/*
* Copyright (c) 2012 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "runtime/os.hpp"
#include "services/memReporter.hpp"
#include "services/memPtrArray.hpp"
#include "services/memTracker.hpp"
const char* BaselineOutputer::memory_unit(size_t scale) {
switch(scale) {
case K: return "KB";
case M: return "MB";
case G: return "GB";
}
ShouldNotReachHere();
return NULL;
}
void BaselineReporter::report_baseline(const MemBaseline& baseline, bool summary_only) {
assert(MemTracker::is_on(), "Native memory tracking is off");
_outputer.start(scale());
_outputer.total_usage(
amount_in_current_scale(baseline.total_malloc_amount() + baseline.total_reserved_amount()),
amount_in_current_scale(baseline.total_malloc_amount() + baseline.total_committed_amount()));
_outputer.num_of_classes(baseline.number_of_classes());
_outputer.num_of_threads(baseline.number_of_threads());
report_summaries(baseline);
if (!summary_only && MemTracker::track_callsite()) {
report_virtual_memory_map(baseline);
report_callsites(baseline);
}
_outputer.done();
}
void BaselineReporter::report_summaries(const MemBaseline& baseline) {
_outputer.start_category_summary();
MEMFLAGS type;
for (int index = 0; index < NUMBER_OF_MEMORY_TYPE; index ++) {
type = MemBaseline::MemType2NameMap[index]._flag;
_outputer.category_summary(type,
amount_in_current_scale(baseline.reserved_amount(type)),
amount_in_current_scale(baseline.committed_amount(type)),
amount_in_current_scale(baseline.malloc_amount(type)),
baseline.malloc_count(type),
amount_in_current_scale(baseline.arena_amount(type)),
baseline.arena_count(type));
}
_outputer.done_category_summary();
}
void BaselineReporter::report_virtual_memory_map(const MemBaseline& baseline) {
_outputer.start_virtual_memory_map();
MemBaseline* pBL = const_cast<MemBaseline*>(&baseline);
MemPointerArrayIteratorImpl itr = MemPointerArrayIteratorImpl(pBL->_vm_map);
VMMemRegionEx* rgn = (VMMemRegionEx*)itr.current();
while (rgn != NULL) {
if (rgn->is_reserved_region()) {
_outputer.reserved_memory_region(FLAGS_TO_MEMORY_TYPE(rgn->flags()),
rgn->base(), rgn->base() + rgn->size(), amount_in_current_scale(rgn->size()), rgn->pc());
} else {
_outputer.committed_memory_region(rgn->base(), rgn->base() + rgn->size(),
amount_in_current_scale(rgn->size()), rgn->pc());
}
rgn = (VMMemRegionEx*)itr.next();
}
_outputer.done_virtual_memory_map();
}
void BaselineReporter::report_callsites(const MemBaseline& baseline) {
_outputer.start_callsite();
MemBaseline* pBL = const_cast<MemBaseline*>(&baseline);
pBL->_malloc_cs->sort((FN_SORT)MemBaseline::bl_malloc_sort_by_size);
pBL->_vm_cs->sort((FN_SORT)MemBaseline::bl_vm_sort_by_size);
// walk malloc callsites
MemPointerArrayIteratorImpl malloc_itr(pBL->_malloc_cs);
MallocCallsitePointer* malloc_callsite =
(MallocCallsitePointer*)malloc_itr.current();
while (malloc_callsite != NULL) {
_outputer.malloc_callsite(malloc_callsite->addr(),
amount_in_current_scale(malloc_callsite->amount()), malloc_callsite->count());
malloc_callsite = (MallocCallsitePointer*)malloc_itr.next();
}
// walk virtual memory callsite
MemPointerArrayIteratorImpl vm_itr(pBL->_vm_cs);
VMCallsitePointer* vm_callsite = (VMCallsitePointer*)vm_itr.current();
while (vm_callsite != NULL) {
_outputer.virtual_memory_callsite(vm_callsite->addr(),
amount_in_current_scale(vm_callsite->reserved_amount()),
amount_in_current_scale(vm_callsite->committed_amount()));
vm_callsite = (VMCallsitePointer*)vm_itr.next();
