/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "jli_util.h"
#include <zlib.h>
#include "manifest_info.h"
static char *manifest;
/*
* Inflate the manifest file (or any file for that matter).
*
* fd: File descriptor of the jar file.
* entry: Contains the information necessary to perform the inflation
* (the compressed and uncompressed sizes and the offset in
* the file where the compressed data is located).
* size_out: Returns the size of the inflated file.
*
* Upon success, it returns a pointer to a NUL-terminated malloc'd buffer
* containing the inflated manifest file. When the caller is done with it,
* this buffer should be released by a call to free(). Upon failure,
* returns NULL.
*/
static char *
{
char *in;
char *out;
return (NULL);
return (NULL);
return (NULL);
return (NULL);
}
if (size_out) {
}
return (in);
return (NULL);
}
return (NULL);
}
return (NULL);
}
if (inflateEnd(&zs) < 0) {
return (NULL);
}
if (size_out) {
}
return (out);
} else
return (NULL);
}
/*
* A very little used routine to handle the case that zip file has
* a comment at the end. Believe it or not, the only way to find the
* END record is to walk backwards, byte by bloody byte looking for
* the END record signature.
*
* fd: File descriptor of the jar file.
* eb: Pointer to a buffer to receive a copy of the END header.
*
* Returns the offset of the END record in the file on success,
* -1 on failure.
*/
static off_t
{
int bytes;
/*
* 99.44% (or more) of the time, there will be no comment at the
* end of the zip file. Try reading just enough to read the END
* record from the end of the file.
*/
return (-1);
return (-1);
return (pos);
/*
* Shucky-Darn,... There is a comment at the end of the zip file.
*
* Allocate and fill a buffer with enough of the zip file
* to meet the specification for a maximal comment length.
*/
return (-1);
return (-1);
return (-1);
return (-1);
}
/*
* Search backwards from the end of file stopping when the END header
* signature is found. (The first condition of the "if" is just a
* fast fail, because the GETSIG macro isn't always cheap. The
* final condition protects against false positives.)
*/
}
return (-1);
}
/*
*
* fd: File descriptor of the jar file.
* entry: To be populated with the information necessary to perform
* the inflation (the compressed and uncompressed sizes and
* the offset in the file where the compressed data is located).
*
* Returns zero upon success. Returns a negative value upon failure.
*
* to be large enough to accommodate the largest possible single record
* and the signature of the next record which is:
*
* 3*2**16 + CENHDR + SIGSIZ
*
* Each of the three variable sized fields (name, comment and extension)
* has a maximum possible size of 64k.
*
* Typically, only a small bit of this buffer is used with bytes shuffled
* down to the beginning of the buffer. It is one thing to allocate such
* a large buffer and another thing to actually start faulting it in.
*
* In most cases, all that needs to be read are the first two entries in
* a typical jar file (META-INF and META-INF/MANIFEST.MF). Keep this factoid
* in mind when optimizing this code.
*/
static int
{
int bytes;
int res;
int entry_size;
int read_size;
int base_offset;
Byte *p;
return(-1);
}
p = buffer;
/*
* Read the END Header, which is the starting point for ZIP files.
* (Clearly designed to make writing a zip file easier than reading
* one. Now isn't that precious...)
*/
return (-1);
}
/*
* There is a historical, but undocumented, ability to allow for
* that this has been used to prepend an actual java launcher
* executable to the jar on Windows. Although this is just another
* form of statically linking a small piece of the JVM to the
* application, we choose to continue to support it. Note that no
* guarantees have been made (or should be made) to the customer that
* this will continue to work.
*
* Therefore, calculate the base offset of the zip file (within the
* expanded file) by assuming that the central directory is followed
* immediately by the end record.
*/
/*
* The END Header indicates the start of the Central Directory
* Headers. Remember that the desired Central Directory Header (CEN)
* will almost always be the second one and the first one is a small
* directory entry ("META-INF/"). Keep the code optimized for
* that case.
*
* Begin by seeking to the beginning of the Central Directory and
* reading in the first buffer full of bits.
*/
return (-1);
}
return (-1);
}
/*
* must have an ENDHDR (with ENDSIG) after the Central Directory.
*/
/*
* If a complete header isn't in the buffer, shift the contents
* of the buffer down and refill the buffer. Note that the check
* for "bytes < CENHDR" must be made before the test for the entire
* size of the header, because if bytes is less than CENHDR, the
* actual size of the header can't be determined. The addition of
* SIGSIZ guarantees that the next signature is also in the buffer
* for proper loop termination.
