/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* Hash table based implementation of the <tt>Map</tt> interface, with
* <em>weak keys</em>.
* An entry in a <tt>WeakHashMap</tt> will automatically be removed when
* its key is no longer in ordinary use. More precisely, the presence of a
* mapping for a given key will not prevent the key from being discarded by the
* garbage collector, that is, made finalizable, finalized, and then reclaimed.
* When a key has been discarded its entry is effectively removed from the map,
* so this class behaves somewhat differently from other <tt>Map</tt>
* implementations.
*
* <p> Both null values and the null key are supported. This class has
* performance characteristics similar to those of the <tt>HashMap</tt>
* class, and has the same efficiency parameters of <em>initial capacity</em>
* and <em>load factor</em>.
*
* <p> Like most collection classes, this class is not synchronized.
* A synchronized <tt>WeakHashMap</tt> may be constructed using the
* {@link Collections#synchronizedMap Collections.synchronizedMap}
* method.
*
* <p> This class is intended primarily for use with key objects whose
* <tt>equals</tt> methods test for object identity using the
* <tt>==</tt> operator. Once such a key is discarded it can never be
* recreated, so it is impossible to do a lookup of that key in a
* <tt>WeakHashMap</tt> at some later time and be surprised that its entry
* has been removed. This class will work perfectly well with key objects
* whose <tt>equals</tt> methods are not based upon object identity, such
* as <tt>String</tt> instances. With such recreatable key objects,
* however, the automatic removal of <tt>WeakHashMap</tt> entries whose
* keys have been discarded may prove to be confusing.
*
* <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
* the actions of the garbage collector, so several familiar (though not
* required) <tt>Map</tt> invariants do not hold for this class. Because
* the garbage collector may discard keys at any time, a
* <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
* removing entries. In particular, even if you synchronize on a
* <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
* is possible for the <tt>size</tt> method to return smaller values over
* time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
* then <tt>true</tt>, for the <tt>containsKey</tt> method to return
* <tt>true</tt> and later <tt>false</tt> for a given key, for the
* <tt>get</tt> method to return a value for a given key but later return
* <tt>null</tt>, for the <tt>put</tt> method to return
* <tt>null</tt> and the <tt>remove</tt> method to return
* <tt>false</tt> for a key that previously appeared to be in the map, and
* for successive examinations of the key set, the value collection, and
* the entry set to yield successively smaller numbers of elements.
*
* <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
* the referent of a weak reference. Therefore a key will automatically be
* removed only after the weak references to it, both inside and outside of the
* map, have been cleared by the garbage collector.
*
* <p> <strong>Implementation note:</strong> The value objects in a
* <tt>WeakHashMap</tt> are held by ordinary strong references. Thus care
* should be taken to ensure that value objects do not strongly refer to their
* own keys, either directly or indirectly, since that will prevent the keys
* from being discarded. Note that a value object may refer indirectly to its
* key via the <tt>WeakHashMap</tt> itself; that is, a value object may
* strongly refer to some other key object whose associated value object, in
* turn, strongly refers to the key of the first value object. If the values
* in the map do not rely on the map holding strong references to them, one way
* to deal with this is to wrap values themselves within
* <tt>WeakReferences</tt> before
* inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
* and then unwrapping upon each <tt>get</tt>.
*
* <p>The iterators returned by the <tt>iterator</tt> method of the collections
* returned by all of this class's "collection view methods" are
* <i>fail-fast</i>: if the map is structurally modified at any time after the
* iterator is created, in any way except through the iterator's own
* <tt>remove</tt> method, the iterator will throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*
* @author Doug Lea
* @author Josh Bloch
* @author Mark Reinhold
* @since 1.2
* @see java.util.HashMap
* @see java.lang.ref.WeakReference
*/
public class WeakHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V> {
/**
* The default initial capacity -- MUST be a power of two.
*/
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
/**
* The load factor used when none specified in constructor.
*/
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
/**
* The number of key-value mappings contained in this weak hash map.
*/
private int size;
/**
* The next size value at which to resize (capacity * load factor).
*/
private int threshold;
/**
* The load factor for the hash table.
*/
private final float loadFactor;
/**
* Reference queue for cleared WeakEntries
*/
/**
* The number of times this WeakHashMap has been structurally modified.
* Structural modifications are those that change the number of
* mappings in the map or otherwise modify its internal structure
* (e.g., rehash). This field is used to make iterators on
* Collection-views of the map fail-fast.
