/*
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.java.util.jar.pack;
import com.sun.java.util.jar.pack.ConstantPool.Entry;
import com.sun.java.util.jar.pack.ConstantPool.Index;
import com.sun.java.util.jar.pack.Package.Class.Field;
import java.io.BufferedOutputStream;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.EOFException;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FilterInputStream;
import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.jar.Pack200;
import static com.sun.java.util.jar.pack.Constants.*;
/**
* Define the structure and ordering of "bands" in a packed file.
* @author John Rose
*/
abstract
class BandStructure {
static final int MAX_EFFORT = 9;
static final int MIN_EFFORT = 1;
static final int DEFAULT_EFFORT = 5;
// Inherit options from Pack200:
PropMap p200 = Utils.currentPropMap();
int verbose = p200.getInteger(Utils.DEBUG_VERBOSE);
int effort = p200.getInteger(Pack200.Packer.EFFORT);
{ if (effort == 0) effort = DEFAULT_EFFORT; }
boolean optDumpBands = p200.getBoolean(Utils.COM_PREFIX+"dump.bands");
boolean optDebugBands = p200.getBoolean(Utils.COM_PREFIX+"debug.bands");
// Various heuristic options.
boolean optVaryCodings = !p200.getBoolean(Utils.COM_PREFIX+"no.vary.codings");
boolean optBigStrings = !p200.getBoolean(Utils.COM_PREFIX+"no.big.strings");
abstract protected Index getCPIndex(byte tag);
// Local copy of package version.
private int packageMajver = -1;
/** Call this exactly once, early, to specify the archive major version. */
public void initPackageMajver(int packageMajver) throws IOException {
assert(packageMajver > 0 && packageMajver < 0x10000);
if (this.packageMajver > 0) {
throw new IOException(
"Package majver is already initialized to " + this.packageMajver+
"; new setting is " + packageMajver);
}
this.packageMajver = packageMajver;
adjustToMajver();
}
public int getPackageMajver() {
if (packageMajver < 0) {
throw new RuntimeException("Package majver not yet initialized");
}
return packageMajver;
}
private final boolean isReader = this instanceof PackageReader;
protected BandStructure() {
}
final static Coding BYTE1 = Coding.of(1,256);
final static Coding CHAR3 = Coding.of(3,128);
// Note: Tried sharper (3,16) with no post-zip benefit.
// This is best used with BCI values:
final static Coding BCI5 = Coding.of(5,4); // mostly 1-byte offsets
final static Coding BRANCH5 = Coding.of(5,4,2); // mostly forward branches
final static Coding UNSIGNED5 = Coding.of(5,64);
final static Coding UDELTA5 = UNSIGNED5.getDeltaCoding();
// "sharp" (5,64) zips 0.4% better than "medium" (5,128)
// It zips 1.1% better than "flat" (5,192)
final static Coding SIGNED5 = Coding.of(5,64,1); //sharp
final static Coding DELTA5 = SIGNED5.getDeltaCoding();
// Note: Tried (5,128,2) and (5,192,2) with no benefit.
final static Coding MDELTA5 = Coding.of(5,64,2).getDeltaCoding();
final private static Coding[] basicCodings = {
// Table of "Canonical BHSD Codings" from Pack200 spec.
null, // _meta_default
// Fixed-length codings:
Coding.of(1,256,0),
Coding.of(1,256,1),
Coding.of(1,256,0).getDeltaCoding(),
Coding.of(1,256,1).getDeltaCoding(),
Coding.of(2,256,0),
Coding.of(2,256,1),
Coding.of(2,256,0).getDeltaCoding(),
Coding.of(2,256,1).getDeltaCoding(),
Coding.of(3,256,0),
Coding.of(3,256,1),
Coding.of(3,256,0).getDeltaCoding(),
Coding.of(3,256,1).getDeltaCoding(),
Coding.of(4,256,0),
Coding.of(4,256,1),
Coding.of(4,256,0).getDeltaCoding(),
Coding.of(4,256,1).getDeltaCoding(),
// Full-range variable-length codings:
Coding.of(5, 4,0),
Coding.of(5, 4,1),
Coding.of(5, 4,2),
Coding.of(5, 16,0),
Coding.of(5, 16,1),
Coding.of(5, 16,2),
Coding.of(5, 32,0),
Coding.of(5, 32,1),
Coding.of(5, 32,2),
Coding.of(5, 64,0),
Coding.of(5, 64,1),
Coding.of(5, 64,2),
Coding.of(5,128,0),
Coding.of(5,128,1),
Coding.of(5,128,2),
Coding.of(5, 4,0).getDeltaCoding(),
Coding.of(5, 4,1).getDeltaCoding(),
Coding.of(5, 4,2).getDeltaCoding(),
Coding.of(5, 16,0).getDeltaCoding(),
Coding.of(5, 16,1).getDeltaCoding(),
Coding.of(5, 16,2).getDeltaCoding(),
Coding.of(5, 32,0).getDeltaCoding(),
Coding.of(5, 32,1).getDeltaCoding(),
Coding.of(5, 32,2).getDeltaCoding(),
Coding.of(5, 64,0).getDeltaCoding(),
Coding.of(5, 64,1).getDeltaCoding(),
Coding.of(5, 64,2).getDeltaCoding(),
Coding.of(5,128,0).getDeltaCoding(),
Coding.of(5,128,1).getDeltaCoding(),
Coding.of(5,128,2).getDeltaCoding(),
// Variable length subrange codings:
Coding.of(2,192,0),
Coding.of(2,224,0),
Coding.of(2,240,0),
Coding.of(2,248,0),
Coding.of(2,252,0),
Coding.of(2, 8,0).getDeltaCoding(),
Coding.of(2, 8,1).getDeltaCoding(),
Coding.of(2, 16,0).getDeltaCoding(),
Coding.of(2, 16,1).getDeltaCoding(),
Coding.of(2, 32,0).getDeltaCoding(),
Coding.of(2, 32,1).getDeltaCoding(),
Coding.of(2, 64,0).getDeltaCoding(),
Coding.of(2, 64,1).getDeltaCoding(),
Coding.of(2,128,0).getDeltaCoding(),
Coding.of(2,128,1).getDeltaCoding(),
Coding.of(2,192,0).getDeltaCoding(),
Coding.of(2,192,1).getDeltaCoding(),
Coding.of(2,224,0).getDeltaCoding(),
Coding.of(2,224,1).getDeltaCoding(),
Coding.of(2,240,0).getDeltaCoding(),
Coding.of(2,240,1).getDeltaCoding(),
Coding.of(2,248,0).getDeltaCoding(),
Coding.of(2,248,1).getDeltaCoding(),
Coding.of(3,192,0),
Coding.of(3,224,0),
Coding.of(3,240,0),
Coding.of(3,248,0),
Coding.of(3,252,0),
Coding.of(3, 8,0).getDeltaCoding(),
Coding.of(3, 8,1).getDeltaCoding(),
Coding.of(3, 16,0).getDeltaCoding(),
Coding.of(3, 16,1).getDeltaCoding(),
Coding.of(3, 32,0).getDeltaCoding(),
Coding.of(3, 32,1).getDeltaCoding(),
Coding.of(3, 64,0).getDeltaCoding(),
Coding.of(3, 64,1).getDeltaCoding(),
Coding.of(3,128,0).getDeltaCoding(),
Coding.of(3,128,1).getDeltaCoding(),
Coding.of(3,192,0).getDeltaCoding(),
Coding.of(3,192,1).getDeltaCoding(),
Coding.of(3,224,0).getDeltaCoding(),
Coding.of(3,224,1).getDeltaCoding(),
Coding.of(3,240,0).getDeltaCoding(),
Coding.of(3,240,1).getDeltaCoding(),
Coding.of(3,248,0).getDeltaCoding(),
Coding.of(3,248,1).getDeltaCoding(),
Coding.of(4,192,0),
Coding.of(4,224,0),
Coding.of(4,240,0),
Coding.of(4,248,0),
Coding.of(4,252,0),
Coding.of(4, 8,0).getDeltaCoding(),
Coding.of(4, 8,1).getDeltaCoding(),
Coding.of(4, 16,0).getDeltaCoding(),
Coding.of(4, 16,1).getDeltaCoding(),
Coding.of(4, 32,0).getDeltaCoding(),
Coding.of(4, 32,1).getDeltaCoding(),
Coding.of(4, 64,0).getDeltaCoding(),
Coding.of(4, 64,1).getDeltaCoding(),
Coding.of(4,128,0).getDeltaCoding(),
Coding.of(4,128,1).getDeltaCoding(),
Coding.of(4,192,0).getDeltaCoding(),
Coding.of(4,192,1).getDeltaCoding(),
Coding.of(4,224,0).getDeltaCoding(),
Coding.of(4,224,1).getDeltaCoding(),
Coding.of(4,240,0).getDeltaCoding(),
Coding.of(4,240,1).getDeltaCoding(),
Coding.of(4,248,0).getDeltaCoding(),
Coding.of(4,248,1).getDeltaCoding(),
null
};
final private static Map<Coding, Integer> basicCodingIndexes;
static {
assert(basicCodings[_meta_default] == null);
assert(basicCodings[_meta_canon_min] != null);
assert(basicCodings[_meta_canon_max] != null);
Map<Coding, Integer> map = new HashMap<>();
for (int i = 0; i < basicCodings.length; i++) {
Coding c = basicCodings[i];
if (c == null) continue;
assert(i >= _meta_canon_min);
assert(i <= _meta_canon_max);
map.put(c, i);
}
basicCodingIndexes = map;
}
public static Coding codingForIndex(int i) {
return i < basicCodings.length ? basicCodings[i] : null;
}
public static int indexOf(Coding c) {
Integer i = basicCodingIndexes.get(c);
if (i == null) return 0;
return i.intValue();
}
public static Coding[] getBasicCodings() {
return basicCodings.clone();
}
protected byte[] bandHeaderBytes; // used for input only
protected int bandHeaderBytePos; // BHB read pointer, for input only
protected int bandHeaderBytePos0; // for debug
protected CodingMethod getBandHeader(int XB, Coding regularCoding) {
CodingMethod[] res = {null};
// push back XB onto the band header bytes
bandHeaderBytes[--bandHeaderBytePos] = (byte) XB;
bandHeaderBytePos0 = bandHeaderBytePos;
// scan forward through XB and any additional band header bytes
bandHeaderBytePos = parseMetaCoding(bandHeaderBytes,
bandHeaderBytePos,
regularCoding,
res);
return res[0];
}
public static int parseMetaCoding(byte[] bytes, int pos, Coding dflt, CodingMethod[] res) {
if ((bytes[pos] & 0xFF) == _meta_default) {
res[0] = dflt;
return pos+1;
}
int pos2;
pos2 = Coding.parseMetaCoding(bytes, pos, dflt, res);
if (pos2 > pos) return pos2;
pos2 = PopulationCoding.parseMetaCoding(bytes, pos, dflt, res);
if (pos2 > pos) return pos2;
pos2 = AdaptiveCoding.parseMetaCoding(bytes, pos, dflt, res);
if (pos2 > pos) return pos2;
throw new RuntimeException("Bad meta-coding op "+(bytes[pos]&0xFF));
}
static final int SHORT_BAND_HEURISTIC = 100;
public static final int NO_PHASE = 0;
// package writing phases:
public static final int COLLECT_PHASE = 1; // collect data before write
public static final int FROZEN_PHASE = 3; // no longer collecting
public static final int WRITE_PHASE = 5; // ready to write bytes
// package reading phases:
public static final int EXPECT_PHASE = 2; // gather expected counts
public static final int READ_PHASE = 4; // ready to read bytes
public static final int DISBURSE_PHASE = 6; // pass out data after read
public static final int DONE_PHASE = 8; // done writing or reading
static boolean phaseIsRead(int p) {
return (p % 2) == 0;
}
static int phaseCmp(int p0, int p1) {
assert((p0 % 2) == (p1 % 2) || (p0 % 8) == 0 || (p1 % 8) == 0);
return p0 - p1;
}
/** The packed file is divided up into a number of segments.
* Most segments are typed as ValueBand, strongly-typed sequences
* of integer values, all interpreted in a single way.
* A few segments are ByteBands, which hetergeneous sequences
* of bytes.
*
* The two phases for writing a packed file are COLLECT and WRITE.
* 1. When writing a packed file, each band collects
* data in an ad-hoc order.
* 2. At the end, each band is assigned a coding scheme,
* and then all the bands are written in their global order.
*
* The three phases for reading a packed file are EXPECT, READ,
* and DISBURSE.
* 1. For each band, the expected number of integers is determined.
* 2. The data is actually read from the file into the band.
* 3. The band pays out its values as requested, in an ad hoc order.