}
pBL->_malloc_cs->sort((FN_SORT)MemBaseline::bl_malloc_sort_by_pc);
pBL->_vm_cs->sort((FN_SORT)MemBaseline::bl_vm_sort_by_pc);
_outputer.done_callsite();
}
void BaselineReporter::diff_baselines(const MemBaseline& cur, const MemBaseline& prev,
bool summary_only) {
assert(MemTracker::is_on(), "Native memory tracking is off");
_outputer.start(scale());
size_t total_reserved = cur.total_malloc_amount() + cur.total_reserved_amount();
size_t total_committed = cur.total_malloc_amount() + cur.total_committed_amount();
_outputer.diff_total_usage(
amount_in_current_scale(total_reserved), amount_in_current_scale(total_committed),
diff_in_current_scale(total_reserved, (prev.total_malloc_amount() + prev.total_reserved_amount())),
diff_in_current_scale(total_committed, (prev.total_committed_amount() + prev.total_malloc_amount())));
_outputer.diff_num_of_classes(cur.number_of_classes(),
diff(cur.number_of_classes(), prev.number_of_classes()));
_outputer.diff_num_of_threads(cur.number_of_threads(),
diff(cur.number_of_threads(), prev.number_of_threads()));
diff_summaries(cur, prev);
if (!summary_only && MemTracker::track_callsite()) {
diff_callsites(cur, prev);
}
_outputer.done();
}
void BaselineReporter::diff_summaries(const MemBaseline& cur, const MemBaseline& prev) {
_outputer.start_category_summary();
MEMFLAGS type;
for (int index = 0; index < NUMBER_OF_MEMORY_TYPE; index ++) {
type = MemBaseline::MemType2NameMap[index]._flag;
_outputer.diff_category_summary(type,
amount_in_current_scale(cur.reserved_amount(type)),
amount_in_current_scale(cur.committed_amount(type)),
amount_in_current_scale(cur.malloc_amount(type)),
cur.malloc_count(type),
amount_in_current_scale(cur.arena_amount(type)),
cur.arena_count(type),
diff_in_current_scale(cur.reserved_amount(type), prev.reserved_amount(type)),
diff_in_current_scale(cur.committed_amount(type), prev.committed_amount(type)),
diff_in_current_scale(cur.malloc_amount(type), prev.malloc_amount(type)),
diff(cur.malloc_count(type), prev.malloc_count(type)),
diff_in_current_scale(cur.arena_amount(type), prev.arena_amount(type)),
diff(cur.arena_count(type), prev.arena_count(type)));
}
_outputer.done_category_summary();
}
void BaselineReporter::diff_callsites(const MemBaseline& cur, const MemBaseline& prev) {
_outputer.start_callsite();
MemBaseline* pBL_cur = const_cast<MemBaseline*>(&cur);
MemBaseline* pBL_prev = const_cast<MemBaseline*>(&prev);
// walk malloc callsites
MemPointerArrayIteratorImpl cur_malloc_itr(pBL_cur->_malloc_cs);
MemPointerArrayIteratorImpl prev_malloc_itr(pBL_prev->_malloc_cs);
MallocCallsitePointer* cur_malloc_callsite =
(MallocCallsitePointer*)cur_malloc_itr.current();
MallocCallsitePointer* prev_malloc_callsite =
(MallocCallsitePointer*)prev_malloc_itr.current();
while (cur_malloc_callsite != NULL || prev_malloc_callsite != NULL) {
if (prev_malloc_callsite == NULL) {
assert(cur_malloc_callsite != NULL, "sanity check");
// this is a new callsite
_outputer.diff_malloc_callsite(cur_malloc_callsite->addr(),
amount_in_current_scale(cur_malloc_callsite->amount()),
cur_malloc_callsite->count(),
diff_in_current_scale(cur_malloc_callsite->amount(), 0),
diff(cur_malloc_callsite->count(), 0));
cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.next();
} else if (cur_malloc_callsite == NULL) {
assert(prev_malloc_callsite != NULL, "Sanity check");
// this callsite is already gone
