirst() getFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException if this deque is empty
*/
public E element() {
return getFirst();
}
public E peek() {
return peekFirst();
}
/**
* Returns the number of additional elements that this deque can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this deque
* less the current {@code size} of this deque.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
try {
} finally {
}
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
try {
for (int i = 0; i < n; i++) {
unlinkFirst();
}
return n;
} finally {
}
}
// Stack methods
/**
* @throws IllegalStateException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void push(E e) {
addFirst(e);
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E pop() {
return removeFirst();
}
// Collection methods
/**
* Removes the first occurrence of the specified element from this deque.
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* <p>This method is equivalent to
* {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if this deque changed as a result of the call
*/
return removeFirstOccurrence(o);
}
/**
* Returns the number of elements in this deque.
*
* @return the number of elements in this deque
*/
public int size() {
try {
return count;
} finally {
}
}
/**
* Returns {@code true} if this deque contains the specified element.
* More formally, returns {@code true} if and only if this deque contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this deque
* @return {@code true} if this deque contains the specified element
*/
if (o == null) return false;
try {
return true;
return false;
} finally {
}
}
/*
* TODO: Add support for more efficient bulk operations.
*
* We don't want to acquire the lock for every iteration, but we
* also want other threads a chance to interact with the
* collection, especially when count is close to capacity.
*/
// /**
// * Adds all of the elements in the specified collection to this
// * queue. Attempts to addAll of a queue to itself result in
// * {@code IllegalArgumentException}. Further, the behavior of
// * this operation is undefined if the specified collection is
// * modified while the operation is in progress.
// *
// * @param c collection containing elements to be added to this queue
// * @return {@code true} if this queue changed as a result of the call
// * @throws ClassCastException {@inheritDoc}
// * @throws NullPointerException {@inheritDoc}
// * @throws IllegalArgumentException {@inheritDoc}
// * @throws IllegalStateException {@inheritDoc}
// * @see #add(Object)
// */
// public boolean addAll(Collection<? extends E> c) {
// if (c == null)
// throw new NullPointerException();
// if (c == this)
// throw new IllegalArgumentException();
// final ReentrantLock lock = this.lock;
// lock.lock();
// try {
// boolean modified = false;
// for (E e : c)
// if (linkLast(e))
// modified = true;
// return modified;
// } finally {
// lock.unlock();
// }
// }
/**
* Returns an array containing all of the elements in this deque, in
* proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
@SuppressWarnings("unchecked")
try {
int k = 0;
a[k++] = p.item;
return a;
} finally {
}
}
/**
* Returns an array containing all of the elements in this deque, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the deque fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this deque.
*
* <p>If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
try {
int k = 0;
a[k++] = (T)p.item;
if (a.length > k)
a[k] = null;
return a;
} finally {
}
}
try {
if (p == null)
return "[]";
for (;;) {
E e = p.item;
p = p.next;
if (p == null)
}
} finally {
}
}
/**
* Atomically removes all of the elements from this deque.
* The deque will be empty after this call returns.
*/
public void clear() {
try {
f = n;
}
count = 0;
} finally {
}
}
/**
* Returns an iterator over the elements in this deque in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned iterator is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException}, and guarantees to traverse
* elements as they existed upon construction of the iterator, and
* may (but is not guaranteed to) reflect any modifications
* subsequent to construction.
*
* @return an iterator over the elements in this deque in proper sequence
*/
return new Itr();
}
/**
* Returns an iterator over the elements in this deque in reverse
* sequential order. The elements will be returned in order from
* last (tail) to first (head).
*
* <p>The returned iterator is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException}, and guarantees to traverse
* elements as they existed upon construction of the iterator, and
* may (but is not guaranteed to) reflect any modifications
* subsequent to construction.
*
* @return an iterator over the elements in this deque in reverse order
*/
return new DescendingItr();
}
/**
* Base class for Iterators for LinkedBlockingDeque
*/
/**
* The next node to return in next()
*/
/**
* nextItem holds on to item fields because once we claim that
* an element exists in hasNext(), we must return item read
* under lock (in advance()) even if it was in the process of
* being removed when hasNext() was called.
*/
E nextItem;
/**
* Node returned by most recent call to next. Needed by remove.
* Reset to null if this element is deleted by a call to remove.
*/
AbstractItr() {
// set to initial position
try {
} finally {
}
}
/**
* Returns the successor node of the given non-null, but
* possibly previously deleted, node.
*/
// Chains of deleted nodes ending in null or self-links
// are possible if multiple interior nodes are removed.
for (;;) {
if (s == null)
return null;
return s;
else if (s == n)
return firstNode();
else
n = s;
}
}
/**
* Advances next.
*/
void advance() {
try {
// assert next != null;
} finally {
}
}
public boolean hasNext() {
}
public E next() {
throw new NoSuchElementException();
E x = nextItem;
advance();
return x;
}
public void remove() {
if (n == null)
throw new IllegalStateException();
try {
unlink(n);
} finally {
}
}
}
/** Forward iterator */
}
/** Descending iterator */
}
/**
* Save the state of this deque to a stream (that is, serialize it).
*
* @serialData The capacity (int), followed by elements (each an
* {@code Object}) in the proper order, followed by a null
* @param s the stream
*/
try {
// Write out capacity and any hidden stuff
s.defaultWriteObject();
// Write out all elements in the proper order.
s.writeObject(p.item);
// Use trailing null as sentinel
s.writeObject(null);
} finally {
}
}
/**
* Reconstitute this deque from a stream (that is,
* deserialize it).
* @param s the stream
*/
s.defaultReadObject();
count = 0;
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
break;
}
}
}