*
* When the last phase of a band is done, it is marked so (DONE).
* Clearly, these phases must be properly ordered WRT each other.
*/
abstract class Band {
private int phase = NO_PHASE;
private final String name;
private int valuesExpected;
protected long outputSize = -1; // cache
final public Coding regularCoding;
final public int seqForDebug;
public int elementCountForDebug;
protected Band(String name, Coding regularCoding) {
this.name = name;
this.regularCoding = regularCoding;
this.seqForDebug = ++nextSeqForDebug;
if (verbose > 2)
Utils.log.fine("Band "+seqForDebug+" is "+name);
// caller must call init
}
public Band init() {
// Cannot due this from the constructor, because constructor
// may wish to initialize some subclass variables.
// Set initial phase for reading or writing:
if (isReader)
readyToExpect();
else
readyToCollect();
return this;
}
// common operations
boolean isReader() { return isReader; }
int phase() { return phase; }
String name() { return name; }
/** Return -1 if data buffer not allocated, else max length. */
public abstract int capacity();
/** Allocate data buffer to specified length. */
protected abstract void setCapacity(int cap);
/** Return current number of values in buffer, which must exist. */
public abstract int length();
protected abstract int valuesRemainingForDebug();
public final int valuesExpected() {
return valuesExpected;
}
/** Write out bytes, encoding the values. */
public final void writeTo(OutputStream out) throws IOException {
assert(assertReadyToWriteTo(this, out));
setPhase(WRITE_PHASE);
// subclasses continue by writing their contents to output
writeDataTo(out);
doneWriting();
}
abstract void chooseBandCodings() throws IOException;
public final long outputSize() {
if (outputSize >= 0) {
long size = outputSize;
assert(size == computeOutputSize());
return size;
}
return computeOutputSize();
}
protected abstract long computeOutputSize();
abstract protected void writeDataTo(OutputStream out) throws IOException;
/** Expect a certain number of values. */
void expectLength(int l) {
assert(assertPhase(this, EXPECT_PHASE));
assert(valuesExpected == 0); // all at once
assert(l >= 0);
valuesExpected = l;
}
/** Expect more values. (Multiple calls accumulate.) */
void expectMoreLength(int l) {
assert(assertPhase(this, EXPECT_PHASE));
valuesExpected += l;
}
/// Phase change markers.
private void readyToCollect() { // called implicitly by constructor
setCapacity(1);
setPhase(COLLECT_PHASE);
}
protected void doneWriting() {
assert(assertPhase(this, WRITE_PHASE));
setPhase(DONE_PHASE);
}
private void readyToExpect() { // called implicitly by constructor
setPhase(EXPECT_PHASE);
}
/** Read in bytes, decoding the values. */
public final void readFrom(InputStream in) throws IOException {
assert(assertReadyToReadFrom(this, in));
setCapacity(valuesExpected());
setPhase(READ_PHASE);
// subclasses continue by reading their contents from input:
readDataFrom(in);
readyToDisburse();
}
abstract protected void readDataFrom(InputStream in) throws IOException;
protected void readyToDisburse() {
if (verbose > 1) Utils.log.fine("readyToDisburse "+this);
setPhase(DISBURSE_PHASE);
}
public void doneDisbursing() {
assert(assertPhase(this, DISBURSE_PHASE));
setPhase(DONE_PHASE);
}
public final void doneWithUnusedBand() {
if (isReader) {
assert(assertPhase(this, EXPECT_PHASE));
assert(valuesExpected() == 0);
// Fast forward:
setPhase(READ_PHASE);
setPhase(DISBURSE_PHASE);
setPhase(DONE_PHASE);
} else {
setPhase(FROZEN_PHASE);
}
}
protected void setPhase(int newPhase) {
assert(assertPhaseChangeOK(this, phase, newPhase));
this.phase = newPhase;
}
protected int lengthForDebug = -1; // DEBUG ONLY
public String toString() { // DEBUG ONLY
int length = (lengthForDebug != -1 ? lengthForDebug : length());
String str = name;
if (length != 0)
str += "[" + length + "]";
if (elementCountForDebug != 0)
str += "(" + elementCountForDebug + ")";
return str;
}
}
class ValueBand extends Band {
private int[] values; // must be null in EXPECT phase
private int length;
private int valuesDisbursed;
private CodingMethod bandCoding;
private byte[] metaCoding;
protected ValueBand(String name, Coding regularCoding) {
super(name, regularCoding);
}
public int capacity() {
return values == null ? -1 : values.length;
}
/** Declare predicted or needed capacity. */
protected void setCapacity(int cap) {
assert(length <= cap);
if (cap == -1) { values = null; return; }
values = realloc(values, cap);
}
public int length() {
return length;
}
protected int valuesRemainingForDebug() {
return length - valuesDisbursed;
}
protected int valueAtForDebug(int i) {
return values[i];
}
void patchValue(int i, int value) {
// Only one use for this.
assert(this == archive_header_S);
assert(i == AH_ARCHIVE_SIZE_HI || i == AH_ARCHIVE_SIZE_LO);
assert(i < length); // must have already output a dummy
values[i] = value;
outputSize = -1; // decache
}
protected void initializeValues(int[] values) {
assert(assertCanChangeLength(this));
assert(length == 0);
this.values = values;
this.length = values.length;
}
/** Collect one value, or store one decoded value. */
protected void addValue(int x) {
assert(assertCanChangeLength(this));
if (length == values.length)
setCapacity(length < 1000 ? length * 10 : length * 2);
values[length++] = x;
}
private boolean canVaryCoding() {
if (!optVaryCodings) return false;
if (length == 0) return false;
// Can't read band_headers w/o the archive header:
if (this == archive_header_0) return false;
if (this == archive_header_S) return false;
if (this == archive_header_1) return false;
// BYTE1 bands can't vary codings, but the others can.
// All that's needed for the initial escape is at least
// 256 negative values or more than 256 non-negative values
return (regularCoding.min() <= -256 || regularCoding.max() >= 256);
}
private boolean shouldVaryCoding() {
assert(canVaryCoding());
if (effort < MAX_EFFORT && length < SHORT_BAND_HEURISTIC)
return false;
return true;
}
protected void chooseBandCodings() throws IOException {
boolean canVary = canVaryCoding();
if (!canVary || !shouldVaryCoding()) {
if (regularCoding.canRepresent(values, 0, length)) {
bandCoding = regularCoding;
} else {
assert(canVary);
if (verbose > 1)
Utils.log.fine("regular coding fails in band "+name());
bandCoding = UNSIGNED5;
}
outputSize = -1;
} else {
int[] sizes = {0,0};
bandCoding = chooseCoding(values, 0, length,
regularCoding, name(),
sizes);
outputSize = sizes[CodingChooser.BYTE_SIZE];
if (outputSize == 0) // CodingChooser failed to size it.
outputSize = -1;
}
// Compute and save the meta-coding bytes also.
if (bandCoding != regularCoding) {
metaCoding = bandCoding.getMetaCoding(regularCoding);
if (verbose > 1) {
Utils.log.fine("alternate coding "+this+" "+bandCoding);
}
} else if (canVary &&
decodeEscapeValue(values[0], regularCoding) >= 0) {
// Need an explicit default.
metaCoding = defaultMetaCoding;
} else {
// Common case: Zero bytes of meta coding.
metaCoding = noMetaCoding;
}
if (metaCoding.length > 0
&& (verbose > 2 || verbose > 1 && metaCoding.length > 1)) {
StringBuffer sb = new StringBuffer();
for (int i = 0; i < metaCoding.length; i++) {
if (i == 1) sb.append(" /");
sb.append(" ").append(metaCoding[i] & 0xFF);
}
Utils.log.fine(" meta-coding "+sb);
}
assert((outputSize < 0) ||
!(bandCoding instanceof Coding) ||
(outputSize == ((Coding)bandCoding)
.getLength(values, 0, length)))
: (bandCoding+" : "+
outputSize+" != "+
((Coding)bandCoding).getLength(values, 0, length)
+" ?= "+getCodingChooser().computeByteSize(bandCoding,values,0,length)
);
// Compute outputSize of the escape value X, if any.
if (metaCoding.length > 0) {
// First byte XB of meta-coding is treated specially,
// but any other bytes go into the band headers band.
// This must be done before any other output happens.
if (outputSize >= 0)
outputSize += computeEscapeSize(); // good cache
// Other bytes go into band_headers.
for (int i = 1; i < metaCoding.length; i++) {
band_headers.putByte(metaCoding[i] & 0xFF);
}
}
}
protected long computeOutputSize() {
outputSize = getCodingChooser().computeByteSize(bandCoding,
values, 0, length);
assert(outputSize < Integer.MAX_VALUE);
outputSize += computeEscapeSize();
return outputSize;
}
protected int computeEscapeSize() {
if (metaCoding.length == 0) return 0;
int XB = metaCoding[0] & 0xFF;
int X = encodeEscapeValue(XB, regularCoding);
return regularCoding.setD(0).getLength(X);
}
protected void writeDataTo(OutputStream out) throws IOException {
if (length == 0) return; // nothing to write
long len0 = 0;
if (out == outputCounter) {
len0 = outputCounter.getCount();
}
if (metaCoding.length > 0) {
int XB = metaCoding[0] & 0xFF;
// We need an explicit band header, either because
// there is a non-default coding method, or because
// the first value would be parsed as an escape value.
int X = encodeEscapeValue(XB, regularCoding);
//System.out.println("X="+X+" XB="+XB+" in "+this);
regularCoding.setD(0).writeTo(out, X);
}
bandCoding.writeArrayTo(out, values, 0, length);
if (out == outputCounter) {
assert(outputSize == outputCounter.getCount() - len0)
: (outputSize+" != "+outputCounter.getCount()+"-"+len0);
}
if (optDumpBands) dumpBand();
}
protected void readDataFrom(InputStream in) throws IOException {
length = valuesExpected();
if (length == 0) return; // nothing to read
if (verbose > 1)
Utils.log.fine("Reading band "+this);
if (!canVaryCoding()) {
bandCoding = regularCoding;
metaCoding = noMetaCoding;
} else {
assert(in.markSupported()); // input must be buffered
in.mark(Coding.B_MAX);
int X = regularCoding.setD(0).readFrom(in);
int XB = decodeEscapeValue(X, regularCoding);
if (XB < 0) {
// Do not consume this value. No alternate coding.
in.reset();
XB = _meta_default;
bandCoding = regularCoding;
metaCoding = noMetaCoding;
} else if (XB == _meta_default) {
bandCoding = regularCoding;
metaCoding = defaultMetaCoding;
} else {
if (verbose > 2)
Utils.log.fine("found X="+X+" => XB="+XB);
bandCoding = getBandHeader(XB, regularCoding);
// This is really used only by dumpBands.
int p0 = bandHeaderBytePos0;
int p1 = bandHeaderBytePos;
metaCoding = new byte[p1-p0];
System.arraycopy(bandHeaderBytes, p0,
metaCoding, 0, metaCoding.length);
}
}
if (bandCoding != regularCoding) {
if (verbose > 1)
Utils.log.fine(name()+": irregular coding "+bandCoding);
}
bandCoding.readArrayFrom(in, values, 0, length);
if (optDumpBands) dumpBand();
}
public void doneDisbursing() {
super.doneDisbursing();
values = null; // for GC
}
private void dumpBand() throws IOException {
assert(optDumpBands);
try (PrintStream ps = new PrintStream(getDumpStream(this, ".txt"))) {
String irr = (bandCoding == regularCoding) ? "" : " irregular";
ps.print("# length="+length+
" size="+outputSize()+
irr+" coding="+bandCoding);
if (metaCoding != noMetaCoding) {
StringBuffer sb = new StringBuffer();
for (int i = 0; i < metaCoding.length; i++) {
if (i == 1) sb.append(" /");
sb.append(" ").append(metaCoding[i] & 0xFF);
}
ps.print(" //header: "+sb);
}
printArrayTo(ps, values, 0, length);
}
try (OutputStream ds = getDumpStream(this, ".bnd")) {
bandCoding.writeArrayTo(ds, values, 0, length);
}
}
/** Disburse one value. */
protected int getValue() {
assert(phase() == DISBURSE_PHASE);
assert(valuesDisbursed < length);
return values[valuesDisbursed++];
}
/** Reset for another pass over the same value set. */
public void resetForSecondPass() {
assert(phase() == DISBURSE_PHASE);
assert(valuesDisbursed == length()); // 1st pass is complete
valuesDisbursed = 0;
}
}
class ByteBand extends Band {
private ByteArrayOutputStream bytes; // input buffer
private ByteArrayOutputStream bytesForDump;
private InputStream in;
public ByteBand(String name) {
super(name, BYTE1);
}
public int capacity() {
return bytes == null ? -1 : Integer.MAX_VALUE;
}
protected void setCapacity(int cap) {
assert(bytes == null); // do this just once
bytes = new ByteArrayOutputStream(cap);
}
public void destroy() {
lengthForDebug = length();
bytes = null;
}
public int length() {
return bytes == null ? -1 : bytes.size();
}
public void reset() {
bytes.reset();
}
protected int valuesRemainingForDebug() {
return (bytes == null) ? -1 : ((ByteArrayInputStream)in).available();
}
protected void chooseBandCodings() throws IOException {
// No-op.
assert(decodeEscapeValue(regularCoding.min(), regularCoding) < 0);
assert(decodeEscapeValue(regularCoding.max(), regularCoding) < 0);
}
protected long computeOutputSize() {
// do not cache
return bytes.size();
}
public void writeDataTo(OutputStream out) throws IOException {
if (length() == 0) return;
bytes.writeTo(out);
if (optDumpBands) dumpBand();
destroy(); // done with the bits!