_outputer.diff_malloc_callsite(prev_malloc_callsite->addr(),
0, 0,
diff_in_current_scale(0, prev_malloc_callsite->amount()),
diff(0, prev_malloc_callsite->count()));
prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.next();
} else {
assert(cur_malloc_callsite != NULL, "Sanity check");
assert(prev_malloc_callsite != NULL, "Sanity check");
if (cur_malloc_callsite->addr() < prev_malloc_callsite->addr()) {
// this is a new callsite
_outputer.diff_malloc_callsite(cur_malloc_callsite->addr(),
amount_in_current_scale(cur_malloc_callsite->amount()),
cur_malloc_callsite->count(),
diff_in_current_scale(cur_malloc_callsite->amount(), 0),
diff(cur_malloc_callsite->count(), 0));
cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.next();
} else if (cur_malloc_callsite->addr() > prev_malloc_callsite->addr()) {
// this callsite is already gone
_outputer.diff_malloc_callsite(prev_malloc_callsite->addr(),
0, 0,
diff_in_current_scale(0, prev_malloc_callsite->amount()),
diff(0, prev_malloc_callsite->count()));
prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.next();
} else {
// the same callsite
_outputer.diff_malloc_callsite(cur_malloc_callsite->addr(),
amount_in_current_scale(cur_malloc_callsite->amount()),
cur_malloc_callsite->count(),
diff_in_current_scale(cur_malloc_callsite->amount(), prev_malloc_callsite->amount()),
diff(cur_malloc_callsite->count(), prev_malloc_callsite->count()));
cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.next();
prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.next();
}
}
}
// walk virtual memory callsite
MemPointerArrayIteratorImpl cur_vm_itr(pBL_cur->_vm_cs);
MemPointerArrayIteratorImpl prev_vm_itr(pBL_prev->_vm_cs);
VMCallsitePointer* cur_vm_callsite = (VMCallsitePointer*)cur_vm_itr.current();
VMCallsitePointer* prev_vm_callsite = (VMCallsitePointer*)prev_vm_itr.current();
while (cur_vm_callsite != NULL || prev_vm_callsite != NULL) {
if (prev_vm_callsite == NULL || cur_vm_callsite->addr() < prev_vm_callsite->addr()) {
// this is a new callsite
_outputer.diff_virtual_memory_callsite(cur_vm_callsite->addr(),
amount_in_current_scale(cur_vm_callsite->reserved_amount()),
amount_in_current_scale(cur_vm_callsite->committed_amount()),
diff_in_current_scale(cur_vm_callsite->reserved_amount(), 0),
diff_in_current_scale(cur_vm_callsite->committed_amount(), 0));
cur_vm_callsite = (VMCallsitePointer*)cur_vm_itr.next();
} else if (cur_vm_callsite == NULL || cur_vm_callsite->addr() > prev_vm_callsite->addr()) {
// this callsite is already gone
_outputer.diff_virtual_memory_callsite(prev_vm_callsite->addr(),
amount_in_current_scale(0),
amount_in_current_scale(0),
diff_in_current_scale(0, prev_vm_callsite->reserved_amount()),
diff_in_current_scale(0, prev_vm_callsite->committed_amount()));
prev_vm_callsite = (VMCallsitePointer*)prev_vm_itr.next();
} else { // the same callsite
_outputer.diff_virtual_memory_callsite(cur_vm_callsite->addr(),
amount_in_current_scale(cur_vm_callsite->reserved_amount()),
amount_in_current_scale(cur_vm_callsite->committed_amount()),
diff_in_current_scale(cur_vm_callsite->reserved_amount(), prev_vm_callsite->reserved_amount()),
diff_in_current_scale(cur_vm_callsite->committed_amount(), prev_vm_callsite->committed_amount()));
cur_vm_callsite = (VMCallsitePointer*)cur_vm_itr.next();
prev_vm_callsite = (VMCallsitePointer*)prev_vm_itr.next();
}
}
_outputer.done_callsite();
}
size_t BaselineReporter::amount_in_current_scale(size_t amt) const {