*
* @see ConcurrentModificationException
*/
int modCount;
/**
* The default threshold of map capacity above which alternative hashing is
* used for String keys. Alternative hashing reduces the incidence of
* collisions due to weak hash code calculation for String keys.
* <p/>
* This value may be overridden by defining the system property
* {@code jdk.map.althashing.threshold}. A property value of {@code 1}
* forces alternative hashing to be used at all times whereas
* {@code -1} value ensures that alternative hashing is never used.
*/
/**
* holds values which can't be initialized until after VM is booted.
*/
private static class Holder {
/**
* Table capacity above which to switch to use alternative hashing.
*/
static final int ALTERNATIVE_HASHING_THRESHOLD;
static {
"jdk.map.althashing.threshold"));
int threshold;
try {
// disable alternative hashing if -1
if (threshold == -1) {
}
if (threshold < 0) {
throw new IllegalArgumentException("value must be positive integer.");
}
} catch(IllegalArgumentException failed) {
}
}
}
/**
* If {@code true} then perform alternate hashing to reduce the incidence of
* collisions due to weak hash code calculation.
*/
transient boolean useAltHashing;
/**
* A randomizing value associated with this instance that is applied to
* hash code of keys to make hash collisions harder to find.
*/
@SuppressWarnings("unchecked")
}
/**
* Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
* capacity and the given load factor.
*
* @param initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
* @param loadFactor The load factor of the <tt>WeakHashMap</tt>
* @throws IllegalArgumentException if the initial capacity is negative,
* or if the load factor is nonpositive.
*/
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Initial Capacity: "+
if (initialCapacity > MAXIMUM_CAPACITY)
throw new IllegalArgumentException("Illegal Load factor: "+
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
}
/**
* Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
* @throws IllegalArgumentException if the initial capacity is negative
*/
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
* capacity (16) and load factor (0.75).
*/
public WeakHashMap() {
}
/**
* Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
* specified map. The <tt>WeakHashMap</tt> is created with the default
* load factor (0.75) and an initial capacity sufficient to hold the
* mappings in the specified map.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
* @since 1.3
*/
putAll(m);
}
// internal utilities
/**
* Value representing null keys inside tables.
*/
/**
* Use NULL_KEY for key if it is null.
*/
}
/**
* Returns internal representation of null key back to caller as null.
*/
}
/**
* Checks for equality of non-null reference x and possibly-null y. By
* default uses Object.equals.
*/
return x == y || x.equals(y);
}
/**
* Retrieve object hash code and applies a supplemental hash function to the
* result hash, which defends against poor quality hash functions. This is
* critical because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits.
*/
int h;
if (useAltHashing) {
h = hashSeed;
if (k instanceof String) {
} else {
h ^= k.hashCode();
}
} else {
h = k.hashCode();
}
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* Returns index for hash code h.
*/
return h & (length-1);
}
/**
* Expunges stale entries from the table.
*/
private void expungeStaleEntries() {
synchronized (queue) {
@SuppressWarnings("unchecked")
while (p != null) {
if (p == e) {
if (prev == e)
else
// Must not null out e.next;
// stale entries may be in use by a HashIterator
size--;
break;
}
prev = p;
p = next;
}
}
}
}
/**
* Returns the table after first expunging stale entries.
*/
return table;
}
/**
* Returns the number of key-value mappings in this map.
* This result is a snapshot, and may not reflect unprocessed
* entries that will be removed before next attempted access
* because they are no longer referenced.
*/
public int size() {
if (size == 0)
return 0;
return size;
}
/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
* This result is a snapshot, and may not reflect unprocessed
* entries that will be removed before next attempted access
* because they are no longer referenced.
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
int h = hash(k);
while (e != null) {
return e.value;
e = e.next;
}
return null;
}
/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
* <tt>false</tt> otherwise
*/
}
/**
* Returns the entry associated with the specified key in this map.
* Returns null if the map contains no mapping for this key.
*/
int h = hash(k);
e = e.next;
return e;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for this key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated.
* @param value value to be associated with the specified key.
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
int h = hash(k);
return oldValue;
}
}
modCount++;
return null;
}
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
if (oldCapacity == MAXIMUM_CAPACITY) {
return;
}
boolean oldAltHashing = useAltHashing;
/*
* If ignoring null elements and processing ref queue caused massive
* shrinkage, then restore old table. This should be rare, but avoids
* unbounded expansion of garbage-filled tables.