}
private void dumpBand() throws IOException {
assert(optDumpBands);
try (OutputStream ds = getDumpStream(this, ".bnd")) {
if (bytesForDump != null)
bytesForDump.writeTo(ds);
else
bytes.writeTo(ds);
}
}
public void readDataFrom(InputStream in) throws IOException {
int vex = valuesExpected();
if (vex == 0) return;
if (verbose > 1) {
lengthForDebug = vex;
Utils.log.fine("Reading band "+this);
lengthForDebug = -1;
}
byte[] buf = new byte[Math.min(vex, 1<<14)];
while (vex > 0) {
int nr = in.read(buf, 0, Math.min(vex, buf.length));
if (nr < 0) throw new EOFException();
bytes.write(buf, 0, nr);
vex -= nr;
}
if (optDumpBands) dumpBand();
}
public void readyToDisburse() {
in = new ByteArrayInputStream(bytes.toByteArray());
super.readyToDisburse();
}
public void doneDisbursing() {
super.doneDisbursing();
if (optDumpBands
&& bytesForDump != null && bytesForDump.size() > 0) {
try {
dumpBand();
} catch (IOException ee) {
throw new RuntimeException(ee);
}
}
in = null; // GC
bytes = null; // GC
bytesForDump = null; // GC
}
// alternative to readFrom:
public void setInputStreamFrom(InputStream in) throws IOException {
assert(bytes == null);
assert(assertReadyToReadFrom(this, in));
setPhase(READ_PHASE);
this.in = in;
if (optDumpBands) {
// Tap the stream.
bytesForDump = new ByteArrayOutputStream();
this.in = new FilterInputStream(in) {
public int read() throws IOException {
int ch = in.read();
if (ch >= 0) bytesForDump.write(ch);
return ch;
}
public int read(byte b[], int off, int len) throws IOException {
int nr = in.read(b, off, len);
if (nr >= 0) bytesForDump.write(b, off, nr);
return nr;
}
};
}
super.readyToDisburse();
}
public OutputStream collectorStream() {
assert(phase() == COLLECT_PHASE);
assert(bytes != null);
return bytes;
}
public InputStream getInputStream() {
assert(phase() == DISBURSE_PHASE);
assert(in != null);
return in;
}
public int getByte() throws IOException {
int b = getInputStream().read();
if (b < 0) throw new EOFException();
return b;
}
public void putByte(int b) throws IOException {
assert(b == (b & 0xFF));
collectorStream().write(b);
}
public String toString() {
return "byte "+super.toString();
}
}
class IntBand extends ValueBand {
// The usual coding for bands is 7bit/5byte/delta.
public IntBand(String name, Coding regularCoding) {
super(name, regularCoding);
}
public void putInt(int x) {
assert(phase() == COLLECT_PHASE);
addValue(x);
}
public int getInt() {
return getValue();
}
/** Return the sum of all values in this band. */
public int getIntTotal() {
assert(phase() == DISBURSE_PHASE);
// assert that this is the whole pass; no other reads allowed
assert(valuesRemainingForDebug() == length());
int total = 0;
for (int k = length(); k > 0; k--) {
total += getInt();
}
resetForSecondPass();
return total;
}
/** Return the occurrence count of a specific value in this band. */
public int getIntCount(int value) {
assert(phase() == DISBURSE_PHASE);
// assert that this is the whole pass; no other reads allowed
assert(valuesRemainingForDebug() == length());
int total = 0;
for (int k = length(); k > 0; k--) {
if (getInt() == value) {
total += 1;
}
}
resetForSecondPass();
return total;
}
}
static int getIntTotal(int[] values) {
int total = 0;
for (int i = 0; i < values.length; i++) {
total += values[i];
}
return total;
}
class CPRefBand extends ValueBand {
Index index;
boolean nullOK;
public CPRefBand(String name, Coding regularCoding, byte cpTag, boolean nullOK) {
super(name, regularCoding);
this.nullOK = nullOK;
if (cpTag != CONSTANT_None)
setBandIndex(this, cpTag);
}
public CPRefBand(String name, Coding regularCoding, byte cpTag) {
this(name, regularCoding, cpTag, false);
}
public CPRefBand(String name, Coding regularCoding, Object undef) {
this(name, regularCoding, CONSTANT_None, false);
}
public void setIndex(Index index) {
this.index = index;
}
protected void readDataFrom(InputStream in) throws IOException {
super.readDataFrom(in);
assert(assertValidCPRefs(this));
}
/** Write a constant pool reference. */
public void putRef(Entry e) {
addValue(encodeRefOrNull(e, index));
}
public void putRef(Entry e, Index index) {
assert(this.index == null);
addValue(encodeRefOrNull(e, index));
}
public void putRef(Entry e, byte cptag) {
putRef(e, getCPIndex(cptag));
}
public Entry getRef() {
if (index == null) Utils.log.warning("No index for "+this);
assert(index != null);
return decodeRefOrNull(getValue(), index);
}
public Entry getRef(Index index) {
assert(this.index == null);
return decodeRefOrNull(getValue(), index);
}
public Entry getRef(byte cptag) {
return getRef(getCPIndex(cptag));
}
private int encodeRefOrNull(Entry e, Index index) {
int nonNullCode; // NNC is the coding which assumes nulls are rare
if (e == null) {
nonNullCode = -1; // negative values are rare
} else {
nonNullCode = encodeRef(e, index);
}
// If nulls are expected, increment, to make -1 code turn to 0.
return (nullOK ? 1 : 0) + nonNullCode;
}
private Entry decodeRefOrNull(int code, Index index) {
// Inverse to encodeRefOrNull...
int nonNullCode = code - (nullOK ? 1 : 0);
if (nonNullCode == -1) {
return null;
} else {
return decodeRef(nonNullCode, index);
}
}
}
// Bootstrap support for CPRefBands. These are needed to record
// intended CP indexes, before the CP has been created.
private final List<CPRefBand> allKQBands = new ArrayList<>();
private List<Object[]> needPredefIndex = new ArrayList<>();
int encodeRef(Entry e, Index ix) {
if (ix == null)
throw new RuntimeException("null index for " + e.stringValue());
int coding = ix.indexOf(e);
if (verbose > 2)
Utils.log.fine("putRef "+coding+" => "+e);
return coding;
}
Entry decodeRef(int n, Index ix) {
if (n < 0 || n >= ix.size())
Utils.log.warning("decoding bad ref "+n+" in "+ix);
Entry e = ix.getEntry(n);
if (verbose > 2)
Utils.log.fine("getRef "+n+" => "+e);
return e;
}
private CodingChooser codingChooser;
protected CodingChooser getCodingChooser() {
if (codingChooser == null) {
codingChooser = new CodingChooser(effort, basicCodings);
if (codingChooser.stress != null
&& this instanceof PackageWriter) {
// Twist the random state based on my first file.
// This sends each segment off in a different direction.
List<Package.Class> classes = ((PackageWriter)this).pkg.classes;
if (!classes.isEmpty()) {
Package.Class cls = classes.get(0);
codingChooser.addStressSeed(cls.getName().hashCode());
}
}
}
return codingChooser;
}
public CodingMethod chooseCoding(int[] values, int start, int end,
Coding regular, String bandName,
int[] sizes) {
assert(optVaryCodings);
if (effort <= MIN_EFFORT) {
return regular;
}
CodingChooser cc = getCodingChooser();
if (verbose > 1 || cc.verbose > 1) {
Utils.log.fine("--- chooseCoding "+bandName);
}
return cc.choose(values, start, end, regular, sizes);
}
static final byte[] defaultMetaCoding = { _meta_default };
static final byte[] noMetaCoding = {};
// The first value in a band is always coded with the default coding D.
// If this first value X is an escape value, it actually represents the
// first (and perhaps only) byte of a meta-coding.
//
// If D.S != 0 and D includes the range [-256..-1],
// the escape values are in that range,
// and the first byte XB is -1-X.
//
// If D.S == 0 and D includes the range [(D.L)..(D.L)+255],
// the escape values are in that range,
// and XB is X-(D.L).
//
// This representation is designed so that a band header is unlikely
// to be confused with the initial value of a headerless band,
// and yet so that a band header is likely to occupy only a byte or two.
//
// Result is in [0..255] if XB was successfully extracted, else -1.
// See section "Coding Specifier Meta-Encoding" in the JSR 200 spec.
protected static int decodeEscapeValue(int X, Coding regularCoding) {
// The first value in a band is always coded with the default coding D.
// If this first value X is an escape value, it actually represents the
// first (and perhaps only) byte of a meta-coding.
// Result is in [0..255] if XB was successfully extracted, else -1.
if (regularCoding.B() == 1 || regularCoding.L() == 0)
return -1; // degenerate regular coding (BYTE1)
if (regularCoding.S() != 0) {
if (-256 <= X && X <= -1 && regularCoding.min() <= -256) {
int XB = -1-X;
assert(XB >= 0 && XB < 256);
return XB;
}
} else {
int L = regularCoding.L();
if (L <= X && X <= L+255 && regularCoding.max() >= L+255) {
int XB = X-L;
assert(XB >= 0 && XB < 256);
return XB;
}
}
return -1; // negative value for failure
}
// Inverse to decodeEscapeValue().
protected static int encodeEscapeValue(int XB, Coding regularCoding) {
assert(XB >= 0 && XB < 256);
assert(regularCoding.B() > 1 && regularCoding.L() > 0);
int X;
if (regularCoding.S() != 0) {
assert(regularCoding.min() <= -256);
X = -1-XB;
} else {
int L = regularCoding.L();
assert(regularCoding.max() >= L+255);
X = XB+L;
}
assert(decodeEscapeValue(X, regularCoding) == XB)
: (regularCoding+" XB="+XB+" X="+X);
return X;
}
static {
boolean checkXB = false;
assert(checkXB = true);
if (checkXB) {
for (int i = 0; i < basicCodings.length; i++) {
Coding D = basicCodings[i];
if (D == null) continue;
if (D.B() == 1) continue;
if (D.L() == 0) continue;
for (int XB = 0; XB <= 255; XB++) {
// The following exercises decodeEscapeValue also:
encodeEscapeValue(XB, D);
}
}
}
}
class MultiBand extends Band {
MultiBand(String name, Coding regularCoding) {
super(name, regularCoding);
}
public Band init() {
super.init();
// This is all just to keep the asserts happy:
setCapacity(0);
if (phase() == EXPECT_PHASE) {
// Fast forward:
setPhase(READ_PHASE);
setPhase(DISBURSE_PHASE);
}
return this;
}
Band[] bands = new Band[10];
int bandCount = 0;
int size() {
return bandCount;
}
Band get(int i) {
assert(i < bandCount);
return bands[i];
}
Band[] toArray() {
return (Band[]) realloc(bands, bandCount);
}
void add(Band b) {
assert(bandCount == 0 || notePrevForAssert(b, bands[bandCount-1]));
if (bandCount == bands.length) {
bands = (Band[]) realloc(bands);
}
bands[bandCount++] = b;
}
ByteBand newByteBand(String name) {
ByteBand b = new ByteBand(name);
b.init(); add(b);
return b;
}
IntBand newIntBand(String name) {
IntBand b = new IntBand(name, regularCoding);
b.init(); add(b);
return b;
}
IntBand newIntBand(String name, Coding regularCoding) {
IntBand b = new IntBand(name, regularCoding);
b.init(); add(b);
return b;
}
MultiBand newMultiBand(String name, Coding regularCoding) {
MultiBand b = new MultiBand(name, regularCoding);
b.init(); add(b);
return b;
}
CPRefBand newCPRefBand(String name, byte cpTag) {
CPRefBand b = new CPRefBand(name, regularCoding, cpTag);
b.init(); add(b);
return b;
}
CPRefBand newCPRefBand(String name, Coding regularCoding,
byte cpTag) {
CPRefBand b = new CPRefBand(name, regularCoding, cpTag);
b.init(); add(b);
return b;
}
CPRefBand newCPRefBand(String name, Coding regularCoding,
byte cpTag, boolean nullOK) {
CPRefBand b = new CPRefBand(name, regularCoding, cpTag, nullOK);
b.init(); add(b);
return b;
}
int bandCount() { return bandCount; }
private int cap = -1;
public int capacity() { return cap; }
public void setCapacity(int cap) { this.cap = cap; }
public int length() { return 0; }
public int valuesRemainingForDebug() { return 0; }
protected void chooseBandCodings() throws IOException {
// coding decision pass
for (int i = 0; i < bandCount; i++) {
Band b = bands[i];
b.chooseBandCodings();
}
}
protected long computeOutputSize() {
// coding decision pass
long sum = 0;
for (int i = 0; i < bandCount; i++) {
Band b = bands[i];
long bsize = b.outputSize();
assert(bsize >= 0) : b;
sum += bsize;
}
// do not cache
return sum;
}
protected void writeDataTo(OutputStream out) throws IOException {
long preCount = 0;
if (outputCounter != null) preCount = outputCounter.getCount();
for (int i = 0; i < bandCount; i++) {
Band b = bands[i];
b.writeTo(out);
if (outputCounter != null) {
long postCount = outputCounter.getCount();
long len = postCount - preCount;
preCount = postCount;
if ((verbose > 0 && len > 0) || verbose > 1) {
Utils.log.info(" ...wrote "+len+" bytes from "+b);
}
}
}
}
protected void readDataFrom(InputStream in) throws IOException {
assert(false); // not called?