return (size_t)(((float)amt/(float)_scale) + 0.5);
}
int BaselineReporter::diff_in_current_scale(size_t value1, size_t value2) const {
return (int)(((float)value1 - (float)value2)/((float)_scale) + 0.5);
}
int BaselineReporter::diff(size_t value1, size_t value2) const {
return ((int)value1 - (int)value2);
}
void BaselineTTYOutputer::start(size_t scale, bool report_diff) {
_scale = scale;
_output->print_cr(" ");
_output->print_cr("Native Memory Tracking:");
_output->print_cr(" ");
}
void BaselineTTYOutputer::done() {
}
void BaselineTTYOutputer::total_usage(size_t total_reserved, size_t total_committed) {
const char* unit = memory_unit(_scale);
_output->print_cr("Total: reserved=%d%s, committed=%d%s",
total_reserved, unit, total_committed, unit);
}
void BaselineTTYOutputer::start_category_summary() {
_output->print_cr(" ");
}
/**
* report a summary of memory type
*/
void BaselineTTYOutputer::category_summary(MEMFLAGS type,
size_t reserved_amt, size_t committed_amt, size_t malloc_amt,
size_t malloc_count, size_t arena_amt, size_t arena_count) {
// we report mtThreadStack under mtThread category
if (type == mtThreadStack) {
assert(malloc_amt == 0 && malloc_count == 0 && arena_amt == 0,
"Just check");
_thread_stack_reserved = reserved_amt;
_thread_stack_committed = committed_amt;
} else {
const char* unit = memory_unit(_scale);
size_t total_reserved = (reserved_amt + malloc_amt + arena_amt);
size_t total_committed = (committed_amt + malloc_amt + arena_amt);
if (type == mtThread) {
total_reserved += _thread_stack_reserved;
total_committed += _thread_stack_committed;
}
if (total_reserved > 0) {
_output->print_cr("-%26s (reserved=%d%s, committed=%d%s)",
MemBaseline::type2name(type), total_reserved, unit,
total_committed, unit);
if (type == mtClass) {
_output->print_cr("%27s (classes #%d)", " ", _num_of_classes);
} else if (type == mtThread) {
_output->print_cr("%27s (thread #%d)", " ", _num_of_threads);
_output->print_cr("%27s (stack: reserved=%d%s, committed=%d%s)", " ",
_thread_stack_reserved, unit, _thread_stack_committed, unit);
}
if (malloc_amt > 0) {
if (type != mtChunk) {
_output->print_cr("%27s (malloc=%d%s, #%d)", " ", malloc_amt, unit,
malloc_count);
} else {
_output->print_cr("%27s (malloc=%d%s)", " ", malloc_amt, unit);
}
}
if (reserved_amt > 0) {
_output->print_cr("%27s (mmap: reserved=%d%s, committed=%d%s)",
" ", reserved_amt, unit, committed_amt, unit);
}
if (arena_amt > 0) {
_output->print_cr("%27s (arena=%d%s, #%d)", " ", arena_amt, unit, arena_count);
}
_output->print_cr(" ");
}
}
}
void BaselineTTYOutputer::done_category_summary() {
_output->print_cr(" ");
}
void BaselineTTYOutputer::start_virtual_memory_map() {
_output->print_cr("Virtual memory map:");
}
void BaselineTTYOutputer::reserved_memory_region(MEMFLAGS type, address base, address end,
size_t size, address pc) {
const char* unit = memory_unit(_scale);
char buf[128];
int offset;
_output->print_cr(" ");
_output->print_cr("[" PTR_FORMAT " - " PTR_FORMAT "] reserved %d%s for %s", base, end, size, unit,
MemBaseline::type2name(type));
if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) {
_output->print_cr("\t\tfrom [%s+0x%x]", buf, offset);
}
}
void BaselineTTYOutputer::committed_memory_region(address base, address end, size_t size, address pc) {
const char* unit = memory_unit(_scale);
char buf[128];
int offset;
_output->print("\t[" PTR_FORMAT " - " PTR_FORMAT "] committed %d%s", base, end, size, unit);