*/
return (-1);
}
}
if (p != bp)
return (-1);
}
}
/*
* Check if the name is the droid we are looking for; the jar file
* manifest. If so, build the entry record from the data found in
* the header located and return success.
*/
return (-1);
}
return (-1);
}
return (-1);
}
return (0);
}
/*
* Point to the next entry and decrement the count of valid remaining
* bytes.
*/
bytes -= entry_size;
p += entry_size;
}
return (-1); /* Fell off the end the loop without a Manifest */
}
/*
* Parse a Manifest file header entry into a distinct "name" and "value".
* Continuation lines are joined into a single "value". The documented
* syntax for a header entry is:
*
* header: name ":" value
*
* name: alphanum *headerchar
*
* value: SPACE *otherchar newline *continuation
*
* continuation: SPACE *otherchar newline
*
* newline: CR LF | LF | CR (not followed by LF)
*
* alphanum: {"A"-"Z"} | {"a"-"z"} | {"0"-"9"}
*
* headerchar: alphanum | "-" | "_"
*
* otherchar: any UTF-8 character except NUL, CR and LF
*
* Note that a manifest file may be composed of multiple sections,
* each of which may contain multiple headers.
*
* section: *header +newline
*
* nonempty-section: +header +newline
*
* (Note that the point of "nonempty-section" is unclear, because it isn't
* referenced elsewhere in the full specification for the Manifest file.)
*
* Arguments:
* lp pointer to a character pointer which points to the start
* of a valid header.
* name pointer to a character pointer which will be set to point
* to the name portion of the header (nul terminated).
* value pointer to a character pointer which will be set to point
* to the value portion of the header (nul terminated).
*
* Returns:
* 1 Successful parsing of an NV pair. lp is updated to point to the
* next character after the terminating newline in the string
* representing the Manifest file. name and value are updated to
* point to the strings parsed.
* 0 A valid end of section indicator was encountered. lp, name, and
* value are not modified.
* -1 lp does not point to a valid header. Upon return, the values of
* lp, name, and value are undefined.
*/
static int
{
char *nl;
char *cp;
/*
* End of the section - return 0. The end of section condition is
* indicated by either encountering a blank line or the end of the
* Manifest "string" (EOF).
*/
return (0);
/*
* Getting to here, indicates that *lp points to an "otherchar".
* Turn the "header" into a string on its own.
*/
} else {
*nl++ = '\0';
*nl++ = '\0';
/*
* Process any "continuation" line(s), by making them part of the
* "header" line. Yes, I know that we are "undoing" the NULs we
* just placed here, but continuation lines are the fairly rare
* case, so we shouldn't unnecessarily complicate the code above.
*
* Note that an entire continuation line is processed each iteration
* through the outer while loop.
*/
while (*nl == ' ') {
nl++; /* First character to be moved */
if (*nl == '\0')
return (-1); /* Error: newline required */
*cp = '\0';
*nl++ = '\0';
*nl++ = '\0';
}
}
/*
* Separate the name from the value;
*/
return (-1);
if (*cp != ' ')
return (-1);
return (1);
}
/*
* Read the manifest from the specified jar file and fill in the manifest_info
* structure with the information found within.
*
* Error returns are as follows:
* 0 Success
* -1 Unable to open jarfile
* -2 Error accessing the manifest from within the jarfile (most likely
*/
int
{
int fd;
char *lp;
char *name;
char *value;
int rc;
#ifdef O_BINARY
| O_BINARY /* use binary mode on windows */
#endif
)) == -1) {
return (-1);
}
info->jre_restrict_search = 0;
return (-2);
}
return (-2);
}
}
}
if (rc == 0)
return (0);
else
return (-2);
}
/*
* Opens the jar file and unpacks the specified file from its contents.
* Returns NULL on failure.
*/
void *
int fd;
#ifdef O_BINARY
| O_BINARY /* use binary mode on windows */
#endif
)) == -1) {
return NULL;
}
}
return (data);
}
/*
* Specialized "free" function.
*/
void
{
if (manifest)
}
/*
* Iterate over the manifest of the specified jar file and invoke the provided
* closure function for each attribute encountered.
*
* Error returns are as follows:
* 0 Success
* -1 Unable to open jarfile
* -2 Error accessing the manifest from within the jarfile (most likely
*/
int
{
int fd;
char *name;
char *value;
int rc;
#ifdef O_BINARY
| O_BINARY /* use binary mode on windows */
#endif
)) == -1) {
return (-1);
}
return (-2);
}
return (-2);
}
}
return (rc == 0) ? 0 : -2;
}