for (int i = 0; i < bandCount; i++) {
Band b = bands[i];
b.readFrom(in);
if ((verbose > 0 && b.length() > 0) || verbose > 1) {
Utils.log.info(" ...read "+b);
}
}
}
public String toString() {
return "{"+bandCount()+" bands: "+super.toString()+"}";
}
}
/**
* An output stream which counts the number of bytes written.
*/
private static
class ByteCounter extends FilterOutputStream {
// (should go public under the name CountingOutputStream?)
private long count;
public ByteCounter(OutputStream out) {
super(out);
}
public long getCount() { return count; }
public void setCount(long c) { count = c; }
public void write(int b) throws IOException {
count++;
if (out != null) out.write(b);
}
public void write(byte b[], int off, int len) throws IOException {
count += len;
if (out != null) out.write(b, off, len);
}
public String toString() {
return String.valueOf(getCount());
}
}
ByteCounter outputCounter;
void writeAllBandsTo(OutputStream out) throws IOException {
// Wrap a byte-counter around the output stream.
outputCounter = new ByteCounter(out);
out = outputCounter;
all_bands.writeTo(out);
if (verbose > 0) {
long nbytes = outputCounter.getCount();
Utils.log.info("Wrote total of "+nbytes+" bytes.");
assert(nbytes == archiveSize0+archiveSize1);
}
outputCounter = null;
}
// random AO_XXX bits, decoded from the archive header
protected int archiveOptions;
// archiveSize1 sizes most of the archive [archive_options..file_bits).
protected long archiveSize0; // size through archive_size_lo
protected long archiveSize1; // size reported in archive_header
protected int archiveNextCount; // reported in archive_header
static final int AH_LENGTH_0 = 3; //minver, majver, options
static final int AH_ARCHIVE_SIZE_HI = 0;
static final int AH_ARCHIVE_SIZE_LO = 1;
static final int AH_LENGTH_S = 2; //optional size hi/lo
static final int AH_LENGTH = 26; // mentioned in spec
// Length contributions from optional header fields:
static final int AH_FILE_HEADER_LEN = 5; // sizehi/lo/next/modtime/files
static final int AH_SPECIAL_FORMAT_LEN = 2; // layouts/band-headers
static final int AH_CP_NUMBER_LEN = 4; // int/float/long/double
static final int AH_LENGTH_MIN = AH_LENGTH
-(AH_SPECIAL_FORMAT_LEN+AH_FILE_HEADER_LEN+AH_CP_NUMBER_LEN);
// Common structure of attribute band groups:
static final int AB_FLAGS_HI = 0;
static final int AB_FLAGS_LO = 1;
static final int AB_ATTR_COUNT = 2;
static final int AB_ATTR_INDEXES = 3;
static final int AB_ATTR_CALLS = 4;
static IntBand getAttrBand(MultiBand xxx_attr_bands, int which) {
IntBand b = (IntBand) xxx_attr_bands.get(which);
switch (which) {
case AB_FLAGS_HI:
assert(b.name().endsWith("_flags_hi")); break;
case AB_FLAGS_LO:
assert(b.name().endsWith("_flags_lo")); break;
case AB_ATTR_COUNT:
assert(b.name().endsWith("_attr_count")); break;
case AB_ATTR_INDEXES:
assert(b.name().endsWith("_attr_indexes")); break;
case AB_ATTR_CALLS:
assert(b.name().endsWith("_attr_calls")); break;
default:
assert(false); break;
}
return b;
}
static private final boolean NULL_IS_OK = true;
MultiBand all_bands = (MultiBand) new MultiBand("(package)", UNSIGNED5).init();
// file header (various random bytes)
ByteBand archive_magic = all_bands.newByteBand("archive_magic");
IntBand archive_header_0 = all_bands.newIntBand("archive_header_0", UNSIGNED5);
IntBand archive_header_S = all_bands.newIntBand("archive_header_S", UNSIGNED5);
IntBand archive_header_1 = all_bands.newIntBand("archive_header_1", UNSIGNED5);
ByteBand band_headers = all_bands.newByteBand("band_headers");
// constant pool contents
MultiBand cp_bands = all_bands.newMultiBand("(constant_pool)", DELTA5);
IntBand cp_Utf8_prefix = cp_bands.newIntBand("cp_Utf8_prefix");
IntBand cp_Utf8_suffix = cp_bands.newIntBand("cp_Utf8_suffix", UNSIGNED5);
IntBand cp_Utf8_chars = cp_bands.newIntBand("cp_Utf8_chars", CHAR3);
IntBand cp_Utf8_big_suffix = cp_bands.newIntBand("cp_Utf8_big_suffix");
MultiBand cp_Utf8_big_chars = cp_bands.newMultiBand("(cp_Utf8_big_chars)", DELTA5);
IntBand cp_Int = cp_bands.newIntBand("cp_Int", UDELTA5);
IntBand cp_Float = cp_bands.newIntBand("cp_Float", UDELTA5);
IntBand cp_Long_hi = cp_bands.newIntBand("cp_Long_hi", UDELTA5);
IntBand cp_Long_lo = cp_bands.newIntBand("cp_Long_lo");
IntBand cp_Double_hi = cp_bands.newIntBand("cp_Double_hi", UDELTA5);
IntBand cp_Double_lo = cp_bands.newIntBand("cp_Double_lo");
CPRefBand cp_String = cp_bands.newCPRefBand("cp_String", UDELTA5, CONSTANT_Utf8);
CPRefBand cp_Class = cp_bands.newCPRefBand("cp_Class", UDELTA5, CONSTANT_Utf8);
CPRefBand cp_Signature_form = cp_bands.newCPRefBand("cp_Signature_form", CONSTANT_Utf8);
CPRefBand cp_Signature_classes = cp_bands.newCPRefBand("cp_Signature_classes", UDELTA5, CONSTANT_Class);
CPRefBand cp_Descr_name = cp_bands.newCPRefBand("cp_Descr_name", CONSTANT_Utf8);
CPRefBand cp_Descr_type = cp_bands.newCPRefBand("cp_Descr_type", UDELTA5, CONSTANT_Signature);
CPRefBand cp_Field_class = cp_bands.newCPRefBand("cp_Field_class", CONSTANT_Class);
CPRefBand cp_Field_desc = cp_bands.newCPRefBand("cp_Field_desc", UDELTA5, CONSTANT_NameandType);
CPRefBand cp_Method_class = cp_bands.newCPRefBand("cp_Method_class", CONSTANT_Class);
CPRefBand cp_Method_desc = cp_bands.newCPRefBand("cp_Method_desc", UDELTA5, CONSTANT_NameandType);
CPRefBand cp_Imethod_class = cp_bands.newCPRefBand("cp_Imethod_class", CONSTANT_Class);
CPRefBand cp_Imethod_desc = cp_bands.newCPRefBand("cp_Imethod_desc", UDELTA5, CONSTANT_NameandType);
// bands for carrying attribute definitions:
MultiBand attr_definition_bands = all_bands.newMultiBand("(attr_definition_bands)", UNSIGNED5);
ByteBand attr_definition_headers = attr_definition_bands.newByteBand("attr_definition_headers");
CPRefBand attr_definition_name = attr_definition_bands.newCPRefBand("attr_definition_name", CONSTANT_Utf8);
CPRefBand attr_definition_layout = attr_definition_bands.newCPRefBand("attr_definition_layout", CONSTANT_Utf8);
// bands for hardwired InnerClasses attribute (shared across the package)
MultiBand ic_bands = all_bands.newMultiBand("(ic_bands)", DELTA5);
CPRefBand ic_this_class = ic_bands.newCPRefBand("ic_this_class", UDELTA5, CONSTANT_Class);
IntBand ic_flags = ic_bands.newIntBand("ic_flags", UNSIGNED5);
// These bands contain data only where flags sets ACC_IC_LONG_FORM:
CPRefBand ic_outer_class = ic_bands.newCPRefBand("ic_outer_class", DELTA5, CONSTANT_Class, NULL_IS_OK);
CPRefBand ic_name = ic_bands.newCPRefBand("ic_name", DELTA5, CONSTANT_Utf8, NULL_IS_OK);
// bands for carrying class schema information:
MultiBand class_bands = all_bands.newMultiBand("(class_bands)", DELTA5);
CPRefBand class_this = class_bands.newCPRefBand("class_this", CONSTANT_Class);
CPRefBand class_super = class_bands.newCPRefBand("class_super", CONSTANT_Class);
IntBand class_interface_count = class_bands.newIntBand("class_interface_count");
CPRefBand class_interface = class_bands.newCPRefBand("class_interface", CONSTANT_Class);
// bands for class members
IntBand class_field_count = class_bands.newIntBand("class_field_count");
IntBand class_method_count = class_bands.newIntBand("class_method_count");
CPRefBand field_descr = class_bands.newCPRefBand("field_descr", CONSTANT_NameandType);
MultiBand field_attr_bands = class_bands.newMultiBand("(field_attr_bands)", UNSIGNED5);
IntBand field_flags_hi = field_attr_bands.newIntBand("field_flags_hi");
IntBand field_flags_lo = field_attr_bands.newIntBand("field_flags_lo");
IntBand field_attr_count = field_attr_bands.newIntBand("field_attr_count");
IntBand field_attr_indexes = field_attr_bands.newIntBand("field_attr_indexes");
IntBand field_attr_calls = field_attr_bands.newIntBand("field_attr_calls");
// bands for predefined field attributes
CPRefBand field_ConstantValue_KQ = field_attr_bands.newCPRefBand("field_ConstantValue_KQ", CONSTANT_Literal);
CPRefBand field_Signature_RS = field_attr_bands.newCPRefBand("field_Signature_RS", CONSTANT_Signature);
MultiBand field_metadata_bands = field_attr_bands.newMultiBand("(field_metadata_bands)", UNSIGNED5);
CPRefBand method_descr = class_bands.newCPRefBand("method_descr", MDELTA5, CONSTANT_NameandType);
MultiBand method_attr_bands = class_bands.newMultiBand("(method_attr_bands)", UNSIGNED5);
IntBand method_flags_hi = method_attr_bands.newIntBand("method_flags_hi");
IntBand method_flags_lo = method_attr_bands.newIntBand("method_flags_lo");
IntBand method_attr_count = method_attr_bands.newIntBand("method_attr_count");
IntBand method_attr_indexes = method_attr_bands.newIntBand("method_attr_indexes");
IntBand method_attr_calls = method_attr_bands.newIntBand("method_attr_calls");
// band for predefined method attributes
IntBand method_Exceptions_N = method_attr_bands.newIntBand("method_Exceptions_N");
CPRefBand method_Exceptions_RC = method_attr_bands.newCPRefBand("method_Exceptions_RC", CONSTANT_Class);
CPRefBand method_Signature_RS = method_attr_bands.newCPRefBand("method_Signature_RS", CONSTANT_Signature);
MultiBand method_metadata_bands = method_attr_bands.newMultiBand("(method_metadata_bands)", UNSIGNED5);
MultiBand class_attr_bands = class_bands.newMultiBand("(class_attr_bands)", UNSIGNED5);
IntBand class_flags_hi = class_attr_bands.newIntBand("class_flags_hi");
IntBand class_flags_lo = class_attr_bands.newIntBand("class_flags_lo");
IntBand class_attr_count = class_attr_bands.newIntBand("class_attr_count");
IntBand class_attr_indexes = class_attr_bands.newIntBand("class_attr_indexes");
IntBand class_attr_calls = class_attr_bands.newIntBand("class_attr_calls");
// band for predefined SourceFile and other class attributes
CPRefBand class_SourceFile_RUN = class_attr_bands.newCPRefBand("class_SourceFile_RUN", UNSIGNED5, CONSTANT_Utf8, NULL_IS_OK);
CPRefBand class_EnclosingMethod_RC = class_attr_bands.newCPRefBand("class_EnclosingMethod_RC", CONSTANT_Class);
CPRefBand class_EnclosingMethod_RDN = class_attr_bands.newCPRefBand("class_EnclosingMethod_RDN", UNSIGNED5, CONSTANT_NameandType, NULL_IS_OK);