if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) {
_output->print_cr(" from [%s+0x%x]", buf, offset);
}
}
void BaselineTTYOutputer::done_virtual_memory_map() {
_output->print_cr(" ");
}
void BaselineTTYOutputer::start_callsite() {
_output->print_cr("Details:");
_output->print_cr(" ");
}
void BaselineTTYOutputer::done_callsite() {
_output->print_cr(" ");
}
void BaselineTTYOutputer::malloc_callsite(address pc, size_t malloc_amt,
size_t malloc_count) {
if (malloc_amt > 0) {
const char* unit = memory_unit(_scale);
char buf[128];
int offset;
if (pc == 0) {
_output->print("[BOOTSTRAP]%18s", " ");
} else if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) {
_output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset);
_output->print("%28s", " ");
} else {
_output->print("[" PTR_FORMAT "]%18s", pc, " ");
}
_output->print_cr("(malloc=%d%s #%d)", malloc_amt, unit, malloc_count);
_output->print_cr(" ");
}
}
void BaselineTTYOutputer::virtual_memory_callsite(address pc, size_t reserved_amt,
size_t committed_amt) {
if (reserved_amt > 0) {
const char* unit = memory_unit(_scale);
char buf[128];
int offset;
if (pc == 0) {
_output->print("[BOOTSTRAP]%18s", " ");
} else if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) {
_output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset);
_output->print("%28s", " ");
} else {
_output->print("[" PTR_FORMAT "]%18s", pc, " ");
}
_output->print_cr("(mmap: reserved=%d%s, committed=%d%s)",
reserved_amt, unit, committed_amt, unit);
_output->print_cr(" ");
}
}
void BaselineTTYOutputer::diff_total_usage(size_t total_reserved,
size_t total_committed, int reserved_diff, int committed_diff) {
const char* unit = memory_unit(_scale);
_output->print_cr("Total: reserved=%d%s %+d%s, committed=%d%s %+d%s",
total_reserved, unit, reserved_diff, unit, total_committed, unit,
committed_diff, unit);
}
void BaselineTTYOutputer::diff_category_summary(MEMFLAGS type,
size_t cur_reserved_amt, size_t cur_committed_amt,
size_t cur_malloc_amt, size_t cur_malloc_count,
size_t cur_arena_amt, size_t cur_arena_count,
int reserved_diff, int committed_diff, int malloc_diff,
int malloc_count_diff, int arena_diff, int arena_count_diff) {
if (type == mtThreadStack) {
assert(cur_malloc_amt == 0 && cur_malloc_count == 0 &&
cur_arena_amt == 0, "Just check");
_thread_stack_reserved = cur_reserved_amt;
_thread_stack_committed = cur_committed_amt;
_thread_stack_reserved_diff = reserved_diff;
_thread_stack_committed_diff = committed_diff;
} else {
const char* unit = memory_unit(_scale);
size_t total_reserved = (cur_reserved_amt + cur_malloc_amt + cur_arena_amt);
// nothing to report in this category
if (total_reserved == 0) {
return;
}
int diff_reserved = (reserved_diff + malloc_diff + arena_diff);
// category summary
_output->print("-%26s (reserved=%d%s", MemBaseline::type2name(type),
total_reserved, unit);
if (diff_reserved != 0) {
_output->print(" %+d%s", diff_reserved, unit);
}
size_t total_committed = cur_committed_amt + cur_malloc_amt + cur_arena_amt;
_output->print(", committed=%d%s", total_committed, unit);
int total_committed_diff = committed_diff + malloc_diff + arena_diff;
if (total_committed_diff != 0) {
_output->print(" %+d%s", total_committed_diff, unit);
}
_output->print_cr(")");
// special cases
if (type == mtClass) {
_output->print("%27s (classes #%d", " ", _num_of_classes);
if (_num_of_classes_diff != 0) {