*/
} else {
}
}
/** Transfers all entries from src to dest tables */
while (e != null) {
size--;
} else {
if (rehash) {
}
dest[i] = e;
}
e = next;
}
}
}
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for any
* of the keys currently in the specified map.
*
* @param m mappings to be stored in this map.
* @throws NullPointerException if the specified map is null.
*/
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
/*
* Expand the map if the map if the number of mappings to be added
* is greater than or equal to threshold. This is conservative; the
* obvious condition is (m.size() + size) >= threshold, but this
* condition could result in a map with twice the appropriate capacity,
* if the keys to be added overlap with the keys already in this map.
* By using the conservative calculation, we subject ourself
* to at most one extra resize.
*/
if (numKeysToBeAdded > threshold) {
if (targetCapacity > MAXIMUM_CAPACITY)
while (newCapacity < targetCapacity)
newCapacity <<= 1;
}
}
/**
* Removes the mapping for a key from this weak hash map if it is present.
* More formally, if this map contains a mapping from key <tt>k</tt> to
* value <tt>v</tt> such that <code>(key==null ? k==null :
* key.equals(k))</code>, that mapping is removed. (The map can contain
* at most one such mapping.)
*
* <p>Returns the value to which this map previously associated the key,
* or <tt>null</tt> if the map contained no mapping for the key. A
* return value of <tt>null</tt> does not <i>necessarily</i> indicate
* that the map contained no mapping for the key; it's also possible
* that the map explicitly mapped the key to <tt>null</tt>.
*
* <p>The map will not contain a mapping for the specified key once the
* call returns.
*
* @param key key whose mapping is to be removed from the map
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>
*/
int h = hash(k);
while (e != null) {
modCount++;
size--;
if (prev == e)
else
return e.value;
}
prev = e;
e = next;
}
return null;
}
/** Special version of remove needed by Entry set */
return false;
int h = hash(k);
while (e != null) {
modCount++;
size--;
if (prev == e)
else
return true;
}
prev = e;
e = next;
}
return false;
}
/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
public void clear() {
// clear out ref queue. We don't need to expunge entries
// since table is getting cleared.
;
modCount++;
size = 0;
// Allocation of array may have caused GC, which may have caused
// additional entries to go stale. Removing these entries from the
// reference queue will make them eligible for reclamation.
;
}
/**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
*/
return containsNullValue();
return true;
return false;
}
/**
* Special-case code for containsValue with null argument
*/
private boolean containsNullValue() {
return true;
return false;
}
/**
* The entries in this hash table extend WeakReference, using its main ref
* field as the key.
*/
V value;
int hash;
/**
* Creates new entry.
*/
}
@SuppressWarnings("unchecked")
public K getKey() {
}
public V getValue() {
return value;
}
return oldValue;
}
return false;
return true;
}
return false;
}
public int hashCode() {
K k = getKey();
V v = getValue();
}
}
}
private int index;
/**
* Strong reference needed to avoid disappearance of key
* between hasNext and next
*/
/**
* Strong reference needed to avoid disappearance of key
* between nextEntry() and any use of the entry
*/
HashIterator() {
}
public boolean hasNext() {
int i = index;
while (e == null && i > 0)
e = t[--i];
entry = e;
index = i;
if (e == null) {
currentKey = null;
return false;
}
}
return true;
}
/** The common parts of next() across different types of iterators */
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
throw new NoSuchElementException();
return lastReturned;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
lastReturned = null;
currentKey = null;
}
}
public V next() {
}
}
public K next() {
}
}
return nextEntry();
}
}
// Views
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
* operations.
*/
}
return new KeyIterator();
}
public int size() {
return WeakHashMap.this.size();
}
return containsKey(o);
}
if (containsKey(o)) {
WeakHashMap.this.remove(o);
return true;
}
else
return false;
}
public void clear() {
WeakHashMap.this.clear();
}
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own <tt>remove</tt> operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*/
}
return new ValueIterator();
}
public int size() {
return WeakHashMap.this.size();
}
return containsValue(o);
}
public void clear() {
WeakHashMap.this.clear();
}
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation, or through the
* <tt>setValue</tt> operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
* <tt>clear</tt> operations. It does not support the
* <tt>add</tt> or <tt>addAll</tt> operations.
*/
}
return new EntryIterator();
}
return false;
}
return removeMapping(o);
}
public int size() {
return WeakHashMap.this.size();
}
public void clear() {
WeakHashMap.this.clear();
}
return list;
}
}
public <T> T[] toArray(T[] a) {
}
}
}