CPRefBand class_Signature_RS = class_attr_bands.newCPRefBand("class_Signature_RS", CONSTANT_Signature);
MultiBand class_metadata_bands = class_attr_bands.newMultiBand("(class_metadata_bands)", UNSIGNED5);
IntBand class_InnerClasses_N = class_attr_bands.newIntBand("class_InnerClasses_N");
CPRefBand class_InnerClasses_RC = class_attr_bands.newCPRefBand("class_InnerClasses_RC", CONSTANT_Class);
IntBand class_InnerClasses_F = class_attr_bands.newIntBand("class_InnerClasses_F");
CPRefBand class_InnerClasses_outer_RCN = class_attr_bands.newCPRefBand("class_InnerClasses_outer_RCN", UNSIGNED5, CONSTANT_Class, NULL_IS_OK);
CPRefBand class_InnerClasses_name_RUN = class_attr_bands.newCPRefBand("class_InnerClasses_name_RUN", UNSIGNED5, CONSTANT_Utf8, NULL_IS_OK);
IntBand class_ClassFile_version_minor_H = class_attr_bands.newIntBand("class_ClassFile_version_minor_H");
IntBand class_ClassFile_version_major_H = class_attr_bands.newIntBand("class_ClassFile_version_major_H");
MultiBand code_bands = class_bands.newMultiBand("(code_bands)", UNSIGNED5);
ByteBand code_headers = code_bands.newByteBand("code_headers"); //BYTE1
IntBand code_max_stack = code_bands.newIntBand("code_max_stack", UNSIGNED5);
IntBand code_max_na_locals = code_bands.newIntBand("code_max_na_locals", UNSIGNED5);
IntBand code_handler_count = code_bands.newIntBand("code_handler_count", UNSIGNED5);
IntBand code_handler_start_P = code_bands.newIntBand("code_handler_start_P", BCI5);
IntBand code_handler_end_PO = code_bands.newIntBand("code_handler_end_PO", BRANCH5);
IntBand code_handler_catch_PO = code_bands.newIntBand("code_handler_catch_PO", BRANCH5);
CPRefBand code_handler_class_RCN = code_bands.newCPRefBand("code_handler_class_RCN", UNSIGNED5, CONSTANT_Class, NULL_IS_OK);
MultiBand code_attr_bands = class_bands.newMultiBand("(code_attr_bands)", UNSIGNED5);
IntBand code_flags_hi = code_attr_bands.newIntBand("code_flags_hi");
IntBand code_flags_lo = code_attr_bands.newIntBand("code_flags_lo");
IntBand code_attr_count = code_attr_bands.newIntBand("code_attr_count");
IntBand code_attr_indexes = code_attr_bands.newIntBand("code_attr_indexes");
IntBand code_attr_calls = code_attr_bands.newIntBand("code_attr_calls");
MultiBand stackmap_bands = code_attr_bands.newMultiBand("StackMapTable_bands", UNSIGNED5);
IntBand code_StackMapTable_N = stackmap_bands.newIntBand("code_StackMapTable_N");
IntBand code_StackMapTable_frame_T = stackmap_bands.newIntBand("code_StackMapTable_frame_T",BYTE1);
IntBand code_StackMapTable_local_N = stackmap_bands.newIntBand("code_StackMapTable_local_N");
IntBand code_StackMapTable_stack_N = stackmap_bands.newIntBand("code_StackMapTable_stack_N");
IntBand code_StackMapTable_offset = stackmap_bands.newIntBand("code_StackMapTable_offset", UNSIGNED5);
IntBand code_StackMapTable_T = stackmap_bands.newIntBand("code_StackMapTable_T", BYTE1);
CPRefBand code_StackMapTable_RC = stackmap_bands.newCPRefBand("code_StackMapTable_RC", CONSTANT_Class);
IntBand code_StackMapTable_P = stackmap_bands.newIntBand("code_StackMapTable_P", BCI5);
// bands for predefined LineNumberTable attribute
IntBand code_LineNumberTable_N = code_attr_bands.newIntBand("code_LineNumberTable_N");
IntBand code_LineNumberTable_bci_P = code_attr_bands.newIntBand("code_LineNumberTable_bci_P", BCI5);
IntBand code_LineNumberTable_line = code_attr_bands.newIntBand("code_LineNumberTable_line");
// bands for predefined LocalVariable{Type}Table attributes
IntBand code_LocalVariableTable_N = code_attr_bands.newIntBand("code_LocalVariableTable_N");
IntBand code_LocalVariableTable_bci_P = code_attr_bands.newIntBand("code_LocalVariableTable_bci_P", BCI5);
IntBand code_LocalVariableTable_span_O = code_attr_bands.newIntBand("code_LocalVariableTable_span_O", BRANCH5);
CPRefBand code_LocalVariableTable_name_RU = code_attr_bands.newCPRefBand("code_LocalVariableTable_name_RU", CONSTANT_Utf8);
CPRefBand code_LocalVariableTable_type_RS = code_attr_bands.newCPRefBand("code_LocalVariableTable_type_RS", CONSTANT_Signature);
IntBand code_LocalVariableTable_slot = code_attr_bands.newIntBand("code_LocalVariableTable_slot");
IntBand code_LocalVariableTypeTable_N = code_attr_bands.newIntBand("code_LocalVariableTypeTable_N");
IntBand code_LocalVariableTypeTable_bci_P = code_attr_bands.newIntBand("code_LocalVariableTypeTable_bci_P", BCI5);
IntBand code_LocalVariableTypeTable_span_O = code_attr_bands.newIntBand("code_LocalVariableTypeTable_span_O", BRANCH5);
CPRefBand code_LocalVariableTypeTable_name_RU = code_attr_bands.newCPRefBand("code_LocalVariableTypeTable_name_RU", CONSTANT_Utf8);
CPRefBand code_LocalVariableTypeTable_type_RS = code_attr_bands.newCPRefBand("code_LocalVariableTypeTable_type_RS", CONSTANT_Signature);
IntBand code_LocalVariableTypeTable_slot = code_attr_bands.newIntBand("code_LocalVariableTypeTable_slot");
// bands for bytecodes
MultiBand bc_bands = all_bands.newMultiBand("(byte_codes)", UNSIGNED5);
ByteBand bc_codes = bc_bands.newByteBand("bc_codes"); //BYTE1
// remaining bands provide typed opcode fields required by the bc_codes
IntBand bc_case_count = bc_bands.newIntBand("bc_case_count"); // *switch
IntBand bc_case_value = bc_bands.newIntBand("bc_case_value", DELTA5); // *switch
ByteBand bc_byte = bc_bands.newByteBand("bc_byte"); //BYTE1 // bipush, iinc, *newarray
IntBand bc_short = bc_bands.newIntBand("bc_short", DELTA5); // sipush, wide iinc
IntBand bc_local = bc_bands.newIntBand("bc_local"); // *load, *store, iinc, ret
IntBand bc_label = bc_bands.newIntBand("bc_label", BRANCH5); // if*, goto*, jsr*, *switch
// Most CP refs exhibit some correlation, and benefit from delta coding.
// The notable exceptions are class and method references.
// ldc* operands:
CPRefBand bc_intref = bc_bands.newCPRefBand("bc_intref", DELTA5, CONSTANT_Integer);
CPRefBand bc_floatref = bc_bands.newCPRefBand("bc_floatref", DELTA5, CONSTANT_Float);
CPRefBand bc_longref = bc_bands.newCPRefBand("bc_longref", DELTA5, CONSTANT_Long);
CPRefBand bc_doubleref = bc_bands.newCPRefBand("bc_doubleref", DELTA5, CONSTANT_Double);
CPRefBand bc_stringref = bc_bands.newCPRefBand("bc_stringref", DELTA5, CONSTANT_String);
// nulls produced by bc_classref are taken to mean the current class
CPRefBand bc_classref = bc_bands.newCPRefBand("bc_classref", UNSIGNED5, CONSTANT_Class, NULL_IS_OK); // new, *anew*, c*cast, i*of, ldc
CPRefBand bc_fieldref = bc_bands.newCPRefBand("bc_fieldref", DELTA5, CONSTANT_Fieldref); // get*, put*
CPRefBand bc_methodref = bc_bands.newCPRefBand("bc_methodref", CONSTANT_Methodref); // invoke[vs]*
CPRefBand bc_imethodref = bc_bands.newCPRefBand("bc_imethodref", DELTA5, CONSTANT_InterfaceMethodref); // invokeinterface
// _self_linker_op family
CPRefBand bc_thisfield = bc_bands.newCPRefBand("bc_thisfield", CONSTANT_None); // any field within cur. class
CPRefBand bc_superfield = bc_bands.newCPRefBand("bc_superfield", CONSTANT_None); // any field within superclass
CPRefBand bc_thismethod = bc_bands.newCPRefBand("bc_thismethod", CONSTANT_None); // any method within cur. class
CPRefBand bc_supermethod = bc_bands.newCPRefBand("bc_supermethod", CONSTANT_None); // any method within superclass
// bc_invokeinit family:
IntBand bc_initref = bc_bands.newIntBand("bc_initref");
// escapes
CPRefBand bc_escref = bc_bands.newCPRefBand("bc_escref", CONSTANT_All);
IntBand bc_escrefsize = bc_bands.newIntBand("bc_escrefsize");
IntBand bc_escsize = bc_bands.newIntBand("bc_escsize");
ByteBand bc_escbyte = bc_bands.newByteBand("bc_escbyte");
// bands for carrying resource files and file attributes:
MultiBand file_bands = all_bands.newMultiBand("(file_bands)", UNSIGNED5);
CPRefBand file_name = file_bands.newCPRefBand("file_name", CONSTANT_Utf8);
IntBand file_size_hi = file_bands.newIntBand("file_size_hi");
IntBand file_size_lo = file_bands.newIntBand("file_size_lo");
IntBand file_modtime = file_bands.newIntBand("file_modtime", DELTA5);
IntBand file_options = file_bands.newIntBand("file_options");
ByteBand file_bits = file_bands.newByteBand("file_bits");
// End of band definitions!
/** Given CP indexes, distribute tag-specific indexes to bands. */
protected void setBandIndexes() {
// Handle prior calls to setBandIndex:
for (Object[] need : needPredefIndex) {
CPRefBand b = (CPRefBand) need[0];
Byte which = (Byte) need[1];
b.setIndex(getCPIndex(which.byteValue()));
}
needPredefIndex = null; // no more predefs
if (verbose > 3) {
printCDecl(all_bands);
}
}
protected void setBandIndex(CPRefBand b, byte which) {
Object[] need = { b, Byte.valueOf(which) };
if (which == CONSTANT_Literal) {
// I.e., attribute layouts KQ (no null) or KQN (null ok).
allKQBands.add(b);
} else if (needPredefIndex != null) {
needPredefIndex.add(need);
} else {
// Not in predefinition mode; getCPIndex now works.
b.setIndex(getCPIndex(which));
}
}
protected void setConstantValueIndex(Field f) {
Index ix = null;
if (f != null) {
byte tag = f.getLiteralTag();
ix = getCPIndex(tag);
if (verbose > 2)
Utils.log.fine("setConstantValueIndex "+f+" "+ConstantPool.tagName(tag)+" => "+ix);
assert(ix != null);
}
// Typically, allKQBands is the singleton of field_ConstantValue_KQ.
for (CPRefBand xxx_KQ : allKQBands) {
xxx_KQ.setIndex(ix);
}
}
// Table of bands which contain metadata.
protected MultiBand[] metadataBands = new MultiBand[ATTR_CONTEXT_LIMIT];
{
metadataBands[ATTR_CONTEXT_CLASS] = class_metadata_bands;
metadataBands[ATTR_CONTEXT_FIELD] = field_metadata_bands;
metadataBands[ATTR_CONTEXT_METHOD] = method_metadata_bands;
}
// Attribute layouts.
public static final int ADH_CONTEXT_MASK = 0x3; // (ad_hdr & ADH_CONTEXT_MASK)
public static final int ADH_BIT_SHIFT = 0x2; // (ad_hdr >> ADH_BIT_SHIFT)
public static final int ADH_BIT_IS_LSB = 1;
public static final int ATTR_INDEX_OVERFLOW = -1;
public int[] attrIndexLimit = new int[ATTR_CONTEXT_LIMIT];
// Each index limit is either 32 or 63, depending on AO_HAVE_XXX_FLAGS_HI.