_output->print(" %+d", _num_of_classes_diff);
}
_output->print_cr(")");
} else if (type == mtThread) {
// thread count
_output->print("%27s (thread #%d", " ", _num_of_threads);
if (_num_of_threads_diff != 0) {
_output->print_cr(" %+d)", _num_of_threads_diff);
} else {
_output->print_cr(")");
}
_output->print("%27s (stack: reserved=%d%s", " ", _thread_stack_reserved, unit);
if (_thread_stack_reserved_diff != 0) {
_output->print(" %+d%s", _thread_stack_reserved_diff, unit);
}
_output->print(", committed=%d%s", _thread_stack_committed, unit);
if (_thread_stack_committed_diff != 0) {
_output->print(" %+d%s",_thread_stack_committed_diff, unit);
}
_output->print_cr(")");
}
// malloc'd memory
if (cur_malloc_amt > 0) {
_output->print("%27s (malloc=%d%s", " ", cur_malloc_amt, unit);
if (malloc_diff != 0) {
_output->print(" %+d%s", malloc_diff, unit);
}
if (type != mtChunk) {
_output->print(", #%d", cur_malloc_count);
if (malloc_count_diff) {
_output->print(" %+d", malloc_count_diff);
}
}
_output->print_cr(")");
}
// mmap'd memory
if (cur_reserved_amt > 0) {
_output->print("%27s (mmap: reserved=%d%s", " ", cur_reserved_amt, unit);
if (reserved_diff != 0) {
_output->print(" %+d%s", reserved_diff, unit);
}
_output->print(", committed=%d%s", cur_committed_amt, unit);
if (committed_diff != 0) {
_output->print(" %+d%s", committed_diff, unit);
}
_output->print_cr(")");
}
// arena memory
if (cur_arena_amt > 0) {
_output->print("%27s (arena=%d%s", " ", cur_arena_amt, unit);
if (arena_diff != 0) {
_output->print(" %+d%s", arena_diff, unit);
}
_output->print(", #%d", cur_arena_count);
if (arena_count_diff != 0) {
_output->print(" %+d", arena_count_diff);
}
_output->print_cr(")");
}
_output->print_cr(" ");
}
}
void BaselineTTYOutputer::diff_malloc_callsite(address pc,
size_t cur_malloc_amt, size_t cur_malloc_count,
int malloc_diff, int malloc_count_diff) {
if (malloc_diff != 0) {
const char* unit = memory_unit(_scale);
char buf[128];
int offset;
if (pc == 0) {
_output->print_cr("[BOOTSTRAP]%18s", " ");
} else {
if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) {
_output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset);
_output->print("%28s", " ");
} else {
_output->print("[" PTR_FORMAT "]%18s", pc, " ");
}
}
_output->print("(malloc=%d%s", cur_malloc_amt, unit);
if (malloc_diff != 0) {
_output->print(" %+d%s", malloc_diff, unit);
}
_output->print(", #%d", cur_malloc_count);
if (malloc_count_diff != 0) {
_output->print(" %+d", malloc_count_diff);
}
_output->print_cr(")");
_output->print_cr(" ");
}
}
void BaselineTTYOutputer::diff_virtual_memory_callsite(address pc,
size_t cur_reserved_amt, size_t cur_committed_amt,
int reserved_diff, int committed_diff) {
if (reserved_diff != 0 || committed_diff != 0) {
const char* unit = memory_unit(_scale);
char buf[64];
int offset;
if (pc == 0) {
_output->print_cr("[BOOSTRAP]%18s", " ");
} else {
if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) {
_output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset);
_output->print("%28s", " ");
} else {
_output->print("[" PTR_FORMAT "]%18s", pc, " ");
}
}
_output->print("(mmap: reserved=%d%s", cur_reserved_amt, unit);
if (reserved_diff != 0) {
_output->print(" %+d%s", reserved_diff, unit);
}
_output->print(", committed=%d%s", cur_committed_amt, unit);
if (committed_diff != 0) {
_output->print(" %+d%s", committed_diff, unit);
}
_output->print_cr(")");
_output->print_cr(" ");
}
}