// Which flag bits are taken over by attributes?
protected long[] attrFlagMask = new long[ATTR_CONTEXT_LIMIT];
// Which flag bits have been taken over explicitly?
protected long[] attrDefSeen = new long[ATTR_CONTEXT_LIMIT];
// What pseudo-attribute bits are there to watch for?
protected int[] attrOverflowMask = new int[ATTR_CONTEXT_LIMIT];
protected int attrClassFileVersionMask;
// Mapping from Attribute.Layout to Band[] (layout element bands).
protected Map<Attribute.Layout, Band[]> attrBandTable = new HashMap<>();
// Well-known attributes:
protected final Attribute.Layout attrCodeEmpty;
protected final Attribute.Layout attrInnerClassesEmpty;
protected final Attribute.Layout attrClassFileVersion;
protected final Attribute.Layout attrConstantValue;
// Mapping from Attribute.Layout to Integer (inverse of attrDefs)
Map<Attribute.Layout, Integer> attrIndexTable = new HashMap<>();
// Mapping from attribute index (<32 are flag bits) to attributes.
protected List<List<Attribute.Layout>> attrDefs =
new FixedList<>(ATTR_CONTEXT_LIMIT);
{
for (int i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
assert(attrIndexLimit[i] == 0);
attrIndexLimit[i] = 32; // just for the sake of predefs.
attrDefs.set(i, new ArrayList<Attribute.Layout>(Collections.nCopies(
attrIndexLimit[i], (Attribute.Layout)null)));
}
// Add predefined attribute definitions:
attrInnerClassesEmpty =
predefineAttribute(CLASS_ATTR_InnerClasses, ATTR_CONTEXT_CLASS, null,
"InnerClasses", "");
assert(attrInnerClassesEmpty == Package.attrInnerClassesEmpty);
predefineAttribute(CLASS_ATTR_SourceFile, ATTR_CONTEXT_CLASS,
new Band[] { class_SourceFile_RUN },
"SourceFile", "RUNH");
predefineAttribute(CLASS_ATTR_EnclosingMethod, ATTR_CONTEXT_CLASS,
new Band[] {
class_EnclosingMethod_RC,
class_EnclosingMethod_RDN
},
"EnclosingMethod", "RCHRDNH");
attrClassFileVersion =
predefineAttribute(CLASS_ATTR_ClassFile_version, ATTR_CONTEXT_CLASS,
new Band[] {
class_ClassFile_version_minor_H,
class_ClassFile_version_major_H
},
".ClassFile.version", "HH");
predefineAttribute(X_ATTR_Signature, ATTR_CONTEXT_CLASS,
new Band[] { class_Signature_RS },
"Signature", "RSH");
predefineAttribute(X_ATTR_Deprecated, ATTR_CONTEXT_CLASS, null,
"Deprecated", "");
//predefineAttribute(X_ATTR_Synthetic, ATTR_CONTEXT_CLASS, null,
// "Synthetic", "");
predefineAttribute(X_ATTR_OVERFLOW, ATTR_CONTEXT_CLASS, null,
".Overflow", "");
attrConstantValue =
predefineAttribute(FIELD_ATTR_ConstantValue, ATTR_CONTEXT_FIELD,
new Band[] { field_ConstantValue_KQ },
"ConstantValue", "KQH");
predefineAttribute(X_ATTR_Signature, ATTR_CONTEXT_FIELD,
new Band[] { field_Signature_RS },
"Signature", "RSH");
predefineAttribute(X_ATTR_Deprecated, ATTR_CONTEXT_FIELD, null,
"Deprecated", "");
//predefineAttribute(X_ATTR_Synthetic, ATTR_CONTEXT_FIELD, null,
// "Synthetic", "");
predefineAttribute(X_ATTR_OVERFLOW, ATTR_CONTEXT_FIELD, null,
".Overflow", "");
attrCodeEmpty =
predefineAttribute(METHOD_ATTR_Code, ATTR_CONTEXT_METHOD, null,
"Code", "");
predefineAttribute(METHOD_ATTR_Exceptions, ATTR_CONTEXT_METHOD,
new Band[] {
method_Exceptions_N,
method_Exceptions_RC
},
"Exceptions", "NH[RCH]");
assert(attrCodeEmpty == Package.attrCodeEmpty);
predefineAttribute(X_ATTR_Signature, ATTR_CONTEXT_METHOD,
new Band[] { method_Signature_RS },
"Signature", "RSH");
predefineAttribute(X_ATTR_Deprecated, ATTR_CONTEXT_METHOD, null,
"Deprecated", "");
//predefineAttribute(X_ATTR_Synthetic, ATTR_CONTEXT_METHOD, null,
// "Synthetic", "");
predefineAttribute(X_ATTR_OVERFLOW, ATTR_CONTEXT_METHOD, null,
".Overflow", "");
for (int ctype = 0; ctype < ATTR_CONTEXT_LIMIT; ctype++) {
MultiBand xxx_metadata_bands = metadataBands[ctype];
if (xxx_metadata_bands == null)
continue; // no code attrs
// These arguments cause the bands to be built
// automatically for this complicated layout:
predefineAttribute(X_ATTR_RuntimeVisibleAnnotations,
ATTR_CONTEXT_NAME[ctype]+"_RVA_",
xxx_metadata_bands,
Attribute.lookup(null, ctype,
"RuntimeVisibleAnnotations"));
predefineAttribute(X_ATTR_RuntimeInvisibleAnnotations,
ATTR_CONTEXT_NAME[ctype]+"_RIA_",
xxx_metadata_bands,
Attribute.lookup(null, ctype,
"RuntimeInvisibleAnnotations"));
if (ctype != ATTR_CONTEXT_METHOD)
continue;
predefineAttribute(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
"method_RVPA_", xxx_metadata_bands,
Attribute.lookup(null, ctype,
"RuntimeVisibleParameterAnnotations"));
predefineAttribute(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
"method_RIPA_", xxx_metadata_bands,
Attribute.lookup(null, ctype,
"RuntimeInvisibleParameterAnnotations"));
predefineAttribute(METHOD_ATTR_AnnotationDefault,
"method_AD_", xxx_metadata_bands,
Attribute.lookup(null, ctype,
"AnnotationDefault"));
}
Attribute.Layout stackMapDef = Attribute.lookup(null, ATTR_CONTEXT_CODE, "StackMapTable").layout();
predefineAttribute(CODE_ATTR_StackMapTable, ATTR_CONTEXT_CODE,
stackmap_bands.toArray(),
stackMapDef.name(), stackMapDef.layout());
predefineAttribute(CODE_ATTR_LineNumberTable, ATTR_CONTEXT_CODE,
new Band[] {
code_LineNumberTable_N,
code_LineNumberTable_bci_P,
code_LineNumberTable_line
},
"LineNumberTable", "NH[PHH]");
predefineAttribute(CODE_ATTR_LocalVariableTable, ATTR_CONTEXT_CODE,
new Band[] {
code_LocalVariableTable_N,
code_LocalVariableTable_bci_P,
code_LocalVariableTable_span_O,
code_LocalVariableTable_name_RU,
code_LocalVariableTable_type_RS,
code_LocalVariableTable_slot
},
"LocalVariableTable", "NH[PHOHRUHRSHH]");
predefineAttribute(CODE_ATTR_LocalVariableTypeTable, ATTR_CONTEXT_CODE,
new Band[] {
code_LocalVariableTypeTable_N,
code_LocalVariableTypeTable_bci_P,
code_LocalVariableTypeTable_span_O,
code_LocalVariableTypeTable_name_RU,
code_LocalVariableTypeTable_type_RS,
code_LocalVariableTypeTable_slot
},
"LocalVariableTypeTable", "NH[PHOHRUHRSHH]");
predefineAttribute(X_ATTR_OVERFLOW, ATTR_CONTEXT_CODE, null,
".Overflow", "");
// Clear the record of having seen these definitions,
// so they may be redefined without error.
for (int i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
attrDefSeen[i] = 0;
}
// Set up the special masks:
for (int i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
attrOverflowMask[i] = (1<<X_ATTR_OVERFLOW);
attrIndexLimit[i] = 0; // will make a final decision later
}
attrClassFileVersionMask = (1<<CLASS_ATTR_ClassFile_version);
}
private void adjustToMajver() {
if (getPackageMajver() < JAVA6_PACKAGE_MAJOR_VERSION) {
if (verbose > 0) Utils.log.fine("Legacy package version");
// Revoke definition of pre-1.6 attribute type.
undefineAttribute(CODE_ATTR_StackMapTable, ATTR_CONTEXT_CODE);
}
}
protected void initAttrIndexLimit() {
for (int i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
assert(attrIndexLimit[i] == 0); // decide on it now!
attrIndexLimit[i] = (haveFlagsHi(i)? 63: 32);
List<Attribute.Layout> defList = attrDefs.get(i);
assert(defList.size() == 32); // all predef indexes are <32
int addMore = attrIndexLimit[i] - defList.size();
defList.addAll(Collections.nCopies(addMore, (Attribute.Layout) null));
}
}
protected boolean haveFlagsHi(int ctype) {
int mask = 1<<(LG_AO_HAVE_XXX_FLAGS_HI+ctype);
switch (ctype) {
case ATTR_CONTEXT_CLASS:
assert(mask == AO_HAVE_CLASS_FLAGS_HI); break;
case ATTR_CONTEXT_FIELD:
assert(mask == AO_HAVE_FIELD_FLAGS_HI); break;
case ATTR_CONTEXT_METHOD:
assert(mask == AO_HAVE_METHOD_FLAGS_HI); break;
case ATTR_CONTEXT_CODE:
assert(mask == AO_HAVE_CODE_FLAGS_HI); break;
default:
assert(false);
}
return testBit(archiveOptions, mask);
}
protected List getPredefinedAttrs(int ctype) {
assert(attrIndexLimit[ctype] != 0);
List<Attribute.Layout> res = new ArrayList<>(attrIndexLimit[ctype]);
// Remove nulls and non-predefs.
for (int ai = 0; ai < attrIndexLimit[ctype]; ai++) {
if (testBit(attrDefSeen[ctype], 1L<<ai)) continue;
Attribute.Layout def = attrDefs.get(ctype).get(ai);
if (def == null) continue; // unused flag bit
assert(isPredefinedAttr(ctype, ai));
res.add(def);
}
return res;
}
protected boolean isPredefinedAttr(int ctype, int ai) {
assert(attrIndexLimit[ctype] != 0);
// Overflow attrs are never predefined.
if (ai >= attrIndexLimit[ctype]) return false;
// If the bit is set, it was explicitly def'd.
if (testBit(attrDefSeen[ctype], 1L<<ai)) return false;
return (attrDefs.get(ctype).get(ai) != null);
}
protected void adjustSpecialAttrMasks() {
// Clear special masks if new definitions have been seen for them.
attrClassFileVersionMask &= ~ attrDefSeen[ATTR_CONTEXT_CLASS];
// It is possible to clear the overflow mask (bit 16).
for (int i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
attrOverflowMask[i] &= ~ attrDefSeen[i];
}
}
protected Attribute makeClassFileVersionAttr(int minver, int majver) {
byte[] bytes = {
(byte)(minver >> 8), (byte)minver,
(byte)(majver >> 8), (byte)majver
};
return attrClassFileVersion.addContent(bytes);
}
protected short[] parseClassFileVersionAttr(Attribute attr) {
assert(attr.layout() == attrClassFileVersion);
assert(attr.size() == 4);
byte[] bytes = attr.bytes();
int minver = ((bytes[0] & 0xFF) << 8) | (bytes[1] & 0xFF);
int majver = ((bytes[2] & 0xFF) << 8) | (bytes[3] & 0xFF);
return new short[]{ (short) minver, (short) majver };
}
private boolean assertBandOKForElems(Band[] ab, Attribute.Layout.Element[] elems) {
for (int i = 0; i < elems.length; i++) {
assert(assertBandOKForElem(ab, elems[i]));
}
return true;
}
private boolean assertBandOKForElem(Band[] ab, Attribute.Layout.Element e) {
Band b = null;
if (e.bandIndex != Attribute.NO_BAND_INDEX)
b = ab[e.bandIndex];
Coding rc = UNSIGNED5;
boolean wantIntBand = true;
switch (e.kind) {
case Attribute.EK_INT:
if (e.flagTest(Attribute.EF_SIGN)) {
rc = SIGNED5;
} else if (e.len == 1) {
rc = BYTE1;
}
break;
case Attribute.EK_BCI:
if (!e.flagTest(Attribute.EF_DELTA)) {
rc = BCI5;
} else {
rc = BRANCH5;
}
break;
case Attribute.EK_BCO:
rc = BRANCH5;
break;
case Attribute.EK_FLAG:
if (e.len == 1) rc = BYTE1;
break;
case Attribute.EK_REPL:
if (e.len == 1) rc = BYTE1;
assertBandOKForElems(ab, e.body);
break;
case Attribute.EK_UN:
if (e.flagTest(Attribute.EF_SIGN)) {
rc = SIGNED5;
} else if (e.len == 1) {
rc = BYTE1;
}
assertBandOKForElems(ab, e.body);
break;
case Attribute.EK_CASE:
assert(b == null);
assertBandOKForElems(ab, e.body);
return true; // no direct band
case Attribute.EK_CALL:
assert(b == null);
return true; // no direct band
case Attribute.EK_CBLE:
assert(b == null);
assertBandOKForElems(ab, e.body);
return true; // no direct band
case Attribute.EK_REF:
wantIntBand = false;
assert(b instanceof CPRefBand);
assert(((CPRefBand)b).nullOK == e.flagTest(Attribute.EF_NULL));
break;
default: assert(false);
}
assert(b.regularCoding == rc)
: (e+" // "+b);
if (wantIntBand)
assert(b instanceof IntBand);
return true;
}
private
Attribute.Layout predefineAttribute(int index, int ctype, Band[] ab,
String name, String layout) {
// Use Attribute.find to get uniquification of layouts.
Attribute.Layout def = Attribute.find(ctype, name, layout).layout();
//def.predef = true;
if (index >= 0) {
setAttributeLayoutIndex(def, index);
}
if (ab == null) {
ab = new Band[0];
}
assert(attrBandTable.get(def) == null); // no redef
attrBandTable.put(def, ab);
assert(def.bandCount == ab.length)
: (def+" // "+Arrays.asList(ab));
// Let's make sure the band types match:
assert(assertBandOKForElems(ab, def.elems));
return def;
}
// This version takes bandPrefix/addHere instead of prebuilt Band[] ab.
private
Attribute.Layout predefineAttribute(int index,
String bandPrefix, MultiBand addHere,
Attribute attr) {
//Attribute.Layout def = Attribute.find(ctype, name, layout).layout();
Attribute.Layout def = attr.layout();
int ctype = def.ctype();
return predefineAttribute(index, ctype,
makeNewAttributeBands(bandPrefix, def,
addHere),
def.name(), def.layout());
}
private
void undefineAttribute(int index, int ctype) {
if (verbose > 1) {
System.out.println("Removing predefined "+ATTR_CONTEXT_NAME[ctype]+
" attribute on bit "+index);
}
List<Attribute.Layout> defList = attrDefs.get(ctype);
Attribute.Layout def = defList.get(index);
assert(def != null);
defList.set(index, null);
attrIndexTable.put(def, null);
// Clear the def bit. (For predefs, it's already clear.)
assert(index < 64);
attrDefSeen[ctype] &= ~(1L<<index);
attrFlagMask[ctype] &= ~(1L<<index);
Band[] ab = attrBandTable.get(def);
for (int j = 0; j < ab.length; j++) {
ab[j].doneWithUnusedBand();
}
}
// Bands which contain non-predefined attrs.
protected MultiBand[] attrBands = new MultiBand[ATTR_CONTEXT_LIMIT];
{
attrBands[ATTR_CONTEXT_CLASS] = class_attr_bands;
attrBands[ATTR_CONTEXT_FIELD] = field_attr_bands;
attrBands[ATTR_CONTEXT_METHOD] = method_attr_bands;
attrBands[ATTR_CONTEXT_CODE] = code_attr_bands;
}
// Create bands for all non-predefined attrs.
void makeNewAttributeBands() {
// Retract special flag bit bindings, if they were taken over.
adjustSpecialAttrMasks();
for (int ctype = 0; ctype < ATTR_CONTEXT_LIMIT; ctype++) {
String cname = ATTR_CONTEXT_NAME[ctype];
MultiBand xxx_attr_bands = attrBands[ctype];
long defSeen = attrDefSeen[ctype];
// Note: attrDefSeen is always a subset of attrFlagMask.
assert((defSeen & ~attrFlagMask[ctype]) == 0);
for (int i = 0; i < attrDefs.get(ctype).size(); i++) {
Attribute.Layout def = attrDefs.get(ctype).get(i);
if (def == null) continue; // unused flag bit
if (def.bandCount == 0) continue; // empty attr
if (i < attrIndexLimit[ctype] && !testBit(defSeen, 1L<<i)) {
// There are already predefined bands here.
assert(attrBandTable.get(def) != null);
continue;
}
int base = xxx_attr_bands.size();
String pfx = cname+"_"+def.name()+"_"; // debug only
if (verbose > 1)
Utils.log.fine("Making new bands for "+def);
Band[] newAB = makeNewAttributeBands(pfx, def,
xxx_attr_bands);
assert(newAB.length == def.bandCount);
Band[] prevAB = attrBandTable.put(def, newAB);
if (prevAB != null) {
// We won't be using these predefined bands.
for (int j = 0; j < prevAB.length; j++) {
prevAB[j].doneWithUnusedBand();
}
}
}
}
//System.out.println(prevForAssertMap);
}
private
Band[] makeNewAttributeBands(String pfx, Attribute.Layout def,
MultiBand addHere) {
int base = addHere.size();
makeNewAttributeBands(pfx, def.elems, addHere);
int nb = addHere.size() - base;
Band[] newAB = new Band[nb];
for (int i = 0; i < nb; i++) {
newAB[i] = addHere.get(base+i);
}
return newAB;
}
// Recursive helper, operates on a "body" or other sequence of elems:
private
void makeNewAttributeBands(String pfx, Attribute.Layout.Element[] elems,
MultiBand ab) {
for (int i = 0; i < elems.length; i++) {
Attribute.Layout.Element e = elems[i];
String name = pfx+ab.size()+"_"+e.layout;
{
int tem;
if ((tem = name.indexOf('[')) > 0)
name = name.substring(0, tem);
if ((tem = name.indexOf('(')) > 0)
name = name.substring(0, tem);
if (name.endsWith("H"))
name = name.substring(0, name.length()-1);
}
Band nb;
switch (e.kind) {
case Attribute.EK_INT:
nb = newElemBand(e, name, ab);
break;
case Attribute.EK_BCI:
if (!e.flagTest(Attribute.EF_DELTA)) {
// PH: transmit R(bci), store bci
nb = ab.newIntBand(name, BCI5);
} else {
// POH: transmit D(R(bci)), store bci
nb = ab.newIntBand(name, BRANCH5);
}
// Note: No case for BYTE1 here.
break;
case Attribute.EK_BCO:
// OH: transmit D(R(bci)), store D(bci)
nb = ab.newIntBand(name, BRANCH5);
// Note: No case for BYTE1 here.
break;
case Attribute.EK_FLAG:
assert(!e.flagTest(Attribute.EF_SIGN));
nb = newElemBand(e, name, ab);
break;
case Attribute.EK_REPL:
assert(!e.flagTest(Attribute.EF_SIGN));
nb = newElemBand(e, name, ab);
makeNewAttributeBands(pfx, e.body, ab);
break;
case Attribute.EK_UN:
nb = newElemBand(e, name, ab);
makeNewAttributeBands(pfx, e.body, ab);
break;
case Attribute.EK_CASE:
if (!e.flagTest(Attribute.EF_BACK)) {
// If it's not a duplicate body, make the bands.
makeNewAttributeBands(pfx, e.body, ab);
}
continue; // no new band to make
case Attribute.EK_REF:
byte refKind = e.refKind;
boolean nullOK = e.flagTest(Attribute.EF_NULL);
nb = ab.newCPRefBand(name, UNSIGNED5, refKind, nullOK);
// Note: No case for BYTE1 here.
break;
case Attribute.EK_CALL:
continue; // no new band to make
case Attribute.EK_CBLE:
makeNewAttributeBands(pfx, e.body, ab);
continue; // no new band to make
default: assert(false); continue;
}
if (verbose > 1) {
Utils.log.fine("New attribute band "+nb);
}
}
}
private
Band newElemBand(Attribute.Layout.Element e, String name, MultiBand ab) {
if (e.flagTest(Attribute.EF_SIGN)) {
return ab.newIntBand(name, SIGNED5);
} else if (e.len == 1) {
return ab.newIntBand(name, BYTE1); // Not ByteBand, please.
} else {
return ab.newIntBand(name, UNSIGNED5);
}
}
protected int setAttributeLayoutIndex(Attribute.Layout def, int index) {
int ctype = def.ctype;
assert(ATTR_INDEX_OVERFLOW <= index && index < attrIndexLimit[ctype]);
List<Attribute.Layout> defList = attrDefs.get(ctype);
if (index == ATTR_INDEX_OVERFLOW) {
// Overflow attribute.
index = defList.size();
defList.add(def);
if (verbose > 0)
Utils.log.info("Adding new attribute at "+def +": "+index);
attrIndexTable.put(def, index);
return index;
}
// Detect redefinitions:
if (testBit(attrDefSeen[ctype], 1L<<index)) {
throw new RuntimeException("Multiple explicit definition at "+index+": "+def);
}
attrDefSeen[ctype] |= (1L<<index);
// Adding a new fixed attribute.
assert(0 <= index && index < attrIndexLimit[ctype]);
if (verbose > (attrClassFileVersionMask == 0? 2:0))
Utils.log.fine("Fixing new attribute at "+index
+": "+def
+(defList.get(index) == null? "":
"; replacing "+defList.get(index)));
attrFlagMask[ctype] |= (1L<<index);
// Remove index binding of any previous fixed attr.
attrIndexTable.put(defList.get(index), null);
defList.set(index, def);
attrIndexTable.put(def, index);
return index;
}
// encodings found in the code_headers band
private static final int[][] shortCodeLimits = {
{ 12, 12 }, // s<12, l<12, e=0 [1..144]
{ 8, 8 }, // s<8, l<8, e=1 [145..208]
{ 7, 7 }, // s<7, l<7, e=2 [209..256]
};
public final int shortCodeHeader_h_limit = shortCodeLimits.length;
// return 0 if it won't encode, else a number in [1..255]
static int shortCodeHeader(Code code) {
int s = code.max_stack;
int l0 = code.max_locals;
int h = code.handler_class.length;
if (h >= shortCodeLimits.length) return LONG_CODE_HEADER;
int siglen = code.getMethod().getArgumentSize();
assert(l0 >= siglen); // enough locals for signature!
if (l0 < siglen) return LONG_CODE_HEADER;
int l1 = l0 - siglen; // do not count locals required by the signature
int lims = shortCodeLimits[h][0];
int liml = shortCodeLimits[h][1];
if (s >= lims || l1 >= liml) return LONG_CODE_HEADER;
int sc = shortCodeHeader_h_base(h);
sc += s + lims*l1;
if (sc > 255) return LONG_CODE_HEADER;
assert(shortCodeHeader_max_stack(sc) == s);
assert(shortCodeHeader_max_na_locals(sc) == l1);
assert(shortCodeHeader_handler_count(sc) == h);
return sc;
}
static final int LONG_CODE_HEADER = 0;
static int shortCodeHeader_handler_count(int sc) {
assert(sc > 0 && sc <= 255);
for (int h = 0; ; h++) {
if (sc < shortCodeHeader_h_base(h+1))
return h;
}
}
static int shortCodeHeader_max_stack(int sc) {
int h = shortCodeHeader_handler_count(sc);
int lims = shortCodeLimits[h][0];
return (sc - shortCodeHeader_h_base(h)) % lims;
}
static int shortCodeHeader_max_na_locals(int sc) {
int h = shortCodeHeader_handler_count(sc);
int lims = shortCodeLimits[h][0];
return (sc - shortCodeHeader_h_base(h)) / lims;
}
private static int shortCodeHeader_h_base(int h) {
assert(h <= shortCodeLimits.length);
int sc = 1;
for (int h0 = 0; h0 < h; h0++) {
int lims = shortCodeLimits[h0][0];
int liml = shortCodeLimits[h0][1];
sc += lims * liml;
}
return sc;
}
// utilities for accessing the bc_label band:
protected void putLabel(IntBand bc_label, Code c, int pc, int targetPC) {
bc_label.putInt(c.encodeBCI(targetPC) - c.encodeBCI(pc));
}
protected int getLabel(IntBand bc_label, Code c, int pc) {
return c.decodeBCI(bc_label.getInt() + c.encodeBCI(pc));
}
protected CPRefBand getCPRefOpBand(int bc) {
switch (Instruction.getCPRefOpTag(bc)) {
case CONSTANT_Class:
return bc_classref;
case CONSTANT_Fieldref:
return bc_fieldref;
case CONSTANT_Methodref:
return bc_methodref;
case CONSTANT_InterfaceMethodref:
return bc_imethodref;
case CONSTANT_Literal:
switch (bc) {
case _ildc: case _ildc_w:
return bc_intref;
case _fldc: case _fldc_w:
return bc_floatref;
case _lldc2_w:
return bc_longref;
case _dldc2_w:
return bc_doubleref;
case _aldc: case _aldc_w:
return bc_stringref;
case _cldc: case _cldc_w:
return bc_classref;
}
break;
}
assert(false);
return null;
}
protected CPRefBand selfOpRefBand(int self_bc) {
assert(Instruction.isSelfLinkerOp(self_bc));
int idx = (self_bc - _self_linker_op);
boolean isSuper = (idx >= _self_linker_super_flag);
if (isSuper) idx -= _self_linker_super_flag;
boolean isAload = (idx >= _self_linker_aload_flag);
if (isAload) idx -= _self_linker_aload_flag;
int origBC = _first_linker_op + idx;
boolean isField = Instruction.isFieldOp(origBC);
if (!isSuper)
return isField? bc_thisfield: bc_thismethod;
else
return isField? bc_superfield: bc_supermethod;
}
////////////////////////////////////////////////////////////////////
static int nextSeqForDebug;
static File dumpDir = null;
static OutputStream getDumpStream(Band b, String ext) throws IOException {
return getDumpStream(b.name, b.seqForDebug, ext, b);
}
static OutputStream getDumpStream(Index ix, String ext) throws IOException {
if (ix.size() == 0) return new ByteArrayOutputStream();
int seq = ConstantPool.TAG_ORDER[ix.cpMap[0].tag];
return getDumpStream(ix.debugName, seq, ext, ix);
}
static OutputStream getDumpStream(String name, int seq, String ext, Object b) throws IOException {
if (dumpDir == null) {
dumpDir = File.createTempFile("BD_", "", new File("."));
dumpDir.delete();
if (dumpDir.mkdir())
Utils.log.info("Dumping bands to "+dumpDir);
}
name = name.replace('(', ' ').replace(')', ' ');
name = name.replace('/', ' ');
name = name.replace('*', ' ');
name = name.trim().replace(' ','_');
name = ((10000+seq) + "_" + name).substring(1);
File dumpFile = new File(dumpDir, name+ext);
Utils.log.info("Dumping "+b+" to "+dumpFile);
return new BufferedOutputStream(new FileOutputStream(dumpFile));
}
// DEBUG ONLY: Validate me at each length change.
static boolean assertCanChangeLength(Band b) {
switch (b.phase) {
case COLLECT_PHASE:
case READ_PHASE:
return true;
}
return false;
}
// DEBUG ONLY: Validate a phase.
static boolean assertPhase(Band b, int phaseExpected) {
if (b.phase() != phaseExpected) {
Utils.log.warning("phase expected "+phaseExpected+" was "+b.phase()+" in "+b);
return false;
}
return true;
}
// DEBUG ONLY: Tells whether verbosity is turned on.
static int verbose() {
return Utils.currentPropMap().getInteger(Utils.DEBUG_VERBOSE);
}
// DEBUG ONLY: Validate me at each phase change.
static boolean assertPhaseChangeOK(Band b, int p0, int p1) {
switch (p0*10+p1) {
/// Writing phases:
case NO_PHASE*10+COLLECT_PHASE:
// Ready to collect data from the input classes.
assert(!b.isReader());
assert(b.capacity() >= 0);
assert(b.length() == 0);
return true;
case COLLECT_PHASE*10+FROZEN_PHASE:
case FROZEN_PHASE*10+FROZEN_PHASE:
assert(b.length() == 0);
return true;
case COLLECT_PHASE*10+WRITE_PHASE:
case FROZEN_PHASE*10+WRITE_PHASE:
// Data is all collected. Ready to write bytes to disk.
return true;
case WRITE_PHASE*10+DONE_PHASE:
// Done writing to disk. Ready to reset, in principle.
return true;
/// Reading phases:
case NO_PHASE*10+EXPECT_PHASE:
assert(b.isReader());
assert(b.capacity() < 0);
return true;
case EXPECT_PHASE*10+READ_PHASE:
// Ready to read values from disk.
assert(Math.max(0,b.capacity()) >= b.valuesExpected());
assert(b.length() <= 0);
return true;
case READ_PHASE*10+DISBURSE_PHASE:
// Ready to disburse values.
assert(b.valuesRemainingForDebug() == b.length());
return true;
case DISBURSE_PHASE*10+DONE_PHASE:
// Done disbursing values. Ready to reset, in principle.
assert(assertDoneDisbursing(b));
return true;
}
if (p0 == p1)
Utils.log.warning("Already in phase "+p0);
else
Utils.log.warning("Unexpected phase "+p0+" -> "+p1);
return false;
}
static private boolean assertDoneDisbursing(Band b) {
if (b.phase != DISBURSE_PHASE) {
Utils.log.warning("assertDoneDisbursing: still in phase "+b.phase+": "+b);
if (verbose() <= 1) return false; // fail now
}
int left = b.valuesRemainingForDebug();
if (left > 0) {
Utils.log.warning("assertDoneDisbursing: "+left+" values left in "+b);
if (verbose() <= 1) return false; // fail now
}
if (b instanceof MultiBand) {
MultiBand mb = (MultiBand) b;
for (int i = 0; i < mb.bandCount; i++) {
Band sub = mb.bands[i];
if (sub.phase != DONE_PHASE) {
Utils.log.warning("assertDoneDisbursing: sub-band still in phase "+sub.phase+": "+sub);
if (verbose() <= 1) return false; // fail now
}
}
}
return true;
}
static private void printCDecl(Band b) {
if (b instanceof MultiBand) {
MultiBand mb = (MultiBand) b;
for (int i = 0; i < mb.bandCount; i++) {
printCDecl(mb.bands[i]);
}
return;
}
String ixS = "NULL";
if (b instanceof CPRefBand) {
Index ix = ((CPRefBand)b).index;
if (ix != null) ixS = "INDEX("+ix.debugName+")";
}
Coding[] knownc = { BYTE1, CHAR3, BCI5, BRANCH5, UNSIGNED5,
UDELTA5, SIGNED5, DELTA5, MDELTA5 };
String[] knowns = { "BYTE1", "CHAR3", "BCI5", "BRANCH5", "UNSIGNED5",
"UDELTA5", "SIGNED5", "DELTA5", "MDELTA5" };
Coding rc = b.regularCoding;
int rci = Arrays.asList(knownc).indexOf(rc);
String cstr;
if (rci >= 0)
cstr = knowns[rci];
else
cstr = "CODING"+rc.keyString();
System.out.println(" BAND_INIT(\""+b.name()+"\""
+", "+cstr+", "+ixS+"),");
}
private Map<Band, Band> prevForAssertMap;
// DEBUG ONLY: Record something about the band order.
boolean notePrevForAssert(Band b, Band p) {
if (prevForAssertMap == null)
prevForAssertMap = new HashMap<>();
prevForAssertMap.put(b, p);
return true;
}
// DEBUG ONLY: Validate next input band.
private boolean assertReadyToReadFrom(Band b, InputStream in) throws IOException {
Band p = prevForAssertMap.get(b);
// Any previous band must be done reading before this one starts.
if (p != null && phaseCmp(p.phase(), DISBURSE_PHASE) < 0) {
Utils.log.warning("Previous band not done reading.");
Utils.log.info(" Previous band: "+p);
Utils.log.info(" Next band: "+b);
Thread.dumpStack();
assert(verbose > 0); // die unless verbose is true
}
String name = b.name;
if (optDebugBands && !name.startsWith("(")) {
// Verify synchronization between reader & writer:
StringBuilder buf = new StringBuilder();
int ch;
while ((ch = in.read()) > 0)
buf.append((char)ch);
String inName = buf.toString();
if (!inName.equals(name)) {
StringBuilder sb = new StringBuilder();
sb.append("Expected "+name+" but read: ");
inName += (char)ch;
while (inName.length() < 10) {
inName += (char) in.read();
}
for (int i = 0; i < inName.length(); i++) {
sb.append(inName.charAt(i));
}
Utils.log.warning(sb.toString());
return false;
}
}
return true;
}
// DEBUG ONLY: Make sure a bunch of cprefs are correct.
private boolean assertValidCPRefs(CPRefBand b) {
if (b.index == null) return true;
int limit = b.index.size()+1;
for (int i = 0; i < b.length(); i++) {
int v = b.valueAtForDebug(i);
if (v < 0 || v >= limit) {
Utils.log.warning("CP ref out of range "+
"["+i+"] = "+v+" in "+b);
return false;
}
}
return true;
}
// DEBUG ONLY: Maybe write a debugging cookie to next output band.
private boolean assertReadyToWriteTo(Band b, OutputStream out) throws IOException {
Band p = prevForAssertMap.get(b);
// Any previous band must be done writing before this one starts.
if (p != null && phaseCmp(p.phase(), DONE_PHASE) < 0) {
Utils.log.warning("Previous band not done writing.");
Utils.log.info(" Previous band: "+p);
Utils.log.info(" Next band: "+b);
Thread.dumpStack();
assert(verbose > 0); // die unless verbose is true
}
String name = b.name;
if (optDebugBands && !name.startsWith("(")) {
// Verify synchronization between reader & writer:
for (int j = 0; j < name.length(); j++) {
out.write((byte)name.charAt(j));
}
out.write((byte)0);
}
return true;
}
protected static boolean testBit(int flags, int bitMask) {
return (flags & bitMask) != 0;
}
protected static int setBit(int flags, int bitMask, boolean z) {
return z ? (flags | bitMask) : (flags &~ bitMask);
}
protected static boolean testBit(long flags, long bitMask) {
return (flags & bitMask) != 0;
}
protected static long setBit(long flags, long bitMask, boolean z) {
return z ? (flags | bitMask) : (flags &~ bitMask);
}
static void printArrayTo(PrintStream ps, int[] values, int start, int end) {
int len = end-start;
for (int i = 0; i < len; i++) {
if (i % 10 == 0)
ps.println();
else
ps.print(" ");
ps.print(values[start+i]);
}
ps.println();
}
static void printArrayTo(PrintStream ps, Entry[] cpMap, int start, int end) {
StringBuffer buf = new StringBuffer();
int len = end-start;
for (int i = 0; i < len; i++) {
String s = cpMap[start+i].stringValue();
buf.setLength(0);
for (int j = 0; j < s.length(); j++) {
char ch = s.charAt(j);
if (!(ch < ' ' || ch > '~' || ch == '\\')) {
buf.append(ch);
} else if (ch == '\n') {
buf.append("\\n");
} else if (ch == '\t') {
buf.append("\\t");
} else if (ch == '\r') {
buf.append("\\r");
} else {
buf.append("\\x"+Integer.toHexString(ch));
}
}
ps.println(buf);
}
}
// Utilities for reallocating:
protected static Object[] realloc(Object[] a, int len) {
java.lang.Class elt = a.getClass().getComponentType();
Object[] na = (Object[]) java.lang.reflect.Array.newInstance(elt, len);
System.arraycopy(a, 0, na, 0, Math.min(a.length, len));
return na;
}
protected static Object[] realloc(Object[] a) {
return realloc(a, Math.max(10, a.length*2));
}
protected static int[] realloc(int[] a, int len) {
if (len == 0) return noInts;
if (a == null) return new int[len];
int[] na = new int[len];
System.arraycopy(a, 0, na, 0, Math.min(a.length, len));
return na;
}
protected static int[] realloc(int[] a) {
return realloc(a, Math.max(10, a.length*2));
}
protected static byte[] realloc(byte[] a, int len) {
if (len == 0) return noBytes;
if (a == null) return new byte[len];
byte[] na = new byte[len];
System.arraycopy(a, 0, na, 0, Math.min(a.length, len));
return na;
}
protected static byte[] realloc(byte[] a) {
return realloc(a, Math.max(10, a.length*2));